Certainly.
// //////////////////////////////////////////////////////////
// sha256.h
// Copyright (c) 2014,2015 Stephan Brumme. All rights reserved.
// see http://create.stephan-brumme.com/disclaimer.html
//
#pragma once
//#include "hash.h"
#include
// define fixed size integer types
#ifdef _WIN32
// Windows
typedef unsigned __int8 uint8_t;
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
#else
// GCC
#include
#endif
// big endian architectures need #define __BYTE_ORDER __BIG_ENDIAN
#ifndef _WIN32
#include
#endif
//#define SHA2_224_SEED_VECTOR
inline uint32_t SHA256_rotate(uint32_t a, uint32_t c)
{
return (a >> c) | (a << (32 - c));
}
inline uint32_t SHA256_swap(uint32_t x)
{
#if defined(__GNUC__) || defined(__clang__)
return __builtin_bswap32(x);
#endif
#ifdef MSC_VER
return _byteSHA256_swap_ulong(x);
#endif
return (x >> 24) |
((x >> 8) & 0x0000FF00) |
((x << 8) & 0x00FF0000) |
(x << 24);
}
// mix functions for processBlock()
inline uint32_t SHA256_f1(uint32_t e, uint32_t f, uint32_t g)
{
uint32_t term1 = SHA256_rotate(e, 6) ^ SHA256_rotate(e, 11) ^ SHA256_rotate(e, 25);
uint32_t term2 = (e & f) ^ (~e & g); //(g ^ (e & (f ^ g)))
return term1 + term2;
}
inline uint32_t SHA256_f2(uint32_t a, uint32_t b, uint32_t c)
{
uint32_t term1 = SHA256_rotate(a, 2) ^ SHA256_rotate(a, 13) ^ SHA256_rotate(a, 22);
uint32_t term2 = ((a | b) & c) | (a & b); //(a & (b ^ c)) ^ (b & c);
return term1 + term2;
}
/// compute SHA256 hash
/** Usage:
SHA256 sha256;
std::string myHash = sha256("Hello World"); // std::string
std::string myHash2 = sha256("How are you", 11); // arbitrary data, 11 bytes
// or in a streaming fashion:
SHA256 sha256;
while (more data available)
sha256.add(pointer to fresh data, number of new bytes);
std::string myHash3 = sha256.getHash();
*/
class SHA256 //: public Hash
{
public:
/// split into 64 byte blocks (=> 512 bits), hash is 32 bytes long
enum { BlockSize = 512 / 8, HashBytes = 32 };
private:
/// size of processed data in bytes
uint64_t m_numBytes;
/// valid bytes in m_buffer
size_t m_bufferSize;
/// bytes not processed yet
uint8_t m_buffer[BlockSize];
enum { HashValues = HashBytes / 4 };
/// hash, stored as integers
uint32_t m_hash[HashValues];
/// process 64 bytes
void processBlock(const void* data)
{
// get last hash
uint32_t a = m_hash[0];
uint32_t b = m_hash[1];
uint32_t c = m_hash[2];
uint32_t d = m_hash[3];
uint32_t e = m_hash[4];
uint32_t f = m_hash[5];
uint32_t g = m_hash[6];
uint32_t h = m_hash[7];
// data represented as 16x 32-bit words
const uint32_t* input = (uint32_t*) data;
// convert to big endian
uint32_t words[64];
int i;
for (i = 0; i < 16; i++)
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
words[i] = input[i];
#else
words[i] = SHA256_swap(input[i]);
#endif
uint32_t x,y; // temporaries
// first round
x = h + SHA256_f1(e,f,g) + 0x428a2f98 + words[ 0]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0x71374491 + words[ 1]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0xb5c0fbcf + words[ 2]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0xe9b5dba5 + words[ 3]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0x3956c25b + words[ 4]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0x59f111f1 + words[ 5]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0x923f82a4 + words[ 6]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0xab1c5ed5 + words[ 7]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// secound round
x = h + SHA256_f1(e,f,g) + 0xd807aa98 + words[ 8]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0x12835b01 + words[ 9]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0x243185be + words[10]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0x550c7dc3 + words[11]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0x72be5d74 + words[12]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0x80deb1fe + words[13]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0x9bdc06a7 + words[14]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0xc19bf174 + words[15]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// extend to 24 words
for (; i < 24; i++)
words[i] = words[i-16] +
(SHA256_rotate(words[i-15], 7) ^ SHA256_rotate(words[i-15], 18) ^ (words[i-15] >> 3)) +
words[i-7] +
(SHA256_rotate(words[i- 2], 17) ^ SHA256_rotate(words[i- 2], 19) ^ (words[i- 2] >> 10));
// third round
x = h + SHA256_f1(e,f,g) + 0xe49b69c1 + words[16]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0xefbe4786 + words[17]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0x0fc19dc6 + words[18]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0x240ca1cc + words[19]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0x2de92c6f + words[20]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0x4a7484aa + words[21]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0x5cb0a9dc + words[22]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0x76f988da + words[23]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// extend to 32 words
for (; i < 32; i++)
words[i] = words[i-16] +
(SHA256_rotate(words[i-15], 7) ^ SHA256_rotate(words[i-15], 18) ^ (words[i-15] >> 3)) +
words[i-7] +
(SHA256_rotate(words[i- 2], 17) ^ SHA256_rotate(words[i- 2], 19) ^ (words[i- 2] >> 10));
// fourth round
x = h + SHA256_f1(e,f,g) + 0x983e5152 + words[24]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0xa831c66d + words[25]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0xb00327c8 + words[26]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0xbf597fc7 + words[27]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0xc6e00bf3 + words[28]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0xd5a79147 + words[29]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0x06ca6351 + words[30]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0x14292967 + words[31]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// extend to 40 words
