It took so many spaces copy-pasting it directly, try to use
"Insert code" function.
and it will become like this;
enerate_class_string(typename, props, description, namespace):
"""Dynamically generate class strings to have nicely formatted docstrings,
keyword arguments, and repr.
----------
typename
props
description
namespace
Returns
-------
string
"""
# TODO _prop_names, _type, _namespace, and available_properties
# can be modified by a Dash JS developer via setattr
# TODO - Tab out the repr for the repr of these components to make it
# look more like a hierarchical tree
# TODO - Include "description" "defaultValue" in the repr and docstring
#
# TODO - Handle "required"
#
# TODO - How to handle user-given `null` values? I want to include
# an expanded docstring like Dropdown(value=None, id=None)
# but by templating in those None values, I have no way of knowing
# whether a property is None because the user explicitly wanted
# it to be `null` or whether that was just the default value.
# The solution might be to deal with default values better although
# not all component authors will supply those.
c = '''class {typename}(Component):
"""{docstring}"""
@_explicitize_args
def __init__(self, {default_argtext}):
self._prop_names = {list_of_valid_keys}
self._type = '{typename}'
self._namespace = '{namespace}'
self._valid_wildcard_attributes =\
{list_of_valid_wildcard_attr_prefixes}
self.available_properties = {list_of_valid_keys}
self.available_wildcard_properties =\
{list_of_valid_wildcard_attr_prefixes}
_explicit_args = kwargs.pop('_explicit_args')
_locals = locals()
_locals.update(kwargs) # For wildcard attrs
args = {{k: _locals[k] for k in _explicit_args if k != 'children'}}
for k in {required_props}:
if k not in args:
raise TypeError(
'Required argument `' + k + '` was not specified.')
super({typename}, self).__init__({argtext})
'''
filtered_props = reorder_props(filter_props(props))
wildcard_prefixes = repr(parse_wildcards(props))
list_of_valid_keys = repr(list(map(str, filtered_props.keys())))
docstring = create_docstring(
component_name=typename,
props=filtered_props,
description=description).replace('\r\n', '\n')
prohibit_events(props)
# pylint: disable=unused-variable
prop_keys = list(props.keys())
if 'children' in props:
prop_keys.remove('children')
default_argtext = "children=None, "
argtext = 'children=children, **args'
else:
default_argtext = ""
argtext = '**args'
default_argtext += ", ".join(
[('{:s}=Component.REQUIRED'.format(p)
if props[p]['required'] else
'{:s}=Component.UNDEFINED'.format(p))
for p in prop_keys
if not p.endswith("-*") and
p not in python_keywords and
p != 'setProps'] + ["**kwargs"]
)
required_args = required_props(props)
return c.format(
typename=typename,
namespace=namespace,
filtered_props=filtered_props,
list_of_valid_wildcard_attr_prefixes=wildcard_prefixes,
list_of_valid_keys=list_of_valid_keys,
docstring=docstring,
default_argtext=default_argtext,
argtext=argtext,
required_props=required_args
)
def generate_class_file(typename, props, description, namespace):
"""Generate a python class file (.py) given a class string.
Parameters
----------
typename
props
description
namespace
Returns
-------
"""
import_string =\
"# AUTO GENERATED FILE - DO NOT EDIT\n\n" + \
"from dash.development.base_component import " + \
"Component, _explicitize_args\n\n\n"
class_string = generate_class_string(
typename,
props,
description,
namespace
)
file_name = "{:s}.py".format(typename)
file_path = os.path.join(namespace, file_name)
with open(file_path, 'w') as f:
f.write(import_string)
f.write(class_string)
print('Generated {}'.format(file_name))
def generate_imports(project_shortname, components):
with open(os.path.join(project_shortname, '_imports_.py'), 'w') as f:
imports_string = '{}\n\n{}'.format(
'\n'.join(
'from .{0} import {0}'.format(x) for x in components),
'__all__ = [\n{}\n]'.format(
',\n'.join(' "{}"'.format(x) for x in components))
)
f.write(imports_string)
def generate_classes_files(project_shortname, metadata, *component_generators):
components = []
for component_path, component_data in metadata.items():
component_name = component_path.split('/')[-1].split('.')[0]
components.append(component_name)
for generator in component_generators:
generator(
component_name,
component_data['props'],
component_data['description'],
project_shortname
)
return components
def generate_class(typename, props, description, namespace):
"""Generate a python class object given a class string.
Parameters
----------
typename
props
description
namespace
Returns
-------
"""
string = generate_class_string(typename, props, description, namespace)
scope = {'Component': Component, '_explicitize_args': _explicitize_args}
# pylint: disable=exec-used
exec(string, scope)
result = scope[typename]
return result
def required_props(props):
"""Pull names of required props from the props object.
