It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
s=(z+rd)/k
sk=z+rd
sk-z=rd
(s/r)k-(z/r)=d
(s/r)R-(z/r)=Q
Q+(z/r)=(s/r)R
(Q+(z/r))*(r/s)=R
Q*(r/s)+(z/s)=R
w=1/s
u1=z/s
u2=r/s
D=(z/s)+(r/s)Q
r= 0x8b2f34a1cc88961f21f7bf26c20d57e822ae785d9e8e43a22c8fdf59bcc90fa9
s= 0xcf641f21b891e22aa4e0238dfca22049476e6d7ec88d280c0ba2397d0ff0897a
z= 0x5d19b32a41b52787a825aeb35d26bd243becac82d1a260cd2102ddd592f80a28
priv= 0x864480801d0c1559f2d18e00304cad8a3982d5e552a62ae3e09ccb4974546570
pub= 04 AD36FAD55727EBF76F8AF96C7C2DF9A298DC21D6C15269FDEDFD47A70B327637 906D883CAD59E70568EA67ABE388A621A76F1056DD34A9E309A314DB8C61EF79
verify(r,s,z,pub)
w= 0x149e7f7624151ac888da9006b5c2af5ac1d08dc25dc1723b060b38215f8e66e4
u1= 0xe53e7009a7a991c1725d610e5680224072c3155d60b2a3addd8725ce6ccffe23
u2= 0xcb4915881038c93270b7c8dca61a4051e799e8f9d560e69f32de5cf09a6beca2
u1*G= 04 4C02C3B02A8FC5DC621977E67D084EEE45B9571197BAF102E680F068ECC15E15 487B4FC7E0FC6FF09C0E893CB69AE85A2275388948AA8C711B5D8924ECD19664
u2*public_key=04 4C02C3B02A8FC5DC621977E67D084EEE45B9571197BAF102E680F068ECC15E15 B784B0381F03900F63F176C3496517A5DD8AC776B755738EE4A276DA132E65CB
D= 04 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000
r= 0x8b2f34a1cc88961f21f7bf26c20d57e822ae785d9e8e43a22c8fdf59bcc90fa9
R1=04 8B2F34A1CC88961F21F7BF26C20D57E822AE785D9E8E43A22C8FDF59BCC90FA9 BBA72B3BD19EABC7E102B40F944C7C5C834A092D5EEE60211729F622246CB70A
R2=04 8B2F34A1CC88961F21F7BF26C20D57E822AE785D9E8E43A22C8FDF59BCC90FA9 4458D4C42E6154381EFD4BF06BB383A37CB5F6D2A1119FDEE8D609DCDB934525
ZeroDivisionError: inverse of Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663) does not exist
(0 : 1 : 0)
---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
Cell In [1], line 1
----> 1 exec("""p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
2 n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
3
4 E = EllipticCurve(GF(p), [0, 7])
5
6 G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)) # Base point
7
8 def egcd(a, b):
9
10 if a == 0:
11
12 return (b, 0, 1)
13
14 else:
15
16 g, y, x = egcd(b % a, a)
17
18 return (g, x - (b // a) * y, y)
19 def modinv(a, m):
20
21 g, x, y = egcd(a, m)
22
23 if g != 1:
24
25 raise Exception('modular inverse does not exist')
26
27 else:
28
29 return x % m
30
31 def verify(r, s,z,public_key):
32 w = int(modinv(s, n))
33 u1 = int((z * w) % n)
34 u2 = int((r * w) % n)
35 D=u1*G + u2*public_key
36 print(D)
37 x,y=D.xy()
38 x=int(x)
39
40 if (r % n) == (x % n):
41 print( \"signature matches\")
42 return 1
43 else:
44 print(\"invalid signature\",r,x%n,hex(int(x%n)))
45 return -1
46
47
48 r= 62954891018019954459416693598720448029687590245972400008829669497225918091177
49 s= 93805659226466445992581382639747054957343960360429636701520966540504046012794
50 z= 42110502646696890819993970892170079655178794598857292674837771894242690992680
51 priv= 60730954188027216046258787068258904013610447813898304297373912116496774227312
52
53 pub=priv*G
54 print(verify(r,s,z,pub))
55 """)
File:54
File:37, in verify(r, s, z, public_key)
File /home/sc_serv/sage/src/sage/schemes/elliptic_curves/ell_point.py:776, in EllipticCurvePoint_field.xy(self)
774 return self[0], self[1]
775 else:
--> 776 return self[0]/self[2], self[1]/self[2]
File /home/sc_serv/sage/src/sage/structure/element.pyx:1730, in sage.structure.element.Element.__truediv__()
1728 cdef int cl = classify_elements(left, right)
1729 if HAVE_SAME_PARENT(cl):
-> 1730 return (left)._div_(right)
1731 if BOTH_ARE_ELEMENT(cl):
1732 return coercion_model.bin_op(left, right, truediv)
File /home/sc_serv/sage/src/sage/rings/finite_rings/integer_mod.pyx:2248, in sage.rings.finite_rings.integer_mod.IntegerMod_gmp._div_()
2246 71428571429
2247 """
-> 2248 return self._mul_(~right)
2249
2250 def __int__(self):
File /home/sc_serv/sage/src/sage/rings/finite_rings/integer_mod.pyx:2334, in sage.rings.finite_rings.integer_mod.IntegerMod_gmp.__invert__()
2332 """
2333 if self.is_zero():
-> 2334 raise ZeroDivisionError(f"inverse of Mod(0, {self.__modulus.sageInteger}) does not exist")
2335
2336 cdef IntegerMod_gmp x
ZeroDivisionError: inverse of Mod(0, 115792089237316195423570985008687907853269984665640564039457584007908834671663) does not exist