for (; i < 40; i++)
words[i] = words[i-16] +
(SHA256_rotate(words[i-15], 7) ^ SHA256_rotate(words[i-15], 18) ^ (words[i-15] >> 3)) +
words[i-7] +
(SHA256_rotate(words[i- 2], 17) ^ SHA256_rotate(words[i- 2], 19) ^ (words[i- 2] >> 10));
// fifth round
x = h + SHA256_f1(e,f,g) + 0x27b70a85 + words[32]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0x2e1b2138 + words[33]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0x4d2c6dfc + words[34]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0x53380d13 + words[35]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0x650a7354 + words[36]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0x766a0abb + words[37]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0x81c2c92e + words[38]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0x92722c85 + words[39]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// extend to 48 words
for (; i < 48; i++)
words[i] = words[i-16] +
(SHA256_rotate(words[i-15], 7) ^ SHA256_rotate(words[i-15], 18) ^ (words[i-15] >> 3)) +
words[i-7] +
(SHA256_rotate(words[i- 2], 17) ^ SHA256_rotate(words[i- 2], 19) ^ (words[i- 2] >> 10));
// sixth round
x = h + SHA256_f1(e,f,g) + 0xa2bfe8a1 + words[40]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0xa81a664b + words[41]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0xc24b8b70 + words[42]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0xc76c51a3 + words[43]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0xd192e819 + words[44]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0xd6990624 + words[45]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0xf40e3585 + words[46]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0x106aa070 + words[47]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// extend to 56 words
for (; i < 56; i++)
words[i] = words[i-16] +
(SHA256_rotate(words[i-15], 7) ^ SHA256_rotate(words[i-15], 18) ^ (words[i-15] >> 3)) +
words[i-7] +
(SHA256_rotate(words[i- 2], 17) ^ SHA256_rotate(words[i- 2], 19) ^ (words[i- 2] >> 10));
// seventh round
x = h + SHA256_f1(e,f,g) + 0x19a4c116 + words[48]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0x1e376c08 + words[49]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0x2748774c + words[50]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0x34b0bcb5 + words[51]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0x391c0cb3 + words[52]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0x4ed8aa4a + words[53]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0x5b9cca4f + words[54]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0x682e6ff3 + words[55]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// extend to 64 words
for (; i < 64; i++)
words[i] = words[i-16] +
(SHA256_rotate(words[i-15], 7) ^ SHA256_rotate(words[i-15], 18) ^ (words[i-15] >> 3)) +
words[i-7] +
(SHA256_rotate(words[i- 2], 17) ^ SHA256_rotate(words[i- 2], 19) ^ (words[i- 2] >> 10));
// eigth round
x = h + SHA256_f1(e,f,g) + 0x748f82ee + words[56]; y = SHA256_f2(a,b,c); d += x; h = x + y;
x = g + SHA256_f1(d,e,f) + 0x78a5636f + words[57]; y = SHA256_f2(h,a,b); c += x; g = x + y;
x = f + SHA256_f1(c,d,e) + 0x84c87814 + words[58]; y = SHA256_f2(g,h,a); b += x; f = x + y;
x = e + SHA256_f1(b,c,d) + 0x8cc70208 + words[59]; y = SHA256_f2(f,g,h); a += x; e = x + y;
x = d + SHA256_f1(a,b,c) + 0x90befffa + words[60]; y = SHA256_f2(e,f,g); h += x; d = x + y;
x = c + SHA256_f1(h,a,b) + 0xa4506ceb + words[61]; y = SHA256_f2(d,e,f); g += x; c = x + y;
x = b + SHA256_f1(g,h,a) + 0xbef9a3f7 + words[62]; y = SHA256_f2(c,d,e); f += x; b = x + y;
x = a + SHA256_f1(f,g,h) + 0xc67178f2 + words[63]; y = SHA256_f2(b,c,d); e += x; a = x + y;
// update hash
m_hash[0] += a;
m_hash[1] += b;
m_hash[2] += c;
m_hash[3] += d;
m_hash[4] += e;
m_hash[5] += f;
m_hash[6] += g;
m_hash[7] += h;
}
/// process everything left in the internal buffer
void processBuffer()
{
// the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte
// - append "1" bit to message
// - append "0" bits until message length in bit mod 512 is 448
// - append length as 64 bit integer
// number of bits
size_t paddedLength = m_bufferSize * 8;
// plus one bit set to 1 (always appended)
paddedLength++;
// number of bits must be (numBits % 512) = 448
size_t lower11Bits = paddedLength & 511;
if (lower11Bits <= 448)
paddedLength += 448 - lower11Bits;
else
paddedLength += 512 + 448 - lower11Bits;
// convert from bits to bytes
paddedLength /= 8;
// only needed if additional data flows over into a second block
unsigned char extra[BlockSize];
// append a "1" bit, 128 => binary 10000000
if (m_bufferSize < BlockSize)
m_buffer[m_bufferSize] = 128;
else
extra[0] = 128;
size_t i;
for (i = m_bufferSize + 1; i < BlockSize; i++)
m_buffer[i] = 0;
for (; i < paddedLength; i++)
extra[i - BlockSize] = 0;
// add message length in bits as 64 bit number
uint64_t msgBits = 8 * (m_numBytes + m_bufferSize);
// find right position
unsigned char* addLength;
if (paddedLength < BlockSize)
addLength = m_buffer + paddedLength;
else
addLength = extra + paddedLength - BlockSize;
// must be big endian
*addLength++ = (unsigned char)((msgBits >> 56) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 48) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 40) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 32) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 24) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 16) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 8) & 0xFF);
*addLength = (unsigned char)( msgBits & 0xFF);
// process blocks
processBlock(m_buffer);
// flowed over into a second block ?
