It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
import os
import hashlib
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
private_key = ec.generate_private_key(ec.SECP256K1(), default_backend())
public_key = private_key.public_key()
for i in range(100):
data = os.urandom(32)
signature = private_key.sign(data, ec.ECDSA(hashes.SHA256()))
# Extract the values of 'r', 's', 'z' from the signature
r, s = signature
z = int.from_bytes(hashlib.sha256(data).digest(), 'big')
# Print the values of 'r', 's', 'z'
print("r:", r)
print("s:", s)
print("z:", z)
for i in range(100):
import ecdsa
import random
# Define the secp256k1 curve
curve = ecdsa.SECP256k1
# Generate 100 random private keys
private_keys = [ecdsa.SigningKey.generate(curve=curve) for i in range(100)]
# Create signatures using the private keys and random messages (z)
signatures = []
for i in range(100):
z = random.randint(0, 2**256)
private_key = private_keys[i]
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest(z.to_bytes(32, 'big'), sigencode=ecdsa.util.sigencode_der)
r, s = ecdsa.util.sigdecode_der(signature, curve.generator.order())
signatures.append((z, r, s))
# Get the nonce (k) for each signature
nonce = []
for i in range(100):
z, r, s = signatures[i]
k = ecdsa. SigningKey.from_public_key(public_key, curve=curve).verifying_key.recover_session_key(z.to_bytes(32, 'big'), (r, s), hashfunc=ecdsa.util.sha256, sigdecode=ecdsa.util.sigdecode_der)
nonce.append(k)
# The 100 signatures, Z values, and nonce values are stored in the signatures, Z, and nonce lists, respectively.
import os
import hashlib
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
private_key = ec.generate_private_key(ec.SECP256K1(), default_backend())
public_key = private_key.public_key()
for i in range(100):
data = os.urandom(32)
signature = private_key.sign(data, ec.ECDSA(hashes.SHA256()))
# Extract the values of 'r', 's', 'z' from the signature
r, s = signature
z = int.from_bytes(hashlib.sha256(data).digest(), 'big')
# Print the values of 'r', 's', 'z'
print("r:", r)
print("s:", s)
print("z:", z)
for i in range(100):
import ecdsa
import random
# Define the secp256k1 curve
curve = ecdsa.SECP256k1
# Generate 100 random private keys
private_keys = [ecdsa.SigningKey.generate(curve=curve) for i in range(100)]
# Create signatures using the private keys and random messages (z)
signatures = []
for i in range(100):
z = random.randint(0, 2**256)
private_key = private_keys[i]
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest(z.to_bytes(32, 'big'), sigencode=ecdsa.util.sigencode_der)
r, s = ecdsa.util.sigdecode_der(signature, curve.generator.order())
signatures.append((z, r, s))
# Get the nonce (k) for each signature
nonce = []
for i in range(100):
z, r, s = signatures[i]
k = ecdsa. SigningKey.from_public_key(public_key, curve=curve).verifying_key.recover_session_key(z.to_bytes(32, 'big'), (r, s), hashfunc=ecdsa.util.sha256, sigdecode=ecdsa.util.sigdecode_der)
nonce.append(k)