Parameters
----------
props: dict
Returns
-------
list
List of prop names (str) that are required for the Component
"""
return [prop_name for prop_name, prop in list(props.items())
if prop['required']]
def create_docstring(component_name, props, description):
"""Create the Dash component docstring.
Parameters
----------
component_name: str
Component name
props: dict
Dictionary with {propName: propMetadata} structure
description: str
Component description
Returns
-------
str
Dash component docstring
"""
# Ensure props are ordered with children first
props = reorder_props(props=props)
return (
"""A{n} {name} component.\n{description}
Keyword arguments:\n{args}"""
).format(
n='n' if component_name[0].lower() in ['a', 'e', 'i', 'o', 'u']
else '',
name=component_name,
description=description,
args='\n'.join(
create_prop_docstring(
prop_name=p,
type_object=prop['type'] if 'type' in prop
else prop['flowType'],
required=prop['required'],
description=prop['description'],
default=prop.get('defaultValue'),
indent_num=0,
is_flow_type='flowType' in prop and 'type' not in prop)
for p, prop in list(filter_props(props).items())))
def prohibit_events(props):
"""Events have been removed. Raise an error if we see dashEvents or
fireEvents.
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Raises
-------
?
"""
if 'dashEvents' in props or 'fireEvents' in props:
raise NonExistentEventException(
'Events are no longer supported by dash. Use properties instead, '
'eg `n_clicks` instead of a `click` event.')
def parse_wildcards(props):
"""Pull out the wildcard attributes from the Component props.
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
list
List of Dash valid wildcard prefixes
"""
list_of_valid_wildcard_attr_prefixes = []
for wildcard_attr in ["data-*", "aria-*"]:
if wildcard_attr in props:
list_of_valid_wildcard_attr_prefixes.append(wildcard_attr[:-1])
return list_of_valid_wildcard_attr_prefixes
def reorder_props(props):
"""If "children" is in props, then move it to the front to respect dash
convention.
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
dict
Dictionary with {propName: propMetadata} structure
"""
if 'children' in props:
# Constructing an OrderedDict with duplicate keys, you get the order
# from the first one but the value from the last.
# Doing this to avoid mutating props, which can cause confusion.
props = OrderedDict([('children', '')] + list(props.items()))
return props
def filter_props(props):
"""Filter props from the Component arguments to exclude:
- Those without a "type" or a "flowType" field
- Those with arg.type.name in {'func', 'symbol', 'instanceOf'}
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
dict
Filtered dictionary with {propName: propMetadata} structure
Examples
--------
```python
prop_args = {
'prop1': {
'type': {'name': 'bool'},
'required': False,
'description': 'A description',
'flowType': {},
'defaultValue': {'value': 'false', 'computed': False},
},
'prop2': {'description': 'A prop without a type'},
'prop3': {
'type': {'name': 'func'},
'description': 'A function prop',
},
}
# filtered_prop_args is now
# {
# 'prop1': {
# 'type': {'name': 'bool'},
# 'required': False,
# 'description': 'A description',
# 'flowType': {},
# 'defaultValue': {'value': 'false', 'computed': False},
# },
# }
filtered_prop_args = filter_props(prop_args)
```
"""
filtered_props = copy.deepcopy(props)
for arg_name, arg in list(filtered_props.items()):
if 'type' not in arg and 'flowType' not in arg:
filtered_props.pop(arg_name)
continue
# Filter out functions and instances --
# these cannot be passed from Python
if 'type' in arg: # These come from PropTypes
arg_type = arg['type']['name']
if arg_type in {'func', 'symbol', 'instanceOf'}:
filtered_props.pop(arg_name)
elif 'flowType' in arg: # These come from Flow & handled differently
arg_type_name = arg['flowType']['name']
if arg_type_name == 'signature':
# This does the same as the PropTypes filter above, but "func"
# is under "type" if "name" is "signature" vs just in "name"
if 'type' not in arg['flowType'] \
or arg['flowType']['type'] != 'object':
filtered_props.pop(arg_name)
else:
raise ValueError
return filtered_props
# pylint: disable=too-many-arguments
def create_prop_docstring(prop_name, type_object, required, description,
default, indent_num, is_flow_type=False):
"""Create the Dash component prop docstring.
