And yet, there's no manner to prevent someone from deliberately bloating the UTXO set. If your goal is to stop "blockchain bloat", then invalidating Ordinals is the wrong path.
It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
int64 GetMinFee(bool fDiscount=false) const
{
unsigned int nBytes = ::GetSerializeSize(*this, SER_NETWORK);
if (fDiscount && nBytes < 10000)
return 0;
return (1 + (int64)nBytes / 1000) * CENT;
}
// Transaction fee requirements, mainly only needed for flood control
// Under 10K (about 80 inputs) is free for first 100 transactions
// Base rate is 0.01 per KB
int64 nMinFee = tx.GetMinFee(pblock->vtx.size() < 100);
// Check that enough fee is included
if (nFee < wtxNew.GetMinFee(true))
{
nFee = nFeeRequiredRet = wtxNew.GetMinFee(true);
continue;
}
CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const {
LOCK(cs);
if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0)
return CFeeRate(llround(rollingMinimumFeeRate));
int64_t time = GetTime();
if (time > lastRollingFeeUpdate + 10) {
double halflife = ROLLING_FEE_HALFLIFE;
if (DynamicMemoryUsage() < sizelimit / 4)
halflife /= 4;
else if (DynamicMemoryUsage() < sizelimit / 2)
halflife /= 2;
rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife);
lastRollingFeeUpdate = time;
if (rollingMinimumFeeRate < (double)m_incremental_relay_feerate.GetFeePerK() / 2) {
rollingMinimumFeeRate = 0;
return CFeeRate(0);
}
}
return std::max(CFeeRate(llround(rollingMinimumFeeRate)), m_incremental_relay_feerate);
}