It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
xmr-stak.exe --noCPU --noAMD
/*
* GPU configuration. You should play around with threads and blocks as the fastest settings will vary.
* index - GPU index number usually starts from 0.
* threads - Number of GPU threads (nothing to do with CPU threads).
* blocks - Number of GPU blocks (nothing to do with CPU threads).
* bfactor - Enables running the Cryptonight kernel in smaller pieces.
* Increase if you want to reduce GPU lag. Recommended setting on GUI systems - 8
* bsleep - Insert a delay of X microseconds between kernel launches.
* Increase if you want to reduce GPU lag. Recommended setting on GUI systems - 100
* affine_to_cpu - This will affine the thread to a CPU. This can make a GPU miner play along nicer with a CPU miner.
* sync_mode - method used to synchronize the device
* documentation: http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac
* 0 = cudaDeviceScheduleAuto
* 1 = cudaDeviceScheduleSpin - create a high load on one cpu thread per gpu
* 2 = cudaDeviceScheduleYield
* 3 = cudaDeviceScheduleBlockingSync (default)
*
* On the first run the miner will look at your system and suggest a basic configuration that will work,
* you can try to tweak it from there to get the best performance.
*
* A filled out configuration should look like this:
* "gpu_threads_conf" :
* [
* { "index" : 0, "threads" : 17, "blocks" : 60, "bfactor" : 0, "bsleep" : 0,
* "affine_to_cpu" : false, "sync_mode" : 3,
* },
* ],
* If you do not wish to mine with your nVidia GPU(s) then use:
* "gpu_threads_conf" :
* null,
*/
"gpu_threads_conf" :
[
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 0,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 1,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 2,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 3,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 4,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 5,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 6,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 7,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 8,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 9,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 10,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
// gpu: GeForce GTX 1050 Ti architecture: 61
// memory: 3373/4096 MiB
// smx: 6
{ "index" : 11,
"threads" : 64, "blocks" : 22,
"bfactor" : 8, "bsleep" : 25,
"affine_to_cpu" : false, "sync_mode" : 3,
},
],
Incoming transfer:
Hash: 764d015b11b29e4c1fd1438a25cfecc1af5b757eefa426f8576c8254593c2920
Amount: 29,406.47 TRTL
Timestamp: 2018-05-13 20:16
Incoming transfer:
Hash: 764d015b11b29e4c1fd1438a25cfecc1af5b757eefa426f8576c8254593c2920
Amount: 29,406.47 TRTL
Timestamp: 2018-05-13 20:16
Incoming transfer:
Hash: 764d015b11b29e4c1fd1438a25cfecc1af5b757eefa426f8576c8254593c2920
Amount: 29,406.47 TRTL
Timestamp: 2018-05-13 20:16
Incoming transfer:
Hash: 764d015b11b29e4c1fd1438a25cfecc1af5b757eefa426f8576c8254593c2920
Amount: 29,406.47 TRTL
Timestamp: 2018-05-13 20:16
Incoming transfer:
Hash: 764d015b11b29e4c1fd1438a25cfecc1af5b757eefa426f8576c8254593c2920
Amount: 29,406.47 TRTL
Timestamp: 2018-05-13 20:16
Incoming transfer:
Hash: 764d015b11b29e4c1fd1438a25cfecc1af5b757eefa426f8576c8254593c2920
Amount: 29,406.47 TRTL
Timestamp: 2018-05-13 20:16