It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
import collections
import hashlib
import random
import os
EllipticCurve_1 = collections.namedtuple('EllipticCurve', 'name p a b g n h')
curve = EllipticCurve_1(
'secp256k1',
# Field characteristic.
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f,
# Curve coefficients.
a=0,
b=7,
# Base point.
g=(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8),
# Subgroup order.
n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141,
# Subgroup cofactor.
h=1,
)
# Modular arithmetic ##########################################################
def inverse_mod(k, p):
"""Returns the inverse of k modulo p.
This function returns the only integer x such that (x * k) % p == 1.
k must be non-zero and p must be a prime.
"""
if k == 0:
raise ZeroDivisionError('division by zero')
if k < 0:
# k ** -1 = p - (-k) ** -1 (mod p)
return p - inverse_mod(-k, p)
# Extended Euclidean algorithm.
s, old_s = 0, 1
t, old_t = 1, 0
r, old_r = p, k
while r != 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
gcd, x, y = old_r, old_s, old_t
assert gcd == 1
assert (k * x) % p == 1
return x % p
# Functions that work on curve points #########################################
def is_on_curve(point):
"""Returns True if the given point lies on the elliptic curve."""
if point is None:
# None represents the point at infinity.
return True
x, y = point
return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0
def point_neg(point):
"""Returns -point."""
assert is_on_curve(point)
if point is None:
# -0 = 0
return None
x, y = point
result = (x, -y % curve.p)
assert is_on_curve(result)
return result
def point_add(point1, point2):
"""Returns the result of point1 + point2 according to the group law."""
assert is_on_curve(point1)
assert is_on_curve(point2)
if point1 is None:
# 0 + point2 = point2
return point2
if point2 is None:
# point1 + 0 = point1
return point1
x1, y1 = point1
x2, y2 = point2
if x1 == x2 and y1 != y2:
# point1 + (-point1) = 0
return None
if x1 == x2:
# This is the case point1 == point2.
m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
else:
# This is the case point1 != point2.
m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
x3 = m * m - x1 - x2
y3 = y1 + m * (x3 - x1)
result = (x3 % curve.p,
-y3 % curve.p)
assert is_on_curve(result)
return result
def scalar_mult(k, point):
"""Returns k * point computed using the double and point_add algorithm."""
assert is_on_curve(point)
if k % curve.n == 0 or point is None:
return None
if k < 0:
# k * point = -k * (-point)
return scalar_mult(-k, point_neg(point))
result = None
addend = point
while k:
if k & 1:
# Add.
result = point_add(result, addend)
# Double.
addend = point_add(addend, addend)
k >>= 1
assert is_on_curve(result)
return result
# Keypair generation and ECDSA ################################################
def make_keypair(private):
"""Generates a random private-public key pair."""
private_key = private#random.randrange(1, curve.n)
public_key = scalar_mult(private_key, curve.g)
return private_key, public_key
def hash_message(message):
"""Returns the truncated SHA512 hash of the message."""
message_hash = hashlib.sha512(message).digest()
e = int.from_bytes(message_hash, 'big')
# FIPS 180 says that when a hash needs to be truncated, the rightmost bits
# should be discarded.
z = e >> (e.bit_length() - curve.n.bit_length())
assert z.bit_length() <= curve.n.bit_length()
return z
def sign_message(private_key, message,nonce):
z = hash_message(message)
r = 0
s = 0
half_mod=57896044618658097711785492504343953926418782139537452191302581570759080747169
while not r or not s:
k = nonce# random.randrange(1, curve.n)
x, y = scalar_mult(k, curve.g)
r = x % curve.n
s = ((z + r * private_key) * inverse_mod(k, curve.n)) % curve.n
if s> half_mod:
s=curve.n -s
if s<0:
s=s%curve.n
return r, s,z
def verify_signature(public_key, message, signature):
z=message
r, s = signature
w = inverse_mod(s, curve.n)
u1 = (z * w) % curve.n
u2 = (r * w) % curve.n
x, y = point_add(scalar_mult(u1, curve.g),
scalar_mult(u2, public_key))
if (r % curve.n) == (x % curve.n):
return 'signature matches'
else:
return 'invalid signature'
def egcd(a, b):
"Euclidean greatest common divisor"
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
"Modular inverse"
# in Python 3.8 you can simply return pow(a,-1,m)
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def make_val(priv,nonce,msg,id):
private, public = make_keypair(priv)
r,s,z = sign_message(private, msg,nonce)
print()
print("tra"+str(id)+"=", id)
print("z"+str(id)+"=",z)
print("r"+str(id)+"=",r)
print("s"+str(id)+"=",s)
return private,public,nonce,r,s,z
import random
a=2**119 # min nonce range
c=2**120 # max nonce range
priv=random.randrange(a,c) # here put real privatekey for testing address
print("priv=",priv)
for i in range(1,22):
priv=priv
nonce=random.randrange(a,c)
war= str(os.urandom(25)) + str(nonce) # message for hash you can change
msg= bytes(war, 'utf-8')
make_val(priv,nonce,msg,i)