@ElonMusk, if you are who I believe to be - you may need some professional help - friendly advice.
It's obvious no amount of evidence, common sense, or explanations can treat certain issues. This is like a dick contest: I show you that kangaroo with precomputed DPs can break any 80 bits or so key in a couple of seconds (random, sequential, you name it, as long as its in the range), there is always someone that brings up the "but its probabilistic" argument, however has nothing even remotely similar to offer, wtf?! Maybe I missed the day where everyone uses a super-computer and runs BSGS with a few PB of RAM (not that it would suffice).
This topic was concluded already: the 4 kangaroo method remains the fastest method of the kangaroo family, 5 kangaroos or more are sub-optimal, just as suggested in the original paper. Anything else is off-topic.
EOF.
Excellent!
I think now it's time for some magic circles, don't hesitate!
The birthday paradox is based on probability and randomness, which allows for finding collisions more efficiently than with brute force. By modifying the kangaroo algorithm in a more deterministic way, this probabilistic advantage is lost, and it becomes an approach closer to brute force.
The essence of the birthday paradox is that, with enough randomness, it is more likely to find collisions in a large set of data. By eliminating or reducing randomness, this property is lost, and the algorithm become less efficient.
You are completely and utterly unaware of how Kangaroo works, please stop now.
There is no randomness in the algorithm, ZERO randomness. I repeat: there is no usage of any random features, random functions, or random generators in the Kangaroo algorithm. In contrast, it is actually very well deterministic in nature, otherwise the collisions will not occur. . Having more DPs simply means there are more traps to be hit, increasing the chances. So please go back to the drawing board.
John M. Pollard: “Randomness in these algorithms is crucial for their functioning.”