if (paddedLength > BlockSize)
processBlock(extra);
}
public:
/// same as reset()
SHA256()
{
reset();
}
/// compute SHA256 of a memory block
std::string operator()(const void* data, size_t numBytes)
{
reset();
add(data, numBytes);
return getHash();
}
/// compute SHA256 of a string, excluding final zero
std::string operator()(const std::string& text)
{
reset();
add(text.c_str(), text.size());
return getHash();
}
/// add arbitrary number of bytes
void add(const void* data, size_t numBytes)
{
const uint8_t* current = (const uint8_t*) data;
if (m_bufferSize > 0)
{
while (numBytes > 0 && m_bufferSize < BlockSize)
{
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
// full buffer
if (m_bufferSize == BlockSize)
{
processBlock(m_buffer);
m_numBytes += BlockSize;
m_bufferSize = 0;
}
// no more data ?
if (numBytes == 0)
return;
// process full blocks
while (numBytes >= BlockSize)
{
processBlock(current);
current += BlockSize;
m_numBytes += BlockSize;
numBytes -= BlockSize;
}
// keep remaining bytes in buffer
while (numBytes > 0)
{
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
/// return latest hash as 64 hex characters
std::string getHash()
{
// compute hash (as raw bytes)
unsigned char rawHash[HashBytes];
getHash(rawHash);
// convert to hex string
std::string result;
result.reserve(2 * HashBytes);
for (int i = 0; i < HashBytes; i++)
{
static const char dec2hex[16+1] = "0123456789abcdef";
result += dec2hex[(rawHash[i] >> 4) & 15];
result += dec2hex[ rawHash[i] & 15];
}
return result;
}
/// return latest hash as bytes
void getHash(unsigned char buffer[HashBytes])
{
// save old hash if buffer is partially filled
uint32_t oldHash[HashValues];
for (int i = 0; i < HashValues; i++)
oldHash[i] = m_hash[i];
// process remaining bytes
processBuffer();
unsigned char* current = buffer;
for (int i = 0; i < HashValues; i++)
{
*current++ = (m_hash[i] >> 24) & 0xFF;
*current++ = (m_hash[i] >> 16) & 0xFF;
*current++ = (m_hash[i] >> 8) & 0xFF;
*current++ = m_hash[i] & 0xFF;
// restore old hash
m_hash[i] = oldHash[i];
}
}
/// restart
void reset()
{
m_numBytes = 0;
m_bufferSize = 0;
// according to RFC 1321
// "These words were obtained by taking the first thirty-two bits of the
// fractional parts of the square roots of the first eight prime numbers"
m_hash[0] = 0x6a09e667;
m_hash[1] = 0xbb67ae85;
m_hash[2] = 0x3c6ef372;
m_hash[3] = 0xa54ff53a;
m_hash[4] = 0x510e527f;
m_hash[5] = 0x9b05688c;
m_hash[6] = 0x1f83d9ab;
m_hash[7] = 0x5be0cd19;
#ifdef SHA2_224_SEED_VECTOR
// if you want SHA2-224 instead then use these seeds
// and throw away the last 32 bits of getHash
m_hash[0] = 0xc1059ed8;
m_hash[1] = 0x367cd507;
m_hash[2] = 0x3070dd17;
m_hash[3] = 0xf70e5939;
m_hash[4] = 0xffc00b31;
m_hash[5] = 0x68581511;
m_hash[6] = 0x64f98fa7;
m_hash[7] = 0xbefa4fa4;
#endif
}
};
As the code mentions, I did not write this code, I just adapted it to a single header file.
PS: Since most people will be dealing with binary data when converting the HASH160 to base58(check), I decided to ask chatGPT to make binary to hex conversions as well: