Correct.
Given a base point of P and a private key scalar value of Q, when you multiply P & Q (using point multiplication on the elliptic curve) the result is public key point R.
Incorrect.
It is not a "hash value". What you get is a pair of very large integers. If it looks like a "hash value" to you then that means that the method you are using to calculate the value is displaying those integers to you in base 16 (also known as hexadecimal).
It was already an integer. You are just converting the integer from base 16 (hexadecimal) to base 10 (decimal) representation.
But in elliptic curve cryptography graphs we DO work on LARGE integers.
The generator point is not a HASH. It is a POINT. It is a point on the graph with an X coordinate and a Y coordinate. The generator point G IS the point P in your example of "scalar multiplication of Point P & Q we get the point R".
If you remove G then you have nothing to multiply by the scalar private key Q.
The large integers ARE the ACTUAL POINT VALUES.