Author

Topic: Calculating K nonce (Read 266 times)

member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 10, 2024, 08:30:26 AM
#19
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.

you are suppose to fill in the rsz after each 0x

in case you need the full code i had use in sagemath.

Code:

import random
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

E = EllipticCurve(GF(p), [0, 7])

G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8))

r=0x
s=0x
z=0x

def egcd(a, b):

    if a == 0:

        return (b, 0, 1)

    else:

        g, y, x = egcd(b % a, a)

        return (g, x - (b // a) * y, y)
def modinv(a, m):

    g, x, y = egcd(a, m)

    if g != 1:

        raise Exception('modular inverse does not exist')

    else:

        return x % m

def make_public(r,s,z):
    R = E.lift_x(Integer(r))
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    #R=u1*G + u2*public_key
    #pub= R*modinv(u2,n) - u1*modinv(u2,n)%n
    u_n2=modinv(u2,n)%n
    u_n1=- u1*modinv(u2,n)%n
   
    pub=u_n1*G + u_n2*R
    pub2=u_n1*G + u_n2*(-R)
    return pub,pub2

def verify(r, s,z,public_key):
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    D=u1*G + u2*public_key
    x,y=D.xy()
    x=int(x)

    if (r % n) == (x % n):
        print( "signature matches")
         
    else:
        print("invalid signature")

pub1,pub2=make_public(r,s,z)

print("public_key1",pub1)
print("pub1_x=",hex(pub1.xy()[0]))
print("public_key2",pub2)
print("pub2_x=",hex(pub2.xy()[0]))

verify(r,s,z,pub1)
verify(r,s,z,pub2)
print()

# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break






Thank you very mach for your code, mister Wink
@COBRAS
@krashfire

Please give me an example rsz if your code works correctly.
sample rsz Huh
r=0x
s=0x
z=0x
And, if 2 signatures match how long, it takes to K nonce



edit
i got error,

public_key1 (37231416379298332252575862495769965965364321245932635159006725536777825338696 : 9676366176353189190669004767334277632269117223198125569199055354600699161111 : 1)
pub1_x= 0x52503c225437e35c61b9ee5ec88ea71600e7a710dbebac88b27c2d1a667ac548
public_key2 (84773528361026042599480815013664408603889872484555722313313932231857335756436 : 21504221066078790871098131651817310599861599747961732812418866800256292472755 : 1)
pub2_x= 0xbb6c1de01f36618ae05f7c183c22dfa8797e779f39537752c27e2dc045b0e694
signature matches
signature matches


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In [1], line 83
     81 for i in range(Integer(1), n):
     82     k = (r * i + z) * modinv(s, n) % n
---> 83     if check_k(k):
     84         print(f"Found correct k: {k}")
     85         private_key = (s * k - z) * modinv(r, n) % n

Cell In [1], line 78, in check_k(k)
     76 def check_k(k):
     77     P = k * G
---> 78     return P.x() == r

File /home/sc_serv/sage/src/sage/structure/element.pyx:489, in sage.structure.element.Element.__getattr__()
    487         AttributeError: 'LeftZeroSemigroup_with_category.element_class' object has no attribute 'blah_blah'...
    488     """
--> 489     return self.getattr_from_category(name)
    490
    491 cdef getattr_from_category(self, name) noexcept:

File /home/sc_serv/sage/src/sage/structure/element.pyx:502, in sage.structure.element.Element.getattr_from_category()
    500     else:
    501         cls = P._abstract_element_class
--> 502     return getattr_from_other_class(self, cls, name)
    503
    504 def __dir__(self):

File /home/sc_serv/sage/src/sage/cpython/getattr.pyx:362, in sage.cpython.getattr.getattr_from_other_class()
    360     dummy_error_message.cls = type(self)
    361     dummy_error_message.name = name
--> 362     raise AttributeError(dummy_error_message)
    363 att

jr. member
Activity: 31
Merit: 5
April 09, 2024, 04:14:09 PM
#18
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.












wow. Thank you. Please do. I still feel 6 weeks is too long though. I just got lucky.


Can you please explain the logic behind this? GPU can probably reduce it to few days. you can PM me if needed.
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 09, 2024, 10:37:27 AM
#17
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.

in case you need the full code i had use in sagemath.

Code:

import random
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

E = EllipticCurve(GF(p), [0, 7])

G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8))

r=0x
s=0x
z=0x

def egcd(a, b):

    if a == 0:

        return (b, 0, 1)

    else:

        g, y, x = egcd(b % a, a)

        return (g, x - (b // a) * y, y)
def modinv(a, m):

    g, x, y = egcd(a, m)

    if g != 1:

        raise Exception('modular inverse does not exist')

    else:

        return x % m

def make_public(r,s,z):
    R = E.lift_x(Integer(r))
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    #R=u1*G + u2*public_key
    #pub= R*modinv(u2,n) - u1*modinv(u2,n)%n
    u_n2=modinv(u2,n)%n
    u_n1=- u1*modinv(u2,n)%n
    
    pub=u_n1*G + u_n2*R
    pub2=u_n1*G + u_n2*(-R)
    return pub,pub2

def verify(r, s,z,public_key):
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    D=u1*G + u2*public_key
    x,y=D.xy()
    x=int(x)

    if (r % n) == (x % n):
        print( "signature matches")
        
    else:
        print("invalid signature")

pub1,pub2=make_public(r,s,z)

print("public_key1",pub1)
print("pub1_x=",hex(pub1.xy()[0]))
print("public_key2",pub2)
print("pub2_x=",hex(pub2.xy()[0]))

verify(r,s,z,pub1)
verify(r,s,z,pub2)
print()

# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break






Thank you very mach for your code, mister Wink
@COBRAS
@krashfire

Please give me an example rsz if your code works correctly.
sample rsz Huh
r=0x
s=0x
z=0x
And, if 2 signatures match how long, it takes to K nonce



edit
i got error,

public_key1 (37231416379298332252575862495769965965364321245932635159006725536777825338696 : 9676366176353189190669004767334277632269117223198125569199055354600699161111 : 1)
pub1_x= 0x52503c225437e35c61b9ee5ec88ea71600e7a710dbebac88b27c2d1a667ac548
public_key2 (84773528361026042599480815013664408603889872484555722313313932231857335756436 : 21504221066078790871098131651817310599861599747961732812418866800256292472755 : 1)
pub2_x= 0xbb6c1de01f36618ae05f7c183c22dfa8797e779f39537752c27e2dc045b0e694
signature matches
signature matches


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In [1], line 83
     81 for i in range(Integer(1), n):
     82     k = (r * i + z) * modinv(s, n) % n
---> 83     if check_k(k):
     84         print(f"Found correct k: {k}")
     85         private_key = (s * k - z) * modinv(r, n) % n

Cell In [1], line 78, in check_k(k)
     76 def check_k(k):
     77     P = k * G
---> 78     return P.x() == r

File /home/sc_serv/sage/src/sage/structure/element.pyx:489, in sage.structure.element.Element.__getattr__()
    487         AttributeError: 'LeftZeroSemigroup_with_category.element_class' object has no attribute 'blah_blah'...
    488     """
--> 489     return self.getattr_from_category(name)
    490
    491 cdef getattr_from_category(self, name) noexcept:

File /home/sc_serv/sage/src/sage/structure/element.pyx:502, in sage.structure.element.Element.getattr_from_category()
    500     else:
    501         cls = P._abstract_element_class
--> 502     return getattr_from_other_class(self, cls, name)
    503
    504 def __dir__(self):

File /home/sc_serv/sage/src/sage/cpython/getattr.pyx:362, in sage.cpython.getattr.getattr_from_other_class()
    360     dummy_error_message.cls = type(self)
    361     dummy_error_message.name = name
--> 362     raise AttributeError(dummy_error_message)
    363 att



@krashfire find in 6 week, and this is looks like lucky.

you can find rsz in previous topics/messages of  @krashfire, for example
newbie
Activity: 16
Merit: 0
April 09, 2024, 09:46:47 AM
#16
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.

in case you need the full code i had use in sagemath.

Code:

import random
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

E = EllipticCurve(GF(p), [0, 7])

G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8))

r=0x
s=0x
z=0x

def egcd(a, b):

    if a == 0:

        return (b, 0, 1)

    else:

        g, y, x = egcd(b % a, a)

        return (g, x - (b // a) * y, y)
def modinv(a, m):

    g, x, y = egcd(a, m)

    if g != 1:

        raise Exception('modular inverse does not exist')

    else:

        return x % m

def make_public(r,s,z):
    R = E.lift_x(Integer(r))
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    #R=u1*G + u2*public_key
    #pub= R*modinv(u2,n) - u1*modinv(u2,n)%n
    u_n2=modinv(u2,n)%n
    u_n1=- u1*modinv(u2,n)%n
    
    pub=u_n1*G + u_n2*R
    pub2=u_n1*G + u_n2*(-R)
    return pub,pub2

def verify(r, s,z,public_key):
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    D=u1*G + u2*public_key
    x,y=D.xy()
    x=int(x)

    if (r % n) == (x % n):
        print( "signature matches")
        
    else:
        print("invalid signature")

pub1,pub2=make_public(r,s,z)

print("public_key1",pub1)
print("pub1_x=",hex(pub1.xy()[0]))
print("public_key2",pub2)
print("pub2_x=",hex(pub2.xy()[0]))

verify(r,s,z,pub1)
verify(r,s,z,pub2)
print()

# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break






Thank you very mach for your code, mister Wink
@COBRAS
@krashfire

Please give me an example rsz if your code works correctly.
sample rsz Huh
r=0x
s=0x
z=0x
And, if 2 signatures match how long, it takes to K nonce



edit
i got error,

public_key1 (37231416379298332252575862495769965965364321245932635159006725536777825338696 : 9676366176353189190669004767334277632269117223198125569199055354600699161111 : 1)
pub1_x= 0x52503c225437e35c61b9ee5ec88ea71600e7a710dbebac88b27c2d1a667ac548
public_key2 (84773528361026042599480815013664408603889872484555722313313932231857335756436 : 21504221066078790871098131651817310599861599747961732812418866800256292472755 : 1)
pub2_x= 0xbb6c1de01f36618ae05f7c183c22dfa8797e779f39537752c27e2dc045b0e694
signature matches
signature matches


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In [1], line 83
     81 for i in range(Integer(1), n):
     82     k = (r * i + z) * modinv(s, n) % n
---> 83     if check_k(k):
     84         print(f"Found correct k: {k}")
     85         private_key = (s * k - z) * modinv(r, n) % n

Cell In [1], line 78, in check_k(k)
     76 def check_k(k):
     77     P = k * G
---> 78     return P.x() == r

File /home/sc_serv/sage/src/sage/structure/element.pyx:489, in sage.structure.element.Element.__getattr__()
    487         AttributeError: 'LeftZeroSemigroup_with_category.element_class' object has no attribute 'blah_blah'...
    488     """
--> 489     return self.getattr_from_category(name)
    490
    491 cdef getattr_from_category(self, name) noexcept:

File /home/sc_serv/sage/src/sage/structure/element.pyx:502, in sage.structure.element.Element.getattr_from_category()
    500     else:
    501         cls = P._abstract_element_class
--> 502     return getattr_from_other_class(self, cls, name)
    503
    504 def __dir__(self):

File /home/sc_serv/sage/src/sage/cpython/getattr.pyx:362, in sage.cpython.getattr.getattr_from_other_class()
    360     dummy_error_message.cls = type(self)
    361     dummy_error_message.name = name
--> 362     raise AttributeError(dummy_error_message)
    363 att
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 09, 2024, 06:58:25 AM
#15
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.

in case you need the full code i had use in sagemath.

Code:

import random
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

E = EllipticCurve(GF(p), [0, 7])

G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8))

r=0x
s=0x
z=0x

def egcd(a, b):

    if a == 0:

        return (b, 0, 1)

    else:

        g, y, x = egcd(b % a, a)

        return (g, x - (b // a) * y, y)
def modinv(a, m):

    g, x, y = egcd(a, m)

    if g != 1:

        raise Exception('modular inverse does not exist')

    else:

        return x % m

def make_public(r,s,z):
    R = E.lift_x(Integer(r))
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    #R=u1*G + u2*public_key
    #pub= R*modinv(u2,n) - u1*modinv(u2,n)%n
    u_n2=modinv(u2,n)%n
    u_n1=- u1*modinv(u2,n)%n
   
    pub=u_n1*G + u_n2*R
    pub2=u_n1*G + u_n2*(-R)
    return pub,pub2

def verify(r, s,z,public_key):
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    D=u1*G + u2*public_key
    x,y=D.xy()
    x=int(x)

    if (r % n) == (x % n):
        print( "signature matches")
         
    else:
        print("invalid signature")

pub1,pub2=make_public(r,s,z)

print("public_key1",pub1)
print("pub1_x=",hex(pub1.xy()[0]))
print("public_key2",pub2)
print("pub2_x=",hex(pub2.xy()[0]))

verify(r,s,z,pub1)
verify(r,s,z,pub2)
print()

# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break






Thank you very mach for your code, mister Wink
member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 09, 2024, 02:40:06 AM
#14
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.

in case you need the full code i had use in sagemath.

