Приветствую! Мне нужна помощь, помогите по смарт контракту,мой телеграм @WikingR
It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
* @title Basic token
* @dev Basic version of StandardToken, [b]with no allowances[/b].
pragma solidity ^0.4.16;
/**
* @title ERC20Basic
* @dev Simpler version of ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/179
*/
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public constant returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
/**
* @title Basic token
* @dev Basic version of StandardToken, with no allowances.
*/
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
/**
* @dev transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address to, uint256 value)public returns (bool) {
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[to] = balances[to].add(value);
Transfer(msg.sender, to, value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address owner)public constant returns (uint256 balance) {
return balances[owner];
}
}
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* @dev https://github.com/ethereum/EIPs/issues/20
* @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amout of tokens to be transfered
*/
function transferFrom(address from, address to, uint256 value) public returns (bool) {
allowance = allowed[from][msg.sender];
// Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
// require (_value <= _allowance);
balances[to] = balances[to].add(value);
balances[from] = balances[from].sub(value);
allowed[from][msg.sender] = allowance.sub(value);
Transfer(from, to, value);
return true;
}
/**
* @dev Aprove the passed address to spend the specified amount of tokens on behalf of msg.sender.
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value)public returns (bool) {
// To change the approve amount you first have to reduce the addresses`
// allowance to zero by calling `approve(_spender, 0)` if it is not
// already 0 to mitigate the race condition described here:
// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][spender] = value;
Approval(msg.sender, spender, value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifing the amount of tokens still available for the spender.
*/
function allowance(address _owner, address _spender)public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
}
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*/
contract Ownable {
address public owner;
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
function Ownable()public {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) onlyOwner public {
require(newOwner != address(0));
owner = newOwner;
}
}
/**
* @title Burnable Token
* @dev Token that can be irreversibly burned (destroyed).
*/
contract BurnableToken is StandardToken {
/**
* @dev Burns a specific amount of tokens.
* @param _value The amount of token to be burned.
*/
function burn(uint _value) public {
require(_value > 0);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply = totalSupply.sub(_value);
Burn(burner, _value);
}
event Burn(address indexed burner, uint indexed value);
}
contract SimpleCoinToken is BurnableToken {
string public constant name = "...........";
string public constant symbol = "..............";
uint32 public constant decimals = 5;
uint256 public INITIAL_SUPPLY = 100000000 * 1 ether;
function SimpleCoinToken() public {
totalSupply = INITIAL_SUPPLY;
balances[msg.sender] = INITIAL_SUPPLY;
}
}
contract Crowdsale is Ownable {
using SafeMath for uint;
address multisig;
uint restrictedPercent;
address restricted;
SimpleCoinToken public token = new SimpleCoinToken();
uint start;
uint period;
uint rate;
function Crowdsale() public {
multisig = 0x06c49F11b09c0d984394cb355Bb1c284b1924b37;
restricted = 0x87140A60339968dF9e2DB831F7168c7de7719578;
restrictedPercent = 33;
rate = 100000000000000000000;
start = 1526040000;
period = 64;
}
modifier saleIsOn() {
require(now > start && now < start + period * 1 days);
_;
}
function createTokens() saleIsOn payable public {
multisig.transfer(msg.value);
uint tokens = rate.mul(msg.value).div(1 ether);
uint bonusTokens = 0;
if(now < start + (period * 1 days).div(4)) {
bonusTokens = tokens.div(4);
} else if(now >= start + (period * 1 days).div(4) && now < start + (period * 1 days).div(4).mul(2)) {
bonusTokens = tokens.div(10);
} else if(now >= start + (period * 1 days).div(4).mul(2) && now < start + (period * 1 days).div(4).mul(3)) {
bonusTokens = tokens.div(20);
}
uint tokensWithBonus = tokens.add(bonusTokens);
token.transfer(msg.sender, tokensWithBonus);
uint restrictedTokens = tokens.mul(restrictedPercent).div(100 - restrictedPercent);
token.transfer(restricted, restrictedTokens);
}
function() external payable {
createTokens();
}
}