Pages:
Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 82. (Read 244826 times)

member
Activity: 503
Merit: 38
This may fail, may be successful. We all shall see.

Am I missing any information/anything else to put out there?

Ok, bot owners, let's get ready to rumble. Who is ready? Let's do it.

 You don't need to do it.  Tongue

You skeered? LOL. Let's just try it. It's already set up.

I will be banned by  mempool.space  due to DDoS ​​attack LOL.
member
Activity: 194
Merit: 14


You skeered? LOL. Let's just try it. It's already set up.

Wait at least until we finish work, it's 9:26 am and i am just came into office 20 mins too late and got straight motivated by you, but who cares. Will you move the coins today?
full member
Activity: 1232
Merit: 242
Shooters Shoot...
This may fail, may be successful. We all shall see.

Am I missing any information/anything else to put out there?

Ok, bot owners, let's get ready to rumble. Who is ready? Let's do it.

 You don't need to do it.  Tongue

You skeered? LOL. Let's just try it. It's already set up.
member
Activity: 503
Merit: 38
This may fail, may be successful. We all shall see.

Am I missing any information/anything else to put out there?

Ok, bot owners, let's get ready to rumble. Who is ready? Let's do it.

 You don't need to do it.  Tongue
newbie
Activity: 20
Merit: 0
You can use nomachine's Rust Kangaroo a few posts back, or write a Python script that does the job according to your requirements (e.g. "that actually works").
Too slow? Well, don't expect to find something that "actually works", is fast, and solves 130, sitting out there for you to snug up and inherit 13 BTC tomorrow.

Not in Rust. Pure C++ with GMP. Here is the latest version that goes 470K Hops per second.

Theoretically, with 12 cores, it can achieve 5 million hops per second.
The more cores you have, the better the result will be.
However, it's not worth using this for a puzzle above 70bit. A GPU must be used instead....

Pure self-contained Python Kangaroo with no libraries required. 225K Hops per second.

DO NOT USE THIS TO SEARCH FOR 130. It is just an educational, reference-only example. All the math uses Python integers.

kangaroo.py
Code:
import math, os, sys, time
....

Puzzle 48:
Code:
processors: 2048
         num jump distances: 38
max jumps per tame kangaroo: 6899
max jumps per wild kangaroo: 11586
       expected total jumps: 18927375 24.17 bits
     avg real jump distance: 7233629130 32.75 bits
 avg expected jump distance: 6074001000 32.50 bits
 expected max tame distance: 190638869267657 47.44 bits
...
Ops: 17607859 Table size: 68719 Speed: 225400 ops/s
Key: 0x2de6d7ce3b9b
Group ops: 18288933
Ops: 18288933 Stored: 71317
Speed: 222616 ops/s

You need to add the lower boundary of the original search range to the found key to get the correct answer (because of the range was shifted to start at 0).
newbie
Activity: 20
Merit: 0
In regards to all the RBF issues lately, would it not be more productive to push on the Bitcoin developers themselves to fix it? What's so bad about making no RBF actually mean NO RBF? You know, the first-seen spend transaction with NO-RBF/Opt-out-of-RBF flag is the only transaction that the network accepts and cannot be replaced/modified by any other means? It will either get mined into a block eventually, or in the case the fees are too low, sit in the mempool for an indefinite amount of time. Or does their say not even matter because the mining pools themselves would not adopt such a fix, given that it is actually not in their best interest to do so?

Bitcoin is not broken on it's full strength. The thing that is broken is this puzzle on this restricted range.
It would be wiser if the reward was placed on a regular address and you could calculate the private key of the reward address from the private key of the restricted address with a published deterministic algorithm.
full member
Activity: 1232
Merit: 242
Shooters Shoot...
Ok, all of you BOT owners. Get ready for round 2 of RBF test.

I am a newb with ding certain things on the blockchain and what I am trying to do.  I probably shouldn't be doing this, but sometimes, mistakes, are the best things to learn from.

I would like all to participate as they did in the last 66 bit bot test. But def at least the winner, albert0bsd. But I know the more, the better chances to test different strategies or programs/processes, so I would like to get all bot owners on board.

Same setup, key is in the 66 bit range.

Address:

166Bitrbfa16oR7DKKSzgdhU4MpVKE4cKb

It seemed like everyone has an auto bot...meaning all you are doing is putting in the address on some type of watch list, and once your program gets a hit for the address, the bots do their thing to find the key and alter the original transaction.

So if everyone who is going to participate, put in the above address into your bot ASAP. I would like to get a response back from at least albert0bsd that he is entered the address and is ready to proceed.

All I ask, if one of you are successful in diverting the coinage, you PM me and tell me how you did it. That's all. Just a request, not a requirement lol.

I'm not sure I will say the exact time I send funds out of the address, because that is more realistic to 66's transfer, no one is going to let us know they are about to sweep the coins...but that could change.

This may fail, may be successful. We all shall see.

Am I missing any information/anything else to put out there?

Ok, bot owners, let's get ready to rumble. Who is ready? Let's do it.
member
Activity: 165
Merit: 26
In regards to all the RBF issues lately, would it not be more productive to push on the Bitcoin developers themselves to fix it? What's so bad about making no RBF actually mean NO RBF? You know, the first-seen spend transaction with NO-RBF/Opt-out-of-RBF flag is the only transaction that the network accepts and cannot be replaced/modified by any other means? It will either get mined into a block eventually, or in the case the fees are too low, sit in the mempool for an indefinite amount of time. Or does their say not even matter because the mining pools themselves would not adopt such a fix, given that it is actually not in their best interest to do so?
Fix what? There is nothing broken here, buddy. RBF, no RBF, are irrelevant at the protocol level. If you push a TX to pool A and I push a TX to pool B, the network gives zero f**ks about RBF or no RBF. If I push a TX and change my mind, it is my right to be able to change the destination, and this is what RBF is about. You are asking for adding a feature that forbids such rights, resulting in a disaster.
member
Activity: 503
Merit: 38
Are you sure about that?

Nah. There are too many numbers on the screen.   Grin
member
Activity: 165
Merit: 26
I have almost the same script with Jacobian coordinates in C++ but using #include

It's not a million per second, but it's very close.   Grin
Are you sure about that? If my script runs at 225k op/s in shitty Python interpreted code, a native version won't run 4 times faster. It would run 50 times faster. On a single core. I'm too tired to prove this. Using libsecp256k1 instead of GMP or whatever, and doing the same batched addition as in my script (which is the core reason of the performance multiplier) reaches 10 M+ op/s, no questions asked. So on an i9 with 6 performance cores it does 60M op/s, and also the rest of 14 efficiency cores each contribute an additional 8M op/s. So a total of around 170 M op/s. But this is futile, it's just a complete waste of electricity.
newbie
Activity: 25
Merit: 3
In regards to all the RBF issues lately, would it not be more productive to push on the Bitcoin developers themselves to fix it? What's so bad about making no RBF actually mean NO RBF? You know, the first-seen spend transaction with NO-RBF/Opt-out-of-RBF flag is the only transaction that the network accepts and cannot be replaced/modified by any other means? It will either get mined into a block eventually, or in the case the fees are too low, sit in the mempool for an indefinite amount of time. Or does their say not even matter because the mining pools themselves would not adopt such a fix, given that it is actually not in their best interest to do so?
member
Activity: 503
Merit: 38
hero member
Activity: 862
Merit: 662
Just for those who want to know here are all my RAWTX  for the RBF challenge from some days ago and the TXID or Error code  returned from the mempool API:

Code:
Address 197kFKvMHoRJPXktc8xJwMjeTuE9xijBQ found public key 029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583
Keyfound 000000000000000000000000000000000000000000000002357CAC24E9C2D41D for address 197kFKvMHoRJPXktc8xJwMjeTuE9xijBQ
UXTO TXID:3ee3fa9738d6f3357966f2283c8cc9409bd24ec1033762b936152717977ce520 index 0  balance 492600

Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 490104 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a473044022031f4cf9bf5a9dc03b7ee11e8f31c8d362f225b8a9db0c8ed9bce24a833d1301f02201417d3564599b67aeffd53818e004898b7f884ffc6000a691f1e9e232a4927120121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff01787a070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: 7e91e4f33f6ead7ebb0d441e180a1ff0f66071b466ea3c6aab2ef9e36f4c98b3

Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488856 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402200c97ff52a39e5a42907617847e979c89ff7d660f10862f8c9edd0d32e90fa17802200c74a1117890f4b8248ad0fa2a14d66e283b66732c2fd0e3a59d27d657bbb95b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff019875070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: 5967ccefbaeee59a85c8f8689cd85684089a91a09b56b3a67d9e7845b237592c


Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488856 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402200c97ff52a39e5a42907617847e979c89ff7d660f10862f8c9edd0d32e90fa17802200c74a1117890f4b8248ad0fa2a14d66e283b66732c2fd0e3a59d27d657bbb95b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff019875070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: sendrawtransaction RPC error: {"code":-26,"message":"txn-mempool-conflict"}


Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488856 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402200c97ff52a39e5a42907617847e979c89ff7d660f10862f8c9edd0d32e90fa17802200c74a1117890f4b8248ad0fa2a14d66e283b66732c2fd0e3a59d27d657bbb95b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff019875070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: 5967ccefbaeee59a85c8f8689cd85684089a91a09b56b3a67d9e7845b237592c

Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488024 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006b483045022100b6daea5a333af8f3d52134f9b4cab6a59721fcd2a23538c5e29c55d23e21d64802202c7e5799d91ff7921cc6cc3de84bc710aa9e8c9c49841b30a30f3b7e5142e65b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff015872070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: sendrawtransaction RPC error: {"code":-26,"message":"txn-mempool-conflict"}

Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488856 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402200c97ff52a39e5a42907617847e979c89ff7d660f10862f8c9edd0d32e90fa17802200c74a1117890f4b8248ad0fa2a14d66e283b66732c2fd0e3a59d27d657bbb95b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff019875070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: sendrawtransaction RPC error: {"code":-26,"message":"insufficient fee, rejecting replacement 5967ccefbaeee59a85c8f8689cd85684089a91a09b56b3a67d9e7845b237592c; new feerate 0.00019914 BTC/kvB <= old feerate 0.00029872 BTC/kvB"}

Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488856 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402200c97ff52a39e5a42907617847e979c89ff7d660f10862f8c9edd0d32e90fa17802200c74a1117890f4b8248ad0fa2a14d66e283b66732c2fd0e3a59d27d657bbb95b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff019875070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: sendrawtransaction RPC error: {"code":-26,"message":"insufficient fee, rejecting replacement 5967ccefbaeee59a85c8f8689cd85684089a91a09b56b3a67d9e7845b237592c; new feerate 0.00019914 BTC/kvB <= old feerate 0.00044255 BTC/kvB"}

Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488856 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402200c97ff52a39e5a42907617847e979c89ff7d660f10862f8c9edd0d32e90fa17802200c74a1117890f4b8248ad0fa2a14d66e283b66732c2fd0e3a59d27d657bbb95b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff019875070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: sendrawtransaction RPC error: {"code":-26,"message":"insufficient fee, rejecting replacement 5967ccefbaeee59a85c8f8689cd85684089a91a09b56b3a67d9e7845b237592c; new feerate 0.00019914 BTC/kvB <= old feerate 0.00052825 BTC/kvB"}

Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 480536 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006b4830450221009b36b01ae4710f13457428156736df8d1188e38caf0c0f4ef86ac052823da82d022077abf7b6c2fd28f1b86ecfbb5c7ae3fe452e48102dbae829d3343969c20b77e70121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff011855070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: 699fb5b81c331abaa0fd11ed3f7c6b542cfbd180ccb0357d8d159663a7e96ca4


Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 475128 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402202927628b704125bd1322d7293fb1a9c0fa203ba8e323f46fb195239e917d25ac0220623f9eeee892a4abd1671578c40ace03b34dd8797b45a635904d7182c11f74960121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff01f83f070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: 23f023729eb3be2b4c1004bb1610043ecc1befb5b9223db7284c337ac06e9d64


Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 488856 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a47304402200c97ff52a39e5a42907617847e979c89ff7d660f10862f8c9edd0d32e90fa17802200c74a1117890f4b8248ad0fa2a14d66e283b66732c2fd0e3a59d27d657bbb95b0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff019875070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID:
429 Too Many Requests

429 Too Many Requests


Sign Up for Mempool Enterprise to get increased API limits





Output to bc1qcrej0q6xqfyr9ecayk3y6khykuugt7za6umuk4 with 467224 satoshis, network bitcoin
Raw TX:
010000000120e57c9717271536b9623703c14ed29b40c98c3c28f2667935f3d63897fae33e000000006a473044022068357d38b55b987e139ce069de456cb399b04f37861879bb7e425ef84b11816a0220425c3fb1c6fa90ca1d7ab6971375a94d62e36a49041d7cfda338d51f4169a08e0121029fd3d2479a37f40d03975cb51ce0fa18cbb709cc46b47caeaa1722cfd3683583ffffffff011821070000000000160014c0f3278346024832e71d25a24d5ae4b73885f85d00000000
TXID: 354dbcb6fd3532a051e1e363c9122d862949c3d075280d4144f719d6ba99e14a

You can decode RAWTX on: https://www.blockchain.com/explorer/assets/btc/decode-transaction

Just to check if something is odd or not.
newbie
Activity: 29
Merit: 0
I think that kangaroos that have been forked or modded from JLp's original kangaroo do not work. and I'm really asking about kangaroo running on 125 bit and above.

how do you know it doesn't work? in this last one there is no number 125 in the code. it's all 256...there is NO way to prove it doesn't work because it's impossible to solve puzzle 130.

So how do you know if it's working? Do you have proof?
Many people claim that they forked and modified the original JPL kangaroo 125-bit program and created new 256-bit kangaroo programs. So do these work? What happens if there is a code error? What if it was created incorrectly?
How would you feel if, after using it for months, someone told you that the program didn't really work?
Let me give an example: the keyhunt bsgs program definitely works.

So, is there anyone who has used the modded kangaroo program and can say this?

What you mean "works"?
How do YOU know keyhuntbsgs works?
member
Activity: 165
Merit: 26
You can use nomachine's Rust Kangaroo a few posts back, or write a Python script that does the job according to your requirements (e.g. "that actually works").
Too slow? Well, don't expect to find something that "actually works", is fast, and solves 130, sitting out there for you to snug up and inherit 13 BTC tomorrow.

Not in Rust. Pure C++ with GMP. Here is the latest version that goes 470K Hops per second.

Theoretically, with 12 cores, it can achieve 5 million hops per second.
The more cores you have, the better the result will be.
However, it's not worth using this for a puzzle above 70bit. A GPU must be used instead....

Pure self-contained Python Kangaroo with no libraries required. 225K Hops per second.

DO NOT USE THIS TO SEARCH FOR 130. It is just an educational, reference-only example. All the math uses Python integers.

kangaroo.py
Code:
import math, os, sys, time


class S:            # Scalar field
    N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

    @staticmethod
    def add(a, b):
        return (a + b) % S.N


class F:        # Curve field
    P = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f

    @staticmethod
    def add(a, b):
        return (a + b) % F.P

    @staticmethod
    def mul(a, b):
        return (a * b) % F.P

    @staticmethod
    def pow(b, e):
        return pow(b, e, F.P)

    @staticmethod
    def sqrt(a):
        return F.pow(a, (F.P + 1) // 4)

    @staticmethod
    def inv(a):
        if a == 0:
            return 0

        r = 1
        s = 0
        low = a % F.P
        high = F.P

        while low > 1:
            q = high // low
            nm = s - q * r
            nw = high - low * q
            high = low
            s = r
            low = nw
            r = nm

        return r % F.P


class Point:            # Affine point
    def __init__(self, x, y, parity=-1):
        self.x = x
        self.y = y if parity == -1 else Point.calc_y(x, parity)

    @classmethod
    def uncompress(cls, s):
        parity, xh = int(s[:2], 16), s[2:]
        if parity not in [2, 3]:
            raise Exception("Expected parity 02 or 03")
        return Point(int(xh, 16), 0, parity % 2)

    @staticmethod
    def calc_y(x, parity):
        y = F.sqrt(F.add(F.pow(x, 3), 7))   # y = sqrt(x**3 + 7)
        return y if parity == y % 2 else F.P - y


class JPoint:           # Jacobian point
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

    def affine(self):
        z = F.inv(self.z)
        z2 = F.mul(z, z)
        return Point(F.mul(self.x, z2), F.mul(self.y, F.mul(z, z2)))

    def mul(self, n):
        if self.y == 0 or n == 0:
            return JPoint(0, 0, 1)

        if n == 1:
            return self

        if n < 0 or n >= S.N:
            return self.mul(n % S.N)

        if (n % 2) == 0:
            return self.mul(n // 2).double()

        return self.mul(n // 2).double().add(self)

    def double(self):
        if self.y == 0:
            return JPoint(0, 0, 0)

        y2 = F.mul(self.y, self.y)
        s = F.mul(4 * self.x, y2)
        M = F.mul(3 * self.x, self.x)

        x = F.add(F.mul(M, M), - 2 * s)
        return JPoint(x, F.add(F.mul(M, s - x), -F.mul(8 * y2, y2)), F.mul(2 * self.y, self.z))

    def add(self, q):
        if self.y == 0:
            return q
        if q.y == 0:
            return self

        qz2 = F.mul(q.z, q.z)
        pz2 = F.mul(self.z, self.z)
        U1 = F.mul(self.x, qz2)
        U2 = F.mul(q.x, pz2)
        S1 = F.mul(self.y, F.mul(q.z, qz2))
        S2 = F.mul(q.y, F.mul(self.z, pz2))

        if U1 == U2:
            if S1 != S2:
                return JPoint(0, 0, 1)
            return self.double()

        H = F.add(U2, -U1)
        R = F.add(S2, -S1)
        H2 = F.mul(H, H)
        H3 = F.mul(H, H2)
        U1H2 = F.mul(U1, H2)
        nx = F.add(F.mul(R, R), -F.add(H3, 2 * U1H2))
        ny = F.add(F.mul(R, F.add(U1H2, -nx)), -F.mul(S1, H3))
        nz = F.mul(H * self.z, q.z)

        return JPoint(nx, ny, nz)


class Group:
    G = Point(
        0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
        0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
    )

    @staticmethod
    def add(p, q):
        m = F.mul(F.add(p.y, -q.y), F.inv(F.add(p.x, -q.x)))
        x = F.add(F.add(F.mul(m, m), -p.x), -q.x)
        return Point(x, F.add(F.mul(m, F.add(q.x, -x)), -q.y))

    @classmethod
    def mul(cls, p, k):
        # [k]P point scalar multiplication
        return JPoint(p.x, p.y, 1).mul(k).affine()

    @classmethod
    def batch_add(cls, ga, gb):
        n = len(ga)
        d = [0] * n
        p = [0] * n
        z = 1
        for i in range(n):
            d[i] = F.add(ga[i].x, -gb[i].x)
            z = F.mul(z, d[i])
            p[i] = z

        t = F.inv(z)

        for i in range(n - 1, -1, -1):
            if i > 0:
                xi = F.mul(t, p[i - 1])
                t = F.mul(t, d[i])
            else:
                xi = t

            m = F.mul(F.add(ga[i].y, -gb[i].y), xi)
            ga[i].x = F.add(F.add(F.mul(m, m), -ga[i].x), -gb[i].x)
            ga[i].y = F.add(F.mul(m, F.add(gb[i].x, -ga[i].x)), -gb[i].y)


class TrueRandom:
    def __init__(self, max_value: int, num_bits: int, min_value: int = 0):
        self.upper_bound = max_value - min_value + 1
        self.min = min_value
        self.num_bits = num_bits
        self.domain = 2 ** num_bits
        self.num_bytes = math.ceil(num_bits / 8)
        self.shift = 8 * self.num_bytes - num_bits

    def get_next(self):
        random_bytes = os.urandom(self.num_bytes)

        # trim to num_bits
        random_int = int.from_bytes(random_bytes, byteorder='big') >> self.shift

        # normalize from domain range to target range
        sample = self.upper_bound * random_int // self.domain

        return sample + self.min


def kangaroo_with_results(k1, k2, P, dp, herd_size):
    k_cand, counter, tbl_size = kangaroo(k1, k2, P, dp, herd_size=herd_size)

    k = k_cand[0]
    if k1 <= k <= k2:
        P_check = Group.mul(Group.G, k)
        if P_check.x == P.x:
            print(f'Key: {hex(k)}\nGroup ops: {counter}')

    return k_cand, counter, tbl_size


def create_kangaroo(kang_type, pos: int, herd_pts, herd_distances, k1, k2, P, rnd: TrueRandom, v):
    if kang_type == 0:
        # d = rnd.get_next()                    # [0, k2 - k1)
        d = (k2 - k1 + 1) + pos * v        # b/2 + i*v
        # d = (k2 - k1 + 1) // 2
        herd_distances[pos] = d
        herd_pts[pos] = Group.mul(Group.G, k1 + d)
    else:
        # d = rnd.get_next() - (k2 - k1 + 1) // 2               # [-(k2-k1)/2, (k2-k1)/2]
        d = (k2 - k1 + 1) // 2 + pos * v                             # b + i*v
        # d = 0
        herd_distances[pos] = d
        herd_pts[pos] = Group.add(P, Group.mul(Group.G, d))


def check_col(kang_type, hashmap, herd, dist, pos, k1, k2, P, dp_mask, R, v_rnd,
              respawn_dead=True,
              stop_at_dp=True):
    x = herd[pos].x

    if x & dp_mask == 0:
        item = hashmap.get(x)

        if item is not None:
            if item[0] == kang_type ^ 1:
                # collision
                d_wild, d_tame = (item[1], dist[pos]) if kang_type == 0 else (dist[pos], item[1])
                return [S.add(k1 + d_tame, - d_wild)], 0
            else:
                # print(f'Dead kangaroo at {pos}')
                if respawn_dead:
                    # create_kangaroo(kang_type, pos, herd, dist, k1, k2, P, R)
                    # move along with a small random value
                    d = v_rnd.get_next()
                    dist[pos] += d
                    herd[pos] = Group.add(herd[pos], Group.mul(Group.G, d))

                    # this will recurse until a non-dead kangaroo is produced
                    k, created = check_col(kang_type, hashmap, herd, dist, pos, k1, k2, P, dp_mask, R, v_rnd)
                    return k, 1 + created
        else:
            hashmap[x] = (kang_type, dist[pos])

    return 0, 0


def build_jump_distances(alpha, with_points=False):
    jump_points = []
    jump_distances = []

    # compute A (jump distances) such that average(A) is closest to expected alpha
    # Pollard says choosing A as powers of two feels like "needs more investigation"
    min_diff = 1
    while True:
        jump_distance = 2 ** len(jump_distances)
        jump_distances.append(jump_distance)
        if with_points:
            jump_points.append(Group.mul(Group.G, jump_distance))

        alpha_real = sum(jump_distances) / len(jump_distances)
        diff = abs(1 - alpha_real / alpha)
        if alpha_real >= alpha:
            if diff > min_diff:
                jump_distances.pop()
            break
        if diff < min_diff:
            min_diff = diff

    return jump_distances, jump_points


def kangaroo(k1, k2, P, dp: int, herd_size: int = 128):
    b = k2 - k1 + 1                                                 # size of search interval
    m = herd_size + herd_size                                       # m/2 + m/2
    # parallel case - minimize alpha for total number of jumps
    alpha = m * math.sqrt(b) / 4                                    # m * sqrt(b) / 4

    jump_distances, jump_points = build_jump_distances(alpha, with_points=True)
    alpha_real = sum(jump_distances) / len(jump_distances)

    n = len(jump_distances)

    # adjust alpha to the actual average jump distance
    alpha_expected = alpha
    alpha = alpha_real

    # expected total number of jumps for each trailing kangaroo (1 per processor)
    expected_trailing_jumps = 2 * math.sqrt(b) / m                  # 2 * sqrt(b) / m

    # beta = 0.553                      # serial case
    # ab_jumps = int(alpha * beta)      # serial case
    # max_tame_distance = int(alpha * alpha * beta + b // 2)

    # expected number of jumps done by a trailing kangaroo after it enters the [b, ...] region
    # this would equal the number of jumps done by a tame kangaroo that starts from b
    num_tame_jumps = 4 * alpha / (m * m)                        # 4 * alpha / (m**2)
    max_tame_distance = int(alpha * num_tame_jumps + b)         # average jump size * num jumps + start
    # max_wild_distance = int(alpha * num_tame_jumps + b/2)       # average jump size * num jumps + start
    # = (2*a/m)**2 = (sqrt(b) / 2)**2

    # set v to the "partition" size for a processor, and not a power of two
    v = b // m - 1                          # (b/2) / (m/2)
    # v = herd_size
    v_rnd = TrueRandom(v, 256)

    hashmap = {}
    wilds: list = [None] * herd_size
    tames: list = [None] * herd_size
    w_dist = [0] * herd_size
    t_dist = [0] * herd_size
    counter = 0
    done_ab_jumps = 0

    expected_total_jumps = math.ceil((num_tame_jumps + expected_trailing_jumps) * herd_size)
    print(
        f'processors: {m}'
        f'\n         num jump distances: {n}'
        f'\nmax jumps per tame kangaroo: {math.ceil(num_tame_jumps)}'
        f'\nmax jumps per wild kangaroo: {math.ceil(expected_trailing_jumps)}'
        f'\n       expected total jumps: {expected_total_jumps} {math.log2(expected_total_jumps):.2f} bits'
        f'\n     avg real jump distance: {round(alpha_real)} {math.log2(alpha_real):.2f} bits'
        f'\n avg expected jump distance: {round(alpha_expected)} {math.log2(alpha_expected):.2f} bits'
        f'\n expected max tame distance: {max_tame_distance} {math.log2(max_tame_distance):.2f} bits'
        # f'\n expected max wild distance: {max_wild_distance} {math.log2(max_wild_distance):.2f} bits'
    )

    R = TrueRandom(k2 - k1, 256, 0)
    dp_mask = (1 << dp) - 1

    for idx in range(herd_size):
        create_kangaroo(0, idx, tames, t_dist, k1, k2, P, R, v)
        counter += 1

        k, born = check_col(0, hashmap, tames, t_dist, idx, k1, k2, P, dp_mask, R, v_rnd)
        counter += born
        if k:
            return k, counter, len(hashmap)

        create_kangaroo(1, idx, wilds, w_dist, k1, k2, P, R, v)
        counter += 1

        k, born = check_col(1, hashmap, wilds, w_dist, idx, k1, k2, P, dp_mask, R, v_rnd)
        counter += born
        if k:
            return k, counter, len(hashmap)

    batch_jp: list = [None] * herd_size

    start_time = time.time()
    last_p_time = 0
    while True:
        if done_ab_jumps < num_tame_jumps:
            # jump tames
            for idx in range(herd_size):
                d = tames[idx].x % n
                # tames[idx] = Group.add(tames[idx], jump_points[d])        # un-batched addition
                batch_jp[idx] = jump_points[d]
                t_dist[idx] += jump_distances[d]

            Group.batch_add(tames, batch_jp)

            for idx in range(herd_size):
                counter += 1

                k, born = check_col(0, hashmap, tames, t_dist, idx, k1, k2, P, dp_mask, R, v_rnd)
                counter += born
                if k:
                    return k, counter, len(hashmap)

            done_ab_jumps += 1
            if done_ab_jumps >= num_tame_jumps:
                # new_max = max(t_dist)
                # avg_dist = sum(t_dist) / len(t_dist)
                # print(
                #     f'Tames are done.'
                #     f'\nExpected max tame distance: {max_tame_distance} {math.log2(max_tame_distance):.2f} bits'
                #     f'\nAverage max tame distance:  {avg_dist}  {math.log2(avg_dist):.2f} bits'
                #     f'\nActual max tame distance:   {new_max}  {math.log2(new_max):.2f} bits'
                # )
                # max_tame_distance = max(max_tame_distance, new_max)
                # max_wild_distance = int(max_tame_distance + b / 2)      # add initial tame - wild gap

                # create new tames herd
                for idx in range(herd_size):
                    d = b + idx * v + v_rnd.get_next()    # b/2 + i*v + z

                    t_dist[idx] = d
                    tames[idx] = Group.mul(Group.G, k1 + d)
                    counter += 1

                done_ab_jumps = 0

        for idx in range(herd_size):
            d = wilds[idx].x % n
            # wilds[idx] = Group.add(wilds[idx], jump_points[d])    # unbatched addition
            batch_jp[idx] = jump_points[d]
            w_dist[idx] += jump_distances[d]

        Group.batch_add(wilds, batch_jp)

        for idx in range(herd_size):
            counter += 1

            k, born = check_col(1, hashmap, wilds, w_dist, idx, k1, k2, P, dp_mask, R, v_rnd)
            counter += born
            if k:
                return k, counter, len(hashmap)

            if w_dist[idx] > max_tame_distance:
                # create_kangaroo(1, idx, wilds, w_dist, k1, k2, P, R)
                z = v_rnd.get_next()
                d = b // 2 + idx * v + z        # b + i*v + z

                w_dist[idx] = d
                wilds[idx] = Group.add(P, Group.mul(Group.G, d))

                counter += 1

        total_time = time.time() - start_time
        if total_time - last_p_time > 3:
            last_p_time = total_time
            print(f'Ops: {counter} Table size: {len(hashmap)} Speed: {counter / total_time:.0f} ops/s')


def run_puzzle(idx: int, pub_key, dp: int = 0, herd_size: int = 128, benchmark=0):
    # puzzle #X has (X - 1) unknown bits
    k1 = 1 << (idx - 1)
    k2 = (k1 << 1) - 1

    # subtract k1 to search in a [0, k2 - k1) interval
    k2 -= k1
    k1 = 0

    P = Point.uncompress(pub_key)

    # subtract (k2 - k1)G from P to bring target point's k to [0, k2 - k1) interval
    P = Group.add(P, Group.mul(Group.G, -(k2 + 1)))

    now = time.time()
    _, ops, hashmap_size = kangaroo_with_results(k1, k2, P, dp, herd_size)
    total_time = time.time() - now
    print(f'Ops: {ops} Stored: {hashmap_size}')
    print(f'Speed: {ops / total_time:.0f} ops/s')


if __name__ == '__main__':
    # r, p = int(sys.argv[1]), sys.argv[2]
    # run_puzzle(r, p, dp=0, herd_size=128)

    # run_puzzle(32, '0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69',
    #            herd_size=512)

    run_puzzle(48, '0291bee5cf4b14c291c650732faa166040e4c18a14731f9a930c1e87d3ec12debb',
               dp=8, herd_size=1024)

Puzzle 48:
Code:
processors: 2048
         num jump distances: 38
max jumps per tame kangaroo: 6899
max jumps per wild kangaroo: 11586
       expected total jumps: 18927375 24.17 bits
     avg real jump distance: 7233629130 32.75 bits
 avg expected jump distance: 6074001000 32.50 bits
 expected max tame distance: 190638869267657 47.44 bits
...
Ops: 17607859 Table size: 68719 Speed: 225400 ops/s
Key: 0x2de6d7ce3b9b
Group ops: 18288933
Ops: 18288933 Stored: 71317
Speed: 222616 ops/s
jr. member
Activity: 65
Merit: 1
34Sf4DnMt3z6XKKoWmZRw2nGyfGkDgNJZZ
I think that kangaroos that have been forked or modded from JLp's original kangaroo do not work. and I'm really asking about kangaroo running on 125 bit and above.

how do you know it doesn't work? in this last one there is no number 125 in the code. it's all 256...there is NO way to prove it doesn't work because it's impossible to solve puzzle 130.

So how do you know if it's working? Do you have proof?
Many people claim that they forked and modified the original JPL kangaroo 125-bit program and created new 256-bit kangaroo programs. So do these work? What happens if there is a code error? What if it was created incorrectly?
How would you feel if, after using it for months, someone told you that the program didn't really work?
Let me give an example: the keyhunt bsgs program definitely works.

So, is there anyone who has used the modded kangaroo program and can say this?
member
Activity: 503
Merit: 38
You can use nomachine's Rust Kangaroo a few posts back, or write a Python script that does the job according to your requirements (e.g. "that actually works").
Too slow? Well, don't expect to find something that "actually works", is fast, and solves 130, sitting out there for you to snug up and inherit 13 BTC tomorrow.

Not in Rust. Pure C++ with GMP. Here is the latest version that goes 470K Hops per second.

Code:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

using namespace std;

typedef array Point;

const mpz_class modulo("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16);
const mpz_class Gx("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16);
const mpz_class Gy("483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8", 16);
const Point PG = {Gx, Gy};
const Point Z = {0, 0};

auto starttime = chrono::high_resolution_clock::now();

Point add(const Point& P, const Point& Q, const mpz_class& p = modulo) {
    if (P == Z) return Q;
    if (Q == Z) return P;
    const mpz_class& P0 = P[0];
    const mpz_class& P1 = P[1];
    const mpz_class& Q0 = Q[0];
    const mpz_class& Q1 = Q[1];
    mpz_class lmbda, num, denom, inv;
    if (P != Q) {
        num = Q1 - P1;
        denom = Q0 - P0;
    } else {
        if (P1 == 0) return Z;
        num = 3 * P0 * P0;
        denom = 2 * P1;
    }
    mpz_invert(inv.get_mpz_t(), denom.get_mpz_t(), p.get_mpz_t());
    lmbda = (num * inv) % p;
    mpz_class x = (lmbda * lmbda - P0 - Q0) % p;
    if (x < 0) x += p;
    mpz_class y = (lmbda * (P0 - x) - P1) % p;
    if (y < 0) y += p;
    return {x, y};
}

Point mul(const mpz_class& k, const Point& P = PG, const mpz_class& p = modulo) {
    Point R = Z;
    Point current = P;
    mpz_class k_copy = k;
    while (k_copy > 0) {
        if (k_copy % 2 == 1) {
            R = add(R, current, p);
        }
        current = add(current, current, p);
        k_copy >>= 1;
    }
    return R;
}

mpz_class X2Y(const mpz_class& X, int y_parity, const mpz_class& p = modulo) {
    mpz_class X_cubed = (X * X * X) % p;
    mpz_class tmp = (X_cubed + mpz_class(7)) % p;
    mpz_class Y;
    mpz_class exp = (p + mpz_class(1)) / mpz_class(4);
    mpz_powm(Y.get_mpz_t(), tmp.get_mpz_t(), exp.get_mpz_t(), p.get_mpz_t());
    if ((Y % 2) != y_parity) {
        Y = p - Y;
    }
    return Y;
}

bool comparator(const Point& P, const mpz_class& Pindex, const mpz_class& DP_rarity,
                std::vector& T, std::vector& t, const std::vector& W,
                const std::vector& w) {
    mpz_class result;
    mpz_fdiv_r(result.get_mpz_t(), P[0].get_mpz_t(), DP_rarity.get_mpz_t());
  
    if (result != 0) return false;

    T.push_back(P);
    t.push_back(Pindex);

    // Create a set of Points from T for fast lookup
    std::set T_set(T.begin(), T.end());

    // Create a set of Points from W for quick existence check
    std::set W_set(W.begin(), W.end());

    // Iterate through W and check if each element is in T
    for (const auto& match : W_set) {
        if (T_set.find(match) != T_set.end()) {
            auto it = find(T.begin(), T.end(), match);
            int index = distance(T.begin(), it);
            mpz_class tP = t[index];
            mpz_class wP = w[distance(W.begin(), find(W.begin(), W.end(), match))];
            mpz_class dec = abs(tP - wP);

            // Measure time once and reuse it
            auto end = chrono::system_clock::now();
            time_t end_time = chrono::system_clock::to_time_t(end);
            cout << "\n\033[01;33m[+]\033[32m PUZZLE SOLVED: \033[32m" << ctime(&end_time) << "\r";
            cout << "\r\033[01;33m[+]\033[32m Private key (dec): \033[32m" << dec << "\033[0m" << endl;

            // Open file once, write all data, and close it
            static std::ofstream file("KEYFOUNDKEYFOUND.txt", std::ios::app);
            file << "\n" << string(140, '-') << endl;
            file << "SOLVED " << ctime(&end_time);
            file << "Private Key (decimal): " << dec << endl;
            file << "Private Key (hex): " << dec.get_str(16) << endl;
            file << string(140, '-') << endl;

            return true;
        }
    }

    return false;
}


vector generate_powers_of_two(int hop_modulo) {
    vector powers(hop_modulo);
    for (int pw = 0; pw < hop_modulo; ++pw) {
        powers[pw] = mpz_class(1) << pw;
    }
    return powers;
}

string search(const vector& P, const Point& W0, const mpz_class& DP_rarity, int Nw, int Nt, int hop_modulo,
              const mpz_class& upper_range_limit, const mpz_class& lower_range_limit, const vector&
powers_of_two) {
    vector T(Nt, Z), W(Nw, Z);
    vector t(Nt), w(Nw);

    gmp_randclass rand(gmp_randinit_default);

    for (int k = 0; k < Nt; ++k) {
        t[k] = lower_range_limit + rand.get_z_range(upper_range_limit - lower_range_limit);
        T[k] = mul(t[k]);
    }

    for (int k = 0; k < Nw; ++k) {
        w[k] = rand.get_z_range(upper_range_limit - lower_range_limit);
        W[k] = add(W0, mul(w[k]));
    }

    long long Hops = 0, Hops_old = 0;
    auto t0 = chrono::high_resolution_clock::now();
    vector memo(hop_modulo);

    for (int pw = 0; pw < hop_modulo; ++pw) {
        memo[pw] = powers_of_two[pw];
    }

    bool solved = false;
    while (!solved) {
        for (int k = 0; k < (Nt + Nw); ++k) {
            ++Hops;
            if (k < Nt) {
                mpz_class pw = T[k][0] % hop_modulo;
                solved = comparator(T[k], t[k], DP_rarity, T, t, W, w);
                if (solved) break;
                t[k] += memo[pw.get_ui()];
                T[k] = add(P[pw.get_ui()], T[k], modulo);
            } else {
                int n = k - Nw;
                mpz_class pw = W[n][0] % hop_modulo;
                solved = comparator(W[n], w[n], DP_rarity, W, w, T, t);
                if (solved) break;
                w[n] += memo[pw.get_ui()];
                W[n] = add(P[pw.get_ui()], W[n], modulo);
            }
        }

        auto t1 = chrono::high_resolution_clock::now();
        double elapsed_seconds = chrono::duration_cast>(t1 - t0).count();
        if (elapsed_seconds > 1.0) {
            double hops_per_second = static_cast(Hops - Hops_old) / elapsed_seconds;
            auto elapsed_time = chrono::duration_cast(t1 - starttime);
            int hours = chrono::duration_cast(elapsed_time).count();
            int minutes = chrono::duration_cast(elapsed_time % chrono::hours(1)).count();
            int seconds = (elapsed_time % chrono::minutes(1)).count();
            stringstream elapsed_time_str;
            elapsed_time_str << setfill('0') << setw(2) << hours << ":"
                             << setfill('0') << setw(2) << minutes << ":"
                             << setfill('0') << setw(2) << seconds;
            double p_2 = log2(Hops);
            cout << "\r[+] [Hops: 2^" << fixed << setprecision(2) << p_2 << " <-> " << fixed << setprecision(0)
                 << hops_per_second << " h/s] ["
                 << elapsed_time_str.str() << "]" << flush;
            t0 = t1;
            Hops_old = Hops;
        }
    }

    cout << "\r[+] Hops: " << Hops << endl;
    auto end = chrono::high_resolution_clock::now();
    double elapsed_seconds = chrono::duration_cast>(end - starttime).count();
    return "\r[+] Solution time: " + to_string(elapsed_seconds) + " sec";
}

int main() {
    int puzzle = 50;
    string compressed_public_key =
    "03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6";
    int kangaroo_power = 6;
    mpz_class lower_range_limit = mpz_class(1) << (puzzle - 1);
    mpz_class upper_range_limit = (mpz_class(1) << puzzle) - 1;

    mpz_class DP_rarity = mpz_class(1) << ((puzzle - 2 * kangaroo_power) / 2 - 2);
    int hop_modulo = ((puzzle - 1) / 2) + kangaroo_power;

    int Nt = 1 << kangaroo_power;
    int Nw = 1 << kangaroo_power;

    vector powers_of_two = generate_powers_of_two(hop_modulo);

    mpz_class X, Y;
    if (compressed_public_key.length() == 66) {
        X = mpz_class(compressed_public_key.substr(2), 16);
        Y = X2Y(X, stoi(compressed_public_key.substr(0, 2)) - 2);
    } else {
        cout << "[error] pubkey len(66/130) invalid!" << endl;
        return 1;
    }

    Point W0 = {X, Y};
    auto starttime = chrono::high_resolution_clock::now();
    time_t currentTime = time(nullptr);
    cout << "\r\033[01;33m[+]\033[32m KANGAROO: \033[01;33m" << ctime(¤tTime) << "\033[0m" << "\r";
    cout << "[+] [Puzzle]: " << puzzle << endl;
    cout << "[+] [Lower range limit]: " << lower_range_limit << endl;
    cout << "[+] [Upper range limit]: " << upper_range_limit << endl;
    cout << "[+] [EC Point Coordinate X]: " << X << endl;
    cout << "[+] [EC Point Coordinate Y]: " << Y << endl;
    mpz_class expected_hops = 2.2 * sqrt(mpz_class(1) << (puzzle - 1));
    double log_expected_hops = log2(expected_hops.get_d());
    cout << "[+] [Expected Hops: 2^" << fixed << setprecision(2)
            << log_expected_hops << " (" << expected_hops << ")]" << endl;

    vector P = {PG};
    P.reserve(256);
    for (int k = 0; k < 255; ++k) {
        P.push_back(add(P[k], P[k]));
    }

    unsigned long seed = static_cast(time(nullptr));
    gmp_randclass rand(gmp_randinit_default);
    rand.seed(seed);

    search(P, W0, DP_rarity, Nw, Nt, hop_modulo, upper_range_limit, lower_range_limit, powers_of_two);

    cout << "\r[+] Average time to solve: " <<
chrono::duration_cast(chrono::high_resolution_clock::now() - starttime).count() << " sec" << endl;

    return 0;
}

 
Code:
g++ -o kangaroo kangaroo.cpp -m64 -march=native -mtune=native -mssse3 -Wall -Wextra -ftree-vectorize -flto -O3 -funroll-loops -ffast-math -fopenmp -lgmp -lgmpxx

for MacOS
Code:
clang++ -std=c++11 -o kangaroo kangaroo.cpp -m64 -march=native -mtune=native -mssse3 -Wall -Wextra -ftree-vectorize -flto -O3 -funroll-loops -ffast-math -lgmp -lgmpxx

nomachine@iMac Desktop % system_profiler SPSoftwareDataType
Software:

    System Software Overview:

      System Version: macOS 13.6.1 (22G313)
      Kernel Version: Darwin 22.6.0
      Boot Volume: macOS
      Boot Mode: Normal
      User Name: nomachine (nomachine)
      Secure Virtual Memory: Enabled
      System Integrity Protection: Enabled
      Time since boot: 1 day, 14 hours, 11 minutes

nomachine@iMac Desktop % nano kangaroo.cpp
nomachine@iMac Desktop % clang++ -std=c++11 -o kangaroo kangaroo.cpp -m64 -march=native -mtune=native -mssse3 -Wall -Wextra -ftree-vectorize -flto -O3 -funroll-loops -ffast-math -lgmp -lgmpxx
nomachine@iMac Desktop % ./kangaroo
  • KANGAROO: Tue Jul 23 08:50:41 2024
  • [Puzzle]: 50
  • [Lower range limit]: 562949953421312
  • [Upper range limit]: 1125899906842623
  • [EC Point Coordinate X]: 110560903758971929709743161563183868968201998016819862389797221564458485814982
  • [EC Point Coordinate Y]: 106403041512432555215316396882584033752066537554388330180776939978150437217531
  • [Expected Hops: 2^25.50 (47453132)]
  • [Hops: 2^24.82 <-> 469162 h/s] [00:01:03]
  • PUZZLE SOLVED: Tue Jul 23 08:51:44 2024
  • Private key (dec): 611140496167764
  • Hops: 29560288
  • Average time to solve: 63 sec

But it takes 6000 years to solve Puzzle 130 --> [Expected Hops: 2^65.50 (52175271301331128848)]  Grin

Theoretically, with 12 cores, it can achieve 5 million hops per second.
The more cores you have, the better the result will be.
However, it's not worth using this for a puzzle above 70bit. A GPU must be used instead....
jr. member
Activity: 42
Merit: 0
I think that kangaroos that have been forked or modded from JLp's original kangaroo do not work. and I'm really asking about kangaroo running on 125 bit and above.

how do you know it doesn't work? in this last one there is no number 125 in the code. it's all 256...there is NO way to prove it doesn't work because it's impossible to solve puzzle 130.
newbie
Activity: 29
Merit: 0
Is there a new kangaroo program that actually works?
The original is limited to 125 bits. Other modded kangaroos are mostly not working.
Is there a kangaroo that works for sure that we can use for puzzle 130 and above?
Did you actually searched for one and nothing came up? You can use nomachine's Rust Kangaroo a few posts back, or write a Python script that does the job according to your requirements (e.g. "that actually works").
Too slow? Well, don't expect to find something that "actually works", is fast, and solves 130, sitting out there for you to snug up and inherit 13 BTC tomorrow.

My best (private) CUDA kangaroo is a few times faster than any JLP-based clone, and even so I still estimate the cost to break #130 around at least $100.000 with 6 months of processing on top-end Nvidia GPU renting, and this only to collect the DPs (e.g. ~2**65 group operations). It's by no means easy to write and optimize something like this, it requires a lot of time investigating resource limits and algorithmic bottlenecks to squeeze out close to 100% CUDA peak performance. If I break 130 I will publish the stuff on GitHub, until then I'm done with giving out clues about how I achieved these performance improvements. The only thing that can beat this would be a FPGA with lots of transistors.

I think you misunderstood the situation very much.  I think that kangaroos that have been forked or modded from JLp's original kangaroo do not work. and I'm really asking about kangaroo running on 125 bit and above.
Think of a program that you have been running for months, but you have actually run it in vain due to code errors. How would you feel in this situation?
For example, the keyhunt bsgs program is a program that definitely works.
For example, Jlp kangaroo original version 125 works, it definitely works.
What I want is a perfectly updated kangaroo with no bugs.



But if you want to know if one program really works, just choose a private key in 130bits range, get the public key and run the program against that.. you will know if it works or not.

No, you are wrong, the 130 bits here are not the puzzle itself. 130 bits here is the scan width.
I'm not talking about Puzzle 130, choosing two spaces, scanning and finding it.
In JPL's original kangaroo program, the scanning width is limited to 125 bits. But it can even find 256 bit wallets.


I know about 130bits, and you know what i mean.
But sorry, I'don't get what you asking for, so.
member
Activity: 165
Merit: 26
Who in their right mind would let some piece of software run for months without making 100% sure it provides correct results? This is an absolute joke, stating some known software in the previous posts, how many of them actually do correctness checks of their output? A single point of failure can ruin everything.

That is why test cycles exist, to make sure things work correctly, not blindly. That computations are correct.

All the outputs can be easily verified, simply check if some DP is valid using a known CPU routine. And that can be part of the running program, not part of a test suite.

If some point P is spit out by the GPU to be a DP then the check is really easy: compute base point + distance * G and assert that the point is indeed a valid DP. What more would you want as a guarantee?

All that matters is that there is a steady DP output. And I think people are way too deep into the paradigm of how the problem was handled by JLP + clones and forget the essentials, or think nothing new can be added or improved heavily. The 125-bit limitation is simply there because that is how he chose to output the DPs, stripped to the maximum problem size he wanted to solve. The calculations are of-course in full-bit mode, it can't be otherwise when dealing with the field arithmetic. But there are multiple other slowdowns, not just the 125-bit limit.

What is yours private tool benchmark?

585 million group ops/second using 35 W of power, currently. This is around 50x faster than on a single-core i9, and with way less TDP.

Maybe when I find some time I can publish a compiled CUDA kernel to solve for some smaller ranges, so skeptics can see I'm not BS-ing at all about this, while also preserving by IP.
Pages:
Jump to: