strange. It is correct.
Btw. I modified your script:
import collections
import hashlib
import random
import os
EllipticCurve_1 = collections.namedtuple('EllipticCurve', 'name p a b g n h')
curve = EllipticCurve_1(
'secp256k1',
# Field characteristic.
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f,
# Curve coefficients.
a=0,
b=7,
# Base point.
g=(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8),
# Subgroup order.
n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141,
# Subgroup cofactor.
h=1,
)
# Modular arithmetic ##########################################################
def inverse_mod(k, p):
"""Returns the inverse of k modulo p.
This function returns the only integer x such that (x * k) % p == 1.
k must be non-zero and p must be a prime.
"""
if k == 0:
raise ZeroDivisionError('division by zero')
if k < 0:
# k ** -1 = p - (-k) ** -1 (mod p)
return p - inverse_mod(-k, p)
# Extended Euclidean algorithm.
s, old_s = 0, 1
t, old_t = 1, 0
r, old_r = p, k
while r != 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
gcd, x, y = old_r, old_s, old_t
assert gcd == 1
assert (k * x) % p == 1
return x % p
# Functions that work on curve points #########################################
def is_on_curve(point):
"""Returns True if the given point lies on the elliptic curve."""
if point is None:
# None represents the point at infinity.
return True
x, y = point
return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0
def point_neg(point):
"""Returns -point."""
assert is_on_curve(point)
if point is None:
# -0 = 0
return None
x, y = point
result = (x, -y % curve.p)
assert is_on_curve(result)
return result
def point_add(point1, point2):
"""Returns the result of point1 + point2 according to the group law."""
assert is_on_curve(point1)
assert is_on_curve(point2)
if point1 is None:
# 0 + point2 = point2
return point2
if point2 is None:
# point1 + 0 = point1
return point1
x1, y1 = point1
x2, y2 = point2
if x1 == x2 and y1 != y2:
# point1 + (-point1) = 0
return None
if x1 == x2:
# This is the case point1 == point2.
m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
else:
# This is the case point1 != point2.
m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
x3 = m * m - x1 - x2
y3 = y1 + m * (x3 - x1)
result = (x3 % curve.p,
-y3 % curve.p)
assert is_on_curve(result)
return result
def scalar_mult(k, point):
"""Returns k * point computed using the double and point_add algorithm."""
assert is_on_curve(point)
if k % curve.n == 0 or point is None:
return None
if k < 0:
# k * point = -k * (-point)
return scalar_mult(-k, point_neg(point))
result = None
addend = point
while k:
if k & 1:
# Add.
result = point_add(result, addend)
# Double.
addend = point_add(addend, addend)
k >>= 1
assert is_on_curve(result)
return result
# Keypair generation and ECDSA ################################################
def make_keypair(private):
"""Generates a random private-public key pair."""
private_key = private#random.randrange(1, curve.n)
public_key = scalar_mult(private_key, curve.g)
return private_key, public_key
def hash_message(message):
"""Returns the truncated SHA512 hash of the message."""
message_hash = hashlib.sha512(message).digest()
e = int.from_bytes(message_hash, 'big')
# FIPS 180 says that when a hash needs to be truncated, the rightmost bits
# should be discarded.
z = e >> (e.bit_length() - curve.n.bit_length())
assert z.bit_length() <= curve.n.bit_length()
return z
def sign_message(private_key, message,nonce):
z = hash_message(message)
r = 0
s = 0
half_mod=57896044618658097711785492504343953926418782139537452191302581570759080747169
while not r or not s:
k = nonce# random.randrange(1, curve.n)
x, y = scalar_mult(k, curve.g)
r = x % curve.n
s = ((z + r * private_key) * inverse_mod(k, curve.n)) % curve.n
if s> half_mod:
s=curve.n -s
if s<0:
s=s%curve.n
return r, s,z
def verify_signature(public_key, message, signature):
z=message
r, s = signature
w = inverse_mod(s, curve.n)
u1 = (z * w) % curve.n
u2 = (r * w) % curve.n
x, y = point_add(scalar_mult(u1, curve.g),
scalar_mult(u2, public_key))
if (r % curve.n) == (x % curve.n):
return 'signature matches'
else:
return 'invalid signature'
def egcd(a, b):
"Euclidean greatest common divisor"
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
"Modular inverse"
# in Python 3.8 you can simply return pow(a,-1,m)
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def make_val(priv,nonce,msg,id):
private, public = make_keypair(priv)
r,s,z = sign_message(private, msg,nonce)
print()
print("tra"+str(id)+"=", id)
print("z"+str(id)+"=",z)
print("r"+str(id)+"=",r)
print("s"+str(id)+"=",s)
return private,public,nonce,r,s,z
import random
a=2**119 # min nonce range
c=2**120 # max nonce range
priv=random.randrange(a,c) # here put real privatekey for testing address
print("priv=",priv)
for i in range(1,22):
priv=priv
nonce=random.randrange(a,c)
war= str(os.urandom(25)) + str(nonce) # message for hash you can change
msg= bytes(war, 'utf-8')
make_val(priv,nonce,msg,i)