Code:

import random
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

E = EllipticCurve(GF(p), [0, 7])

G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8))

r=0x
s=0x
z=0x

def egcd(a, b):

    if a == 0:

        return (b, 0, 1)

    else:

        g, y, x = egcd(b % a, a)

        return (g, x - (b // a) * y, y)
def modinv(a, m):

    g, x, y = egcd(a, m)

    if g != 1:

        raise Exception('modular inverse does not exist')

    else:

        return x % m

def make_public(r,s,z):
    R = E.lift_x(Integer(r))
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    #R=u1*G + u2*public_key
    #pub= R*modinv(u2,n) - u1*modinv(u2,n)%n
    u_n2=modinv(u2,n)%n
    u_n1=- u1*modinv(u2,n)%n
   
    pub=u_n1*G + u_n2*R
    pub2=u_n1*G + u_n2*(-R)
    return pub,pub2

def verify(r, s,z,public_key):
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    D=u1*G + u2*public_key
    x,y=D.xy()
    x=int(x)

    if (r % n) == (x % n):
        print( "signature matches")
         
    else:
        print("invalid signature")

pub1,pub2=make_public(r,s,z)

print("public_key1",pub1)
print("pub1_x=",hex(pub1.xy()[0]))
print("public_key2",pub2)
print("pub2_x=",hex(pub2.xy()[0]))

verify(r,s,z,pub1)
verify(r,s,z,pub2)
print()

# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break



member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 09, 2024, 01:17:01 AM
#13
I currently ran the program on i9 processor and a Nvidia 3090 GPU.
member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 09, 2024, 01:15:47 AM
#12
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.












wow. Thank you. Please do. I still feel 6 weeks is too long though. I just got lucky.
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 08, 2024, 11:19:47 AM
#11
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.



muliticore vesion on cpu will be faster too, but 6 weeks , I thin is a big lucky.... unfortunately











jr. member
Activity: 31
Merit: 5
April 08, 2024, 10:47:17 AM
#10
Running this on GPU will be mush faster,. Let me see if i can write a CUDA program for this.











member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 08, 2024, 08:23:29 AM
#9
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?


6 weeks is very fast !!!
 have you result from real srz from btc transaction  ?
yes the result is from real rsz from a dormant wallet of 8 years.

Bro, check your pm please )
member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 07, 2024, 11:26:54 PM
#8
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?


6 weeks is very fast !!!
 have you result from real srz from btc transaction  ?
yes the result is from real rsz from a dormant wallet of 8 years.
member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 07, 2024, 11:26:00 PM
#7
i did. it went i
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?


expand code,add formulas for r,s,z and after ask openai, in my situations this help. openai find bast and fastest solution

regards
i did it went into some imaginary calculations that wasted my time, sometimes 2 days until i realize the calculations are not right.
member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 07, 2024, 11:24:19 PM
#6
OH
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?



 Maybe this can help, this about nonce

https://bitcointalksearch.org/topic/backdoor-ve-ecdsa-5491531
[/quote

oh..ok thank you bro.
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 07, 2024, 10:32:38 PM
#5
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?


expand code,add formulas for r,s,z and after ask openai, in my situations this help. openai find bast and fastest solution

regards
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 07, 2024, 09:32:25 PM
#4
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?



what i you have for 256 bit nonce ? Roll Eyes
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 07, 2024, 05:36:40 PM
#3
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?


6 weeks is very fast !!!
 have you result from real srz from btc transaction  ?
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
April 07, 2024, 05:33:57 PM
#2
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?



 Maybe this can help, this about nonce

https://bitcointalksearch.org/topic/backdoor-ve-ecdsa-5491531
member
Activity: 127
Merit: 14
Life aint interesting without any cuts and bruises
April 07, 2024, 04:07:18 PM
#1
Hi everyone, im currently using this calculation written by ecdsa123 to get to K nonce.

Code:
# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.x() == r

# Iterate to find the correct k
for i in range(1, n):
    k = (r * i + z) * modinv(s, n) % n
    if check_k(k):
        print(f"Found correct k: {k}")
        private_key = (s * k - z) * modinv(r, n) % n
        print(f"Private Key: {private_key}")
        break


  i got the correct k nonce (256 bits) using his method after 6 weeks.

i am just wondering is there a more effective way to solve for k nonce faster? is there a way for direct calculations from the given the values?
Jump to: