@Andzhig And if we increase one more character of address 16jY7qLJn & 'x' then most binaries are started from '111'
few examples -
16jY7qLJnxLQQRYPX5BLuCtcBs6tvXz8BE 1110000000100110101001101101010100100011010011001000100000110110000 7013536A91A6441B0
16jY7qLJnX9uchnyf26t3QJnsUf78Xdikb 1110010000101000111010000001111110010000001011001101111011100000 E428E81F902CDEE0
16jY7qLJnX9eX8j612s8fnbn6uzR48xjua 1110100000001101111010110011001110101001011001111010000010001111 E80DEB33A967A08F
16jY7qLJnx2EZZumnYFke3GutCrRnHKs1M 111010110100110101001101101010111010101000110011101011001010110000 3AD3536AEA8CEB2B0
16jY7qLJnx2ixrxCnTLSraerkgyB3YYAiT 1110110111111001110011010110000000110101011011011100110000011001 EDF9CD60356DCC19
16jY7qLJnxHBp3dqwV2kzYq1LucfZzgxsH 1110111010111001101010110011001101001101111100100111011100001101 EEB9AB334DF2770D
16jY7qLJnX2cZXJ78wV1ef42e7cLAZJ1Vn 1111111000101000011001011100011011011011111111101100001110000011 FE2865C6DBFEC383
16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN 1111011100000101000111110010011110110000100100010001001011010100 F7051F27B09112D4
Could this also be some logic?
can you shed more light on this issue
you still don't understand the meaning sense of the hash function? "more light" > what is random? you take a coin and flip it 1 time, it may come up heads or tails. what happens if you flip a coin 10 times in a row, according to the theory of probability, either 10 heads or 10 tails can fall out. if you want to get 5 heads and 5 tails (in any order) you will need to flip a coin in series of 10, 2^10 = 1024 (1024 by 10). to drop all possible combinations from 10 heads in a row to 10 tails in a row, for all tosses in a row 1024 by 10, you need to flip a coin, 1024^1024=... when we start looking at the numbers generated when creating a bitcoin address (any or the address itself or its private key or its 160 hash in any form, hex, dec, bin) we get some parts of this huge number 2^10 = 1024 (1024 by 10) <> 1024^1024=... if you take 3 bits, 2^3=8, 8^8=16777216, then we start looking from 1 to 2^160 what we have in rmd160 hash in hex or dec
someting blablabla
...
1111101110010000010011001101000011011011000101101111100110000011100011011110010 1101011011011101111100000100100110000001010101110011001000000111000100000111101
1111101110010000010011011101010001011110010001010101111001100100101001001001000 1010001010111001000001111010110110000110010101010100001100011111100000110111111
1111101110010000010000101000101001011101000101100110011001100110111110110010000 0011000111101001111110011101100110100010110011110100110011111010000101000000010
1111101110010000010011110100011011001001011101100011111101001110111010000111011 0001001100010000010011000110111010111010110010011001001111010010100000010100001
1111101110010000010011111001001101010000001111001001110001101011110000111011011 0111000010010000111110000100000111010010001000110010111010110111000110000011111
1111101110010000010011000111010011111010010100001000011000001100110010010110001 1010100111011011111111001101001111100000101000101000000110011010110110110111000
1111101110010000010000000110100101101111101110001100000111111001100110111011111 0010000010110100011110101010101010101000100110101100010001111000000000111110001
1111101110010000010000011010010110100011111111100110001101001111001000110101011 0010100010010101100111100010000000110101000001101101111001011101010100101010101 the principle is preserved that vertically and horizontally > 2^3=8, 8^8=16777216
11111011
11111011
11111011
111
111
111
111
111how many such sections will fit into 2:160 > 1461501637330902918203684832716283019655932542976 / 16777216 = 87112285931760246646623899502532662132736
we will split our 160 bits by 3 bits into sections
111 110 111 001...
111 110 111 001...
111 110 111 001...
111 110 111 001...
111 110 111 001...
111 110 111 001...
111 110 111 001...
111 110 111 001...
11111011 10010000 01001100...
11111011 10010000 01001101...
11111011 10010000 01000010...
11111011 10010000 01001111...
11111011 10010000 01001111...
11111011 10010000 01001100...
of course we can't look further from where they fall from for each row > 16777216^16777216=...
with a horizontal representation, we get 160hesh/8bits = 20 parts.
8 bit 2^8 = 256, 256/20 = 12,8
2^1
1461501637330902918203684832716283019655932542976/12,8 = 114179815416476790484662877555959610910619729920 steps
2^160
256^256=... huge number 3231700607131100730071487668866995196044410266971548403213034542752465513886789
0893197201411522913463688717960921898019494119559150490921095088152386448283120
6308773673009960917501977503896521067960576383840675682767922186426197561618380
9433847617047058164585203630504288757589154106580860755239912393038552191433338
9668342420684974786564569494856176035326322058077805659331026192708460314150258
5928641771167259436037184618573575983511523016459044036976132332872312271256847
1082020972515710172693132346967854258065669793504599726835299863821552516638943
7335543602135433229604645318478604952148193555853611059596230656
16777216/12,8 = 1310720 steps, 2^1 to 2^160, 1461501637330902918203684832716283019655932542976 / 1310720 = 1115037259926531157076785913632418075299020,8
256^256=... huge number / 1115037259926531157076785913632418075299020,8
3231700607131100730071487668866995196044410266971548403213034542752465513886789
0893197201411522913463688717960921898019494119559150490921095088152386448283120
6308773673009960917501977503896521067960576383840675682767922186426197561618380
9433847617047058164585203630504288757589154106580860755239912393038552191433338
9668342420684974786564569494856176035326322058077805659331026192708460314150258
5928641771167259436037184618573575983511523016459044036976132332872312271256847
1082020972515710172693132346967854258065669793504599726835299863821552516638943
7335543602135433229604645318478604952148193555853611059596230656 / 1115037259926531157076785913632418075299020,8 =~
2898289342675449871993098867672270812704240074863894775739976204579701715524344
5980591244385169006487474859731523184059403721470360895667790293862650383583527
8052308371150131655537851476057700318587873331791124614866020470257907019747447
1073288393330068706379548507509145858817458460347497468230852750261100385960260
0438313585964807278885206604007966494048122967982378718514987992376064111499830
2154324000491294951584421374564447449664912755949011836586456519390866498333142
8684237600062725568520340756025511278116285953620110095472786524359663371614992
7614893228693106196480
in general our 2^3=8, 8^8=16777216 fall into their position from the general 256^256=... huge number...
in the first column, theirs fall out all over, in the second one, etc. when presented vertically and similarly when recalculating and converting in horizontal...
instead of constantly flipping a coin, we initiate with Mersenne twister and hash functions (256,160hashs) by initiating the creation of a bitcoin address using a number, we get a fixed result instead of randomly generating a constantly new one (but it randomly takes it from a large number), but this number itself 2^160 or 2^256 is still fixed and falls out of the total huge number that goes into infinity 2^3=8, 8^8=16777216, 16777216^16777216... etc
in general, everyone is picking something and looking for their own ways))
https://youtu.be/AYWoDqQmm1o?t=128