Not you,
tvbcof, but some of those dense jokers up there, can't even read. They love to accept medical reports that fit the way they stupidly think that the world should be, but they ignore or down-play others.
Listed right in one of links at the site - it isn't anything like magnets sticking to the arm (although could be in some circumstances). It is the actual use of magnetic materials to better deliver vaccines:
Superparamagnetic nanoparticle delivery of DNA vaccine
Fatin Nawwab Al-Deen 1 , Cordelia Selomulya, Charles Ma, Ross L Coppel
Affiliations
PMID: 24715289 DOI: 10.1007/978-1-4939-0410-5_12
Abstract
The efficiency of delivery of DNA vaccines is often relatively low compared to protein vaccines. The use of superparamagnetic iron oxide nanoparticles (SPIONs) to deliver genes via magnetofection shows promise in improving the efficiency of gene delivery both in vitro and in vivo. In particular, the duration for gene transfection especially for in vitro application can be significantly reduced by magnetofection compared to the time required to achieve high gene transfection with standard protocols. SPIONs that have been rendered stable in physiological conditions can be used as both therapeutic and diagnostic agents due to their unique magnetic characteristics. Valuable features of iron oxide nanoparticles in bioapplications include a tight control over their size distribution, magnetic properties of these particles, and the ability to carry particular biomolecules to specific targets. The internalization and half-life of the particles within the body depend upon the method of synthesis. Numerous synthesis methods have been used to produce magnetic nanoparticles for bioapplications with different sizes and surface charges. The most common method for synthesizing nanometer-sized magnetite Fe3O4 particles in solution is by chemical coprecipitation of iron salts. The coprecipitation method is an effective technique for preparing a stable aqueous dispersions of iron oxide nanoparticles. We describe the production of Fe3O4-based SPIONs with high magnetization values (70 emu/g) under 15 kOe of the applied magnetic field at room temperature, with 0.01 emu/g remanence via a coprecipitation method in the presence of trisodium citrate as a stabilizer. Naked SPIONs often lack sufficient stability, hydrophilicity, and the capacity to be functionalized. In order to overcome these limitations, polycationic polymer was anchored on the surface of freshly prepared SPIONs by a direct electrostatic attraction between the negatively charged SPIONs (due to the presence of carboxylic groups) and the positively charged polymer. Polyethylenimine was chosen to modify the surface of SPIONs to assist the delivery of plasmid DNA into mammalian cells due to the polymer's extensive buffering capacity through the "proton sponge" effect.
Similar articles
Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine.
Al-Deen FN, Ho J, Selomulya C, Ma C, Coppel R. Langmuir. 2011 Apr 5;27(7):3703-12. doi: 10.1021/la104479c. Epub 2011 Mar 1. PMID: 21361304
Polyethyleneimine-associated polycaprolactone-Superparamagnetic iron oxide nanoparticles as a gene delivery vector.
Kim MC, Lin MM, Sohn Y, Kim JJ, Kang BS, Kim DK. J Biomed Mater Res B Appl Biomater. 2017 Jan;105(1):145-154. doi: 10.1002/jbm.b.33519. Epub 2015 Oct 6. PMID: 26443109
Magnetofection: a reproducible method for gene delivery to melanoma cells.
Prosen L, Prijic S, Music B, Lavrencak J, Cemazar M, Sersa G. Biomed Res Int. 2013;2013:209452. doi: 10.1155/2013/209452. Epub 2013 Jun 3. PMID: 23862136 Free PMC article.
Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.
Kandasamy G, Maity D. Int J Pharm. 2015 Dec 30;496(2):191-218. doi: 10.1016/j.ijpharm.2015.10.058. Epub 2015 Oct 28. PMID: 26520409 Review.
Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers.
Wahajuddin, Arora S. Int J Nanomedicine. 2012;7:3445-71. doi: 10.2147/IJN.S30320. Epub 2012 Jul 6. PMID: 22848170 Free PMC article. Review.
...