# The 100 signatures, Z values, and nonce values are stored in the signatures, Z, and nonce lists, respectively.
import os
import hashlib
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
private_key = ec.generate_private_key(ec.SECP256K1(), default_backend())
public_key = private_key.public_key()
for i in range(100):
data = os.urandom(32)
signature = private_key.sign(data, ec.ECDSA(hashes.SHA256()))
# Extract the values of 'r', 's', 'z' from the signature
r, s = signature
z = int.from_bytes(hashlib.sha256(data).digest(), 'big')
# Print the values of 'r', 's', 'z'
print("r:", r)
print("s:", s)
print("z:", z)
for i in range(100):
import ecdsa
import random
# Define the secp256k1 curve
curve = ecdsa.SECP256k1
# Generate 100 random private keys
private_keys = [ecdsa.SigningKey.generate(curve=curve) for i in range(100)]
# Create signatures using the private keys and random messages (z)
signatures = []
for i in range(100):
z = random.randint(0, 2**256)
private_key = private_keys[i]
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest(z.to_bytes(32, 'big'), sigencode=ecdsa.util.sigencode_der)
r, s = ecdsa.util.sigdecode_der(signature, curve.generator.order())
signatures.append((z, r, s))
# Get the nonce (k) for each signature
nonce = []
for i in range(100):
z, r, s = signatures[i]
k = ecdsa. SigningKey.from_public_key(public_key, curve=curve).verifying_key.recover_session_key(z.to_bytes(32, 'big'), (r, s), hashfunc=ecdsa.util.sha256, sigdecode=ecdsa.util.sigdecode_der)
nonce.append(k)
# The 100 signatures, Z values, and nonce values are stored in the signatures, Z, and nonce lists, respectively.
import os
import hashlib
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
private_key = ec.generate_private_key(ec.SECP256K1(), default_backend())
public_key = private_key.public_key()
for i in range(100):
data = os.urandom(32)
signature = private_key.sign(data, ec.ECDSA(hashes.SHA256()))
# Extract the values of 'r', 's', 'z' from the signature
r, s = signature
z = int.from_bytes(hashlib.sha256(data).digest(), 'big')
# Print the values of 'r', 's', 'z'
print("r:", r)
print("s:", s)
print("z:", z)
for i in range(100):
import ecdsa
import random
# Define the secp256k1 curve
curve = ecdsa.SECP256k1
# Generate 100 random private keys
private_keys = [ecdsa.SigningKey.generate(curve=curve) for i in range(100)]
# Create signatures using the private keys and random messages (z)
signatures = []
for i in range(100):
z = random.randint(0, 2**256)
private_key = private_keys[i]
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest(z.to_bytes(32, 'big'), sigencode=ecdsa.util.sigencode_der)
r, s = ecdsa.util.sigdecode_der(signature, curve.generator.order())
signatures.append((z, r, s))
# Get the nonce (k) for each signature
nonce = []
for i in range(100):
z, r, s = signatures[i]
k = ecdsa. SigningKey.from_public_key(public_key, curve=curve).verifying_key.recover_session_key(z.to_bytes(32, 'big'), (r, s), hashfunc=ecdsa.util.sha256, sigdecode=ecdsa.util.sigdecode_der)
nonce.append(k)
# The 100 signatures, Z values, and nonce values are stored in the signatures, Z, and nonce lists, respectively.
import os
import hashlib
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
private_key = ec.generate_private_key(ec.SECP256K1(), default_backend())
public_key = private_key.public_key()
for i in range(100):
data = os.urandom(32)
signature = private_key.sign(data, ec.ECDSA(hashes.SHA256()))
# Extract the values of 'r', 's', 'z' from the signature
r, s = signature
z = int.from_bytes(hashlib.sha256(data).digest(), 'big')
# Print the values of 'r', 's', 'z'
print("r:", r)
print("s:", s)
print("z:", z)
for i in range(100):
import ecdsa
import random
# Define the secp256k1 curve
curve = ecdsa.SECP256k1
# Generate 100 random private keys
private_keys = [ecdsa.SigningKey.generate(curve=curve) for i in range(100)]
# Create signatures using the private keys and random messages (z)
signatures = []
for i in range(100):
z = random.randint(0, 2**256)
private_key = private_keys[i]
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest(z.to_bytes(32, 'big'), sigencode=ecdsa.util.sigencode_der)
r, s = ecdsa.util.sigdecode_der(signature, curve.generator.order())
signatures.append((z, r, s))
# Get the nonce (k) for each signature
nonce = []
for i in range(100):
z, r, s = signatures[i]
k = ecdsa. SigningKey.from_public_key(public_key, curve=curve).verifying_key.recover_session_key(z.to_bytes(32, 'big'), (r, s), hashfunc=ecdsa.util.sha256, sigdecode=ecdsa.util.sigdecode_der)
nonce.append(k)
# The 100 signatures, Z values, and nonce values are stored in the signatures, Z, and nonce lists, respectively.