It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
modulo_root=(p+1)/4
x=1
is_on_curve=False
is_running=True
while is_running:
x_cube=(x*x*x)%p
y_square=(x_cube+7)%p
y=y_square.powermod(modulo_root,p)
is_on_curve=(y.powermod(2,p)==y_square)
if is_on_curve and is_prime(x) and is_prime(y):
print(hex(x),hex(y))
is_running=False
x+=1
0xe9b 0xe22c56c79e9d1ab0357f4348aadb53006efeb69fd3f1924ea0bfe8201d2e1d23
True 0x1 0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee
True 0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee 0xc8d9659b4430c5c0dd89ce385731acd388dba5e3f24bcbc0e955e2cb602da315
True 0xc8d9659b4430c5c0dd89ce385731acd388dba5e3f24bcbc0e955e2cb602da315 0xa4d87747ecd146a09a14a531b889425c8fe308973b3fce622987d4fe27db17bc
True 0xa4d87747ecd146a09a14a531b889425c8fe308973b3fce622987d4fe27db17bc 0x83a6221ccaf1844405bfd822cd7f99405efc4ad3f458ad08283f5f09a9ade2e2
True 0x83a6221ccaf1844405bfd822cd7f99405efc4ad3f458ad08283f5f09a9ade2e2 0xc9a6eabb6b8f0edec38ab42532d4456b9c76eb2c9cf690f603dcc688566e05d
True 0xc9a6eabb6b8f0edec38ab42532d4456b9c76eb2c9cf690f603dcc688566e05d 0x702d537e9b0d595b72a34e27e2c3a6f0ff3838f30504ce1fd626658cc619c73b
False 0x702d537e9b0d595b72a34e27e2c3a6f0ff3838f30504ce1fd626658cc619c73b 0x420a44c6b6d1fb0fee5f0f533871011470e7fff36bf345c76e300c3862160067
False 0x702d537e9b0d595b72a34e27e2c3a6f0ff3838f30504ce1fd626658cc619c73c 0xb29bb4798b95c80de79a4de56d0c83809c884423c1f81dbe59f06dce8c8b9644
True 0x702d537e9b0d595b72a34e27e2c3a6f0ff3838f30504ce1fd626658cc619c73d 0x5dc0fe834752c56b0402d4adc5db796fb802a5ac2f377148d8270a657541b5f3
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
modulo_root=(p+1)/4
x=1
is_on_curve=False
while not is_on_curve:
x_cube=(x*x*x)%p
y_square=(x_cube+7)%p
y=y_square.powermod(modulo_root,p)
is_on_curve=(y.powermod(2,p)==y_square)
print(is_on_curve,hex(x),hex(y))
if not is_on_curve:
x+=1
ROUNDS=10000
for i in range(ROUNDS):
P=randint(1,2**256)
P=next_prime(P)
F=FiniteField(P)
C = EllipticCurve([F(0), F(7)])
N=C.order()
if is_prime(N):
print('P:',P)
print('N:',N)
N1=EllipticCurve(GF(P), [0, 1]).order()
N2=EllipticCurve(GF(N), [0, 1]).order()
print('N1:',N1)
print('N2:',N2)
print(N1==N2)
print('')
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
assert((p%4)==3) //this is important, and can simplify our calculations
modulo_root=(p+1)/4
modulo_root=0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c
x=1 //start from x=1, and then increment it, while your point is not on curve
x_cube=x*x*x mod p
x_cube=1
y_square=(x_cube+7) mod p
y_square=8
y=(y_square^modulo_root) mod p
y=(8^0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c) mod 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
y=0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee
base=(x,y)
base=(1,0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee)
//this point is on curve, so we stop here
//if this is not the case, then we check x=2, then x=3, and so on
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
assert((p%4)==3) //this is important, and can simplify our calculations
modulo_root=(p+1)/4
modulo_root=0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c
x=1 //start from x=1, and then increment it, while your point is not on curve
x_cube=x*x*x mod p
x_cube=1
y_square=(x_cube+7) mod p
y_square=8
y=(y_square^modulo_root) mod p
y=(8^0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c) mod 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
y=0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee
base=(x,y)
base=(1,0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee)
//this point is on curve, so we stop here
//if this is not the case, then we check x=2, then x=3, and so on
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
assert((p%4)==3) //this is important, and can simplify our calculations
modulo_root=(p+1)/4
modulo_root=0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c
x=1 //start from x=1, and then increment it, while your point is not on curve
x_cube=x*x*x mod p
x_cube=1
y_square=(x_cube+7) mod p
y_square=8
y=(y_square^modulo_root) mod p
y=(8^0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c) mod 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
y=0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee
base=(x,y)
base=(1,0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee)
//this point is on curve, so we stop here
//if this is not the case, then we check x=2, then x=3, and so on
p= 0xfffffffffffffffffffffffffffffffeffffac73
n=0x0100000000000000000001b8fa16dfab9aca16b6b3
p= 0x3c7, n= 0x38b, base=(0x1, 0x58) 10-bit
p= 0x517, n= 0x4e1, base=(0x1, 0xc9) 11-bit
p= 0xf0d, n= 0xe9b, base=(0x3, 0x216) 12-bit
p= 0x1d71, n= 0x1cc9, base=(0x1, 0xe8d) 13-bit
p= 0x36f7, n= 0x366d, base=(0x1, 0xe4c) 14-bit
p= 0x7ef7, n= 0x8047, base=(0x1, 0x1dd) 15-bit n>p
p= 0xfe95, n= 0x1006f, base=(0x3, 0x754) 16-bit n>p
p= 0x1fe13, n= 0x200b3, base=(0x5, 0xd08c) 17-bit n>p
p= 0x3f7cf, n= 0x3f493, base=(0x1, 0x15df3) 18-bit
p= 0x7ffbd, n= 0x7fad1, base=(0x2, 0x2c4b9) 19-bit
p= 0xfdec7, n= 0xfd9e7, base=(0x1, 0x7d8f1) 20-bit
p= 0x1ffed3, n= 0x200467, base=(0x3, 0xf3ac1) 21-bit n>p
p= 0x3fff97, n= 0x3fefd7, base=(0x1, 0x1160c) 22-bit
p= 0x7fff63, n= 0x7ff58b, base=(0x3, 0x9de68) 23-bit
p= 0xfff373, n= 0xffd3f3, base=(0x2, 0x667b92) 24-bit
p= 0x1fff837, n= 0x1ffdfd7, base=(0x1, 0x41077d) 25-bit
p= 0x3ffff91, n= 0x40006c9, base=(0x1,0x16a2a43) 26-bit n>p
p= 0x7fff411, n= 0x80039a1, base=(0x1,0x19ca16e) 27-bit n>p
p= 0xfffde4f, n=0x1000112b, base=(0x1,0x48b772c) 28-bit n>p
p=0x1fffff87, n=0x20009e03, base=(0x1,0xba2ffd4) 29-bit n>p
p= 0x3ffff667, n= 0x4000c14d, base=(0x1, 0x1d02cd83) 30-bit n>p
p= 0x7ffffc27, n= 0x8000b693, base=(0x1, 0x3c609f95) 31-bit n>p
p= 0xfffff9af, n= 0xfffe390b, base=(0x1, 0x3cad5d2d) 32-bit
p= 0x1fffffcdb, n= 0x200024263, base=(0x2, 0x8f2bfea7) 33-bit n>p
p= 0x3fffffaab, n= 0x3fffc2d67, base=(0x5, 0x380e7bb2) 34-bit
p= 0x7ffffc3ff, n= 0x80003f317, base=(0x1, 0xf1920375) 35-bit n>p
p= 0xffffffbfb, n= 0xffff821fb, base=(0x2, 0x6b7dd7925) 36-bit
p=0x1ffffff543, n=0x1ffff4cdd3, base=(0x2, 0xdd63ca1e7) 37-bit
p=0x3fffffb06b, n=0x3fffff8e9f, base=(0x3,0x174b7bc7bb) 38-bit
p=0x7fffff8397, n=0x800015bd47, base=(0x1,0x10c68c0112) 39-bit n>p
0200000000000000000000000000000000fc86e7e6d4f8be0f638ac81b54025a4e
027fffffffffffffffffffffffffffffffa621a9a5d362f1d2bc8c089d43e28141
037fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
0300000000000000000000003b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63
7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a2
p= 0x4f, n= 0x43, base=(0x1, 0x12) 7-bit
p= 0x3c7, n= 0x38b, base=(0x1, 0x58) 10-bit
p= 0x517, n= 0x4e1, base=(0x1, 0xc9) 11-bit
p= 0xf0d, n= 0xe9b, base=(0x3, 0x216) 12-bit
p= 0x1d71, n= 0x1cc9, base=(0x1, 0xe8d) 13-bit
p= 0x36f7, n= 0x366d, base=(0x1, 0xe4c) 14-bit
p= 0x77ad, n= 0x7705, base=(0x3, 0x1951) 15-bit
p= 0xfb2f, n= 0xf937, base=(0x1, 0x41ff) 16-bit
p= 0x1fce7, n= 0x1fc87, base=(0x1, 0xa864) 17-bit
p= 0x3fa27, n= 0x3f62b, base=(0x1, 0x11a34) 18-bit
p= 0x7ffbd, n= 0x7fad1, base=(0x2, 0x2c4b9) 19-bit
p= 0xfdec7, n= 0xfd9e7, base=(0x1, 0x7d8f1) 20-bit
p= 0x1fc3d5, n= 0x1fbc49, base=(0x2, 0x2e59b) 21-bit
p= 0x3fff97, n= 0x3fefd7, base=(0x1, 0x1160c) 22-bit
p= 0x7fff63, n= 0x7ff58b, base=(0x3, 0x9de68) 23-bit
p= 0xfff373, n= 0xffd3f3, base=(0x2,0x667b92) 24-bit
p=0x1fff837, n=0x1ffdfd7, base=(0x1,0x41077d) 25-bit
u1= 48ce563f89a0ed9414f5aa28ad0d96d6795f9c62 (160-bit)
u2=0554123b78ce563f89a0ed9414f5aa28ad0d96d6795f9c66 (192-bit)
u3= 3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63 (224-bit)
u4= 3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63 (256-bit)
p=ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f
n=ffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141
n%2^128=baaedce6 af48a03b bfd25e8c d0364141
p= 79, n= 67, base=(1, 18) 7-bit
p= 967, n= 907, base=(1, 88) 10-bit
p= 1303, n= 1249, base=(1, 201) 11-bit
p= 3853, n= 3739, base=(3, 534) 12-bit
p= 7537, n= 7369, base=(1,3725) 13-bit
p=14071, n=13933, base=(1,3660) 14-bit