It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
import random
def collatz(n):
while n != 1:
print(n)
if n % 2 == 0:
n = n // 2
else:
n = 3*n + 1
print(n)
return n
collatz(random.randint(1,100000000))
import random
i=7
def collatz(n):
while n != i:
print(n)
if n % 2 == 0:
n = n // 2
else:
n = 3*n + i
print(n)
return n
collatz(i*random.randint(1,100000000))
print("final loop= "+str(i*4)+","+str( i*2)+","+str( i))
import random
i= 7
def collatz(n):
even_count = 0
odd_count = 0
while n != i:
if n % 2 == 0:
even_count += 1
n = n // 2
else:
odd_count += 1
n = 3 * n + i
return n, even_count, odd_count
random_number = i*random.randint(1, 100000000)
result, even, odd = collatz(random_number)
print(f"The Collatz sequence for {random_number} ends at {result}.")
print(f"Even numbers encountered: {even}")
print(f"Odd numbers encountered: {odd}")
import random
i=1
target=10
def collatz(n):
even_count = 0
odd_count = 0
while n != i:
print(n)
if n % 2 == 0:
even_count += 1
n = n // 2
else:
odd_count += 1
n = 3 * n + i
print(n)
return n, even_count, odd_count
random_number =i*target# i*random.randint(1, 10000)
result, even, odd = collatz(random_number)
print(f"The Collatz sequence for {random_number} ends at i {result}.")
print(f"Even numbers encountered: {even}")
print(f"Odd numbers encountered: {odd}")
using i=1 using i=3 using i=5
10 |30 |50
5 |15 |25
16 |48 |80
8 |24 |40
4 |12 |20 |
2 |6 |10
1 |3 |5
The Collatz sequence for 10 ends at i 1. The Collatz sequence for 30 ends at i 3. The Collatz sequence for 50 ends at i 5.
Even numbers encountered: 5 Even numbers encountered: 5 Even numbers encountered: 5
Odd numbers encountered: 1 Odd numbers encountered: 1 Odd numbers encountered: 1
4
2
1
The Collatz sequence for 4 ends at i 1.
Even numbers encountered: 2
Odd numbers encountered: 0
5
16
8
4
2
1
The Collatz sequence for 5 ends at i 1.
Even numbers encountered: 4
Odd numbers encountered: 1
6
3
10
5
16
8
4
2
1
The Collatz sequence for 6 ends at i 1.
Even numbers encountered: 6
Odd numbers encountered: 2
import random
i=22**70 -1
target=10
def collatz(n):
even_count = 0
odd_count = 0
while n != i:
print(n)
if n % 2 == 0:
even_count += 1
n = n // 2
else:
odd_count += 1
n = 3 * n + i
print(n)
return n, even_count, odd_count
random_number =i*target# i*random.randint(1, 10000)
result, even, odd = collatz(random_number)
print(f"The Collatz sequence for {random_number} ends at i {result}.")
print(f"Even numbers encountered: {even}")
print(f"Odd numbers encountered: {odd}")
93236863968449335445326143653683496321795363944175445348633354543780733426420385752394487562230
46618431984224667722663071826841748160897681972087722674316677271890366713210192876197243781115
149178982349518936712521829845893594114872582310680712557813367270049173482272617203831180099568
74589491174759468356260914922946797057436291155340356278906683635024586741136308601915590049784
37294745587379734178130457461473398528718145577670178139453341817512293370568154300957795024892
18647372793689867089065228730736699264359072788835089069726670908756146685284077150478897512446
9323686396844933544532614365368349632179536394417544534863335454378073342642038575239448756223
The Collatz sequence for 93236863968449335445326143653683496321795363944175445348633354543780733426420385752394487562230 ends at
i 9323686396844933544532614365368349632179536394417544534863335454378073342642038575239448756223.
Even numbers encountered: 5
Odd numbers encountered: 1