It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
modulo_root=(p+1)/4
x=1
is_on_curve=False
while not is_on_curve:
x_cube=(x*x*x)%p
y_square=(x_cube+7)%p
y=y_square.powermod(modulo_root,p)
is_on_curve=(y.powermod(2,p)==y_square)
print(is_on_curve,hex(x),hex(y))
if not is_on_curve:
x+=1
ROUNDS=10000
for i in range(ROUNDS):
P=randint(1,2**256)
P=next_prime(P)
F=FiniteField(P)
C = EllipticCurve([F(0), F(7)])
N=C.order()
if is_prime(N):
print('P:',P)
print('N:',N)
N1=EllipticCurve(GF(P), [0, 1]).order()
N2=EllipticCurve(GF(N), [0, 1]).order()
print('N1:',N1)
print('N2:',N2)
print(N1==N2)
print('')
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
assert((p%4)==3) //this is important, and can simplify our calculations
modulo_root=(p+1)/4
modulo_root=0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c
x=1 //start from x=1, and then increment it, while your point is not on curve
x_cube=x*x*x mod p
x_cube=1
y_square=(x_cube+7) mod p
y_square=8
y=(y_square^modulo_root) mod p
y=(8^0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c) mod 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
y=0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee
base=(x,y)
base=(1,0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee)
//this point is on curve, so we stop here
//if this is not the case, then we check x=2, then x=3, and so on
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
assert((p%4)==3) //this is important, and can simplify our calculations
modulo_root=(p+1)/4
modulo_root=0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c
x=1 //start from x=1, and then increment it, while your point is not on curve
x_cube=x*x*x mod p
x_cube=1
y_square=(x_cube+7) mod p
y_square=8
y=(y_square^modulo_root) mod p
y=(8^0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c) mod 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
y=0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee
base=(x,y)
base=(1,0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee)
//this point is on curve, so we stop here
//if this is not the case, then we check x=2, then x=3, and so on
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
assert((p%4)==3) //this is important, and can simplify our calculations
modulo_root=(p+1)/4
modulo_root=0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c
x=1 //start from x=1, and then increment it, while your point is not on curve
x_cube=x*x*x mod p
x_cube=1
y_square=(x_cube+7) mod p
y_square=8
y=(y_square^modulo_root) mod p
y=(8^0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c) mod 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
y=0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee
base=(x,y)
base=(1,0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee)
//this point is on curve, so we stop here
//if this is not the case, then we check x=2, then x=3, and so on
p= 0xfffffffffffffffffffffffffffffffeffffac73
n=0x0100000000000000000001b8fa16dfab9aca16b6b3
p= 0x3c7, n= 0x38b, base=(0x1, 0x58) 10-bit
p= 0x517, n= 0x4e1, base=(0x1, 0xc9) 11-bit
p= 0xf0d, n= 0xe9b, base=(0x3, 0x216) 12-bit
p= 0x1d71, n= 0x1cc9, base=(0x1, 0xe8d) 13-bit
p= 0x36f7, n= 0x366d, base=(0x1, 0xe4c) 14-bit
p= 0x7ef7, n= 0x8047, base=(0x1, 0x1dd) 15-bit n>p
p= 0xfe95, n= 0x1006f, base=(0x3, 0x754) 16-bit n>p
p= 0x1fe13, n= 0x200b3, base=(0x5, 0xd08c) 17-bit n>p
p= 0x3f7cf, n= 0x3f493, base=(0x1, 0x15df3) 18-bit
p= 0x7ffbd, n= 0x7fad1, base=(0x2, 0x2c4b9) 19-bit
p= 0xfdec7, n= 0xfd9e7, base=(0x1, 0x7d8f1) 20-bit
p= 0x1ffed3, n= 0x200467, base=(0x3, 0xf3ac1) 21-bit n>p
p= 0x3fff97, n= 0x3fefd7, base=(0x1, 0x1160c) 22-bit
p= 0x7fff63, n= 0x7ff58b, base=(0x3, 0x9de68) 23-bit
p= 0xfff373, n= 0xffd3f3, base=(0x2, 0x667b92) 24-bit
p= 0x1fff837, n= 0x1ffdfd7, base=(0x1, 0x41077d) 25-bit
p= 0x3ffff91, n= 0x40006c9, base=(0x1,0x16a2a43) 26-bit n>p
p= 0x7fff411, n= 0x80039a1, base=(0x1,0x19ca16e) 27-bit n>p
p= 0xfffde4f, n=0x1000112b, base=(0x1,0x48b772c) 28-bit n>p
p=0x1fffff87, n=0x20009e03, base=(0x1,0xba2ffd4) 29-bit n>p
p= 0x3ffff667, n= 0x4000c14d, base=(0x1, 0x1d02cd83) 30-bit n>p
p= 0x7ffffc27, n= 0x8000b693, base=(0x1, 0x3c609f95) 31-bit n>p
p= 0xfffff9af, n= 0xfffe390b, base=(0x1, 0x3cad5d2d) 32-bit
p= 0x1fffffcdb, n= 0x200024263, base=(0x2, 0x8f2bfea7) 33-bit n>p
p= 0x3fffffaab, n= 0x3fffc2d67, base=(0x5, 0x380e7bb2) 34-bit
p= 0x7ffffc3ff, n= 0x80003f317, base=(0x1, 0xf1920375) 35-bit n>p
p= 0xffffffbfb, n= 0xffff821fb, base=(0x2, 0x6b7dd7925) 36-bit
p=0x1ffffff543, n=0x1ffff4cdd3, base=(0x2, 0xdd63ca1e7) 37-bit
p=0x3fffffb06b, n=0x3fffff8e9f, base=(0x3,0x174b7bc7bb) 38-bit
p=0x7fffff8397, n=0x800015bd47, base=(0x1,0x10c68c0112) 39-bit n>p
0200000000000000000000000000000000fc86e7e6d4f8be0f638ac81b54025a4e
027fffffffffffffffffffffffffffffffa621a9a5d362f1d2bc8c089d43e28141
037fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
0300000000000000000000003b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63
7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a2
p= 0x4f, n= 0x43, base=(0x1, 0x12) 7-bit
p= 0x3c7, n= 0x38b, base=(0x1, 0x58) 10-bit
p= 0x517, n= 0x4e1, base=(0x1, 0xc9) 11-bit
p= 0xf0d, n= 0xe9b, base=(0x3, 0x216) 12-bit
p= 0x1d71, n= 0x1cc9, base=(0x1, 0xe8d) 13-bit
p= 0x36f7, n= 0x366d, base=(0x1, 0xe4c) 14-bit
p= 0x77ad, n= 0x7705, base=(0x3, 0x1951) 15-bit
p= 0xfb2f, n= 0xf937, base=(0x1, 0x41ff) 16-bit
p= 0x1fce7, n= 0x1fc87, base=(0x1, 0xa864) 17-bit
p= 0x3fa27, n= 0x3f62b, base=(0x1, 0x11a34) 18-bit
p= 0x7ffbd, n= 0x7fad1, base=(0x2, 0x2c4b9) 19-bit
p= 0xfdec7, n= 0xfd9e7, base=(0x1, 0x7d8f1) 20-bit
p= 0x1fc3d5, n= 0x1fbc49, base=(0x2, 0x2e59b) 21-bit
p= 0x3fff97, n= 0x3fefd7, base=(0x1, 0x1160c) 22-bit
p= 0x7fff63, n= 0x7ff58b, base=(0x3, 0x9de68) 23-bit
p= 0xfff373, n= 0xffd3f3, base=(0x2,0x667b92) 24-bit
p=0x1fff837, n=0x1ffdfd7, base=(0x1,0x41077d) 25-bit
u1= 48ce563f89a0ed9414f5aa28ad0d96d6795f9c62 (160-bit)
u2=0554123b78ce563f89a0ed9414f5aa28ad0d96d6795f9c66 (192-bit)
u3= 3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63 (224-bit)
u4= 3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63 (256-bit)
p=ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f
n=ffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141
n%2^128=baaedce6 af48a03b bfd25e8c d0364141
p= 79, n= 67, base=(1, 18) 7-bit
p= 967, n= 907, base=(1, 88) 10-bit
p= 1303, n= 1249, base=(1, 201) 11-bit
p= 3853, n= 3739, base=(3, 534) 12-bit
p= 7537, n= 7369, base=(1,3725) 13-bit
p=14071, n=13933, base=(1,3660) 14-bit