Just to poke at some of David Rabahy's trivia questions:
Is a hash of *all* 0s possible?
Current block with the most number of 0's (anywhere, not just leading) in the hash:
height hash note
326799 000000000000000003fec4b5cd08090ab80010345952ab08048e088a00c2b09b 29/64* zeros
(* see earlier discussion on whether all
zeros is even theoretically possible )
One wonders when a trailing triple 0 appears.
http://btc.blockr.io/block/info/9521 (actually four trailing zeros - other blocks with four trailing: 83373, 293374, 332802)
http://btc.blockr.io/block/info/10169 (actual triple)
( there's none with 5 trailing zeros )
Which hash has the most trailing 0s?
Tie between the above four listed
Why not a leading sequence of 3.1415926535...?
Can't have it leading, of course, but here's one with 314159 in it, at least (only one, thus also no longer sequence yet):
height hash
234923 0000000000000171ae44bb6c1700314159dc61480b54edf71e5281ee7c6147a7
Here's some other fun ones
height hash
132928 00000000000011eec4defc0ffee303401e460d2b8406474692d0ff141b9cbbf4
170852 00000000000002b58bf498d718db69dfc25cb318036949d3dad6bc0ffee28744
57598 00000000051565707437c6626a8f88c92fe9decaf4c19f0c1b77558d3bf03aac
84177 0000000000161062e2762c06457decaf0298724f662468465c84ff595abde159
137577 00000000000001e06f54fa79354e337678f840a7bc75ddecaf8fd9d089f9eed2
148781 00000000000004c2d5703896fb122b28dc7347f3023b0decaf28e3aacffffcb1
189433 00000000000005decafc4b33943d70fc596dd080f9a6737d94e9b4c88d890bf7
210406 00000000000002de9c1decaf9cb207af4452e8f00baeadc7729618ff3f4ce9e9
272206 00000000000000048d9564d82b8ac4d20decafb08e831ea7c8ddef7b9b5fac90
279275 00000000000000004ada6d6cead5c00a860494582252371c9c294decaf3b422a
303682 00000000000000005a9d3af33c5b4b52cc6b53c8decafc6dfb4259b06681dfaa
317717 000000000000000002e4c9274d83196ef16b0130972e7cc6ddecaf735cc67699
344465 000000000000000006c7cdecaf9dbe50a5fc693e7a555550d57aa1706f3f964b
344545 00000000000000000bbcc57dd86a829d674506e0cb151a09e91a9decafbf292e
No 'deadbeef'... yet.