Parameters
----------
prop_name: str
Name of the Dash component prop
type_object: dict
react-docgen-generated prop type dictionary
required: bool
Component is required?
description: str
Dash component description
default: dict
Either None if a default value is not defined, or
dict containing the key 'value' that defines a
default value for the prop
indent_num: int
Number of indents to use for the context block
(creates 2 spaces for every indent)
is_flow_type: bool
Does the prop use Flow types? Otherwise, uses PropTypes
Returns
-------
str
Dash component prop docstring
"""
py_type_name = js_to_py_type(
type_object=type_object,
is_flow_type=is_flow_type,
indent_num=indent_num + 1)
indent_spacing = ' ' * indent_num
if default is None:
default = ''
else:
default = default['value']
if default in ['true', 'false']:
default = default.title()
is_required = 'optional'
if required:
is_required = 'required'
elif default and default not in ['null', '{}', '[]']:
is_required = 'default {}'.format(
default.replace('\n', '\n' + indent_spacing)
)
if '\n' in py_type_name:
return '{indent_spacing}- {name} (dict; {is_required}): ' \
'{description}{period}' \
'{name} has the following type: {type}'.format(
indent_spacing=indent_spacing,
name=prop_name,
type=py_type_name,
description=description.strip().strip('.'),
period='. ' if description else '',
is_required=is_required)
return '{indent_spacing}- {name} ({type}' \
'{is_required}){description}'.format(
indent_spacing=indent_spacing,
name=prop_name,
type='{}; '.format(py_type_name) if py_type_name else '',
description=(
': {}'.format(description) if description != '' else ''
),
is_required=is_required)
def map_js_to_py_types_prop_types(type_object):
"""Mapping from the PropTypes js type object to the Python type."""
def shape_or_exact():
return 'dict containing keys {}.\n{}'.format(
', '.join(
"'{}'".format(t) for t in list(type_object['value'].keys())
),
'Those keys have the following types:\n{}'.format(
'\n'.join(
create_prop_docstring(
prop_name=prop_name,
type_object=prop,
required=prop['required'],
description=prop.get('description', ''),
default=prop.get('defaultValue'),
indent_num=1
) for prop_name, prop in
list(type_object['value'].items())))
)
return dict(
array=lambda: 'list',
bool=lambda: 'boolean',
number=lambda: 'number',
string=lambda: 'string',
object=lambda: 'dict',
any=lambda: 'boolean | number | string | dict | list',
element=lambda: 'dash component',
node=lambda: 'a list of or a singular dash '
'component, string or number',
# React's PropTypes.oneOf
enum=lambda: 'a value equal to: {}'.format(
', '.join(
'{}'.format(str(t['value']))
for t in type_object['value'])),
# React's PropTypes.oneOfType
union=lambda: '{}'.format(
' | '.join(
'{}'.format(js_to_py_type(subType))
for subType in type_object['value']
if js_to_py_type(subType) != '')),
# React's PropTypes.arrayOf
arrayOf=lambda: (
"list" + (" of {}".format(
js_to_py_type(type_object["value"]) + 's'
if js_to_py_type(type_object["value"]).split(' ')[0] != 'dict'
else js_to_py_type(type_object["value"]).replace(
'dict', 'dicts', 1
)
)
if js_to_py_type(type_object["value"]) != ""
else "")
),
# React's PropTypes.objectOf
objectOf=lambda: (
'dict with strings as keys and values of type {}'
).format(
js_to_py_type(type_object['value'])),
# React's PropTypes.shape
shape=shape_or_exact,
# React's PropTypes.exact
exact=shape_or_exact
)
def map_js_to_py_types_flow_types(type_object):
"""Mapping from the Flow js types to the Python type."""
return dict(
array=lambda: 'list',
boolean=lambda: 'boolean',
number=lambda: 'number',
string=lambda: 'string',
Object=lambda: 'dict',
any=lambda: 'bool | number | str | dict | list',
Element=lambda: 'dash component',
Node=lambda: 'a list of or a singular dash '
'component, string or number',
# React's PropTypes.oneOfType
union=lambda: '{}'.format(
' | '.join(
'{}'.format(js_to_py_type(subType))
for subType in type_object['elements']
if js_to_py_type(subType) != '')),
# Flow's Array type
Array=lambda: 'list{}'.format(
' of {}s'.format(
js_to_py_type(type_object['elements'][0]))
if js_to_py_type(type_object['elements'][0]) != ''
else ''),
# React's PropTypes.shape
signature=lambda indent_num: 'dict containing keys {}.\n{}'.format(
', '.join("'{}'".format(d['key'])
for d in type_object['signature']['properties']),
'{}Those keys have the following types:\n{}'.format(
' ' * indent_num,
'\n'.join(
create_prop_docstring(
prop_name=prop['key'],
type_object=prop['value'],
required=prop['value']['required'],
description=prop['value'].get('description', ''),
default=prop.get('defaultValue'),
indent_num=indent_num,
is_flow_type=True)
for prop in type_object['signature']['properties']))),
)
def js_to_py_type(type_object, is_flow_type=False, indent_num=0):
"""Convert JS types to Python types for the component definition.
Parameters
----------
type_object: dict
react-docgen-generated prop type dictionary
is_flow_type: bool
Does the prop use Flow types? Otherwise, uses PropTypes
indent_num: int
Number of indents to use for the docstring for the prop
how to join the community if you do not tell us how to do it?