Winning strategy:
Play five throws per game only, starting at the beginning of a round and then stop until a 10 is rolled. Repeat.
Assumptions:A. The number of players participating in the game is relatively stable and big enough so that your participation or your non participation does not make a significant difference (say number of players N=100,000)
B. Based on the first assumption, the reward is 100/N and your cost per round is 10/N, therefore the reward is 10 times your cost per round.
In the link below, you will find an spreadsheet detailing the results that a player would expect to get if they would stay in for a number of throws (1 to 10 throws) and then leave and the results they would get if they would stay and play throughout the game without leaving for any throw. There are therefore 11 sheets (for 1 throw, for 2 throws, ..., for 10 throws, for all throws) which are 11 different strategies.
https://docs.google.com/spreadsheet/ccc?key=0Ar02Q-JTJDS8dG5wblRYUTVzeUVhaUMtQjlwUXJwWlE&hl=elExplanation for the sheet :1. Column 1 is the number of throws until a 10 is rolled, distinct possibilities. I have put numbers up to 50 throws, the reason will become clear in column 3
2. Column 2 is the probabiltity of this number of throws happening. The probability of rolling a 10 after 1 throw is 1/10. The probability of rolling a 10 after exactly 2 throws is (9/10)*(1/10) that is, anything else but a 10 is rolled in the first throw and a 10 is rolled in the second. The probability of rolling a 10 after exactly 3 throws is ((9/10)^2)*(1/10) and so on
3. Column 3 is the accumulated probability of rolling a 10 with UP TO the specified number of throws. So, the accumulated probability of throwing a 10 after at most 2 throws is (1/10)+((9/10)*(1/10)) which is the probabilty of the first throw rolling a 10 and the second throw rolling a 10, as calculated in column 2. As seen on the tables, the probability of rolling a 10 after at most 50 throws is about 99.5%, so this is why I stopped it there and did not calculate further results for a greater number of throws
4. Column 4 is the cost to the player if they play only for the number of throws which is referred in the Sheet name. So for the "1 throw" sheet, the player only plays during one throw. Notice for example that for the "4 throws" sheet, the cost increases by 1 unit up to the 4th throw and then remains the same. The cost of one throw is calculated as 1 unit, because, given the assumption B above, the reward can be very easily calculated as 10 units, regardless of the actual amount and the number of players present at the game.
5. Again according to assumption B above, the reward is calculated as follows: (Total reward of 10 units for each player) divided by (number of throws until a 10 is rolled) and then multiplied by the number of throws in which the player has participated (which is exactly his cost for these number of throws in cost units).
6. Finally in column 6 (or more specifically in the Sum of column 6 which is found above the table in each sheet) the truth is revealed: Multiplying the probability of a number of throws until a 10 is rolled by the difference between Reward and Cost for this number of throws and this particular strategy gives the expected value in pure profit of each outcome. In short (Reward-Cost)*Probability. Obviously for a round which takes 10 throws to roll a 10 the expected value is 0 which means everybody gets exactly their money back. For a round greater than 10 throws the expected value is negative, and for a round with less than 10 throws the expected value is positive.
Now look at the number at the top right of each sheet which sums up all the expected values of the possible outcomes (1 to 50 throws to roll a 10). For the player participating in all throws the expected value converges to 0 after a long number of rounds (if I had calculated the results up to 200 throws it would be more obvious).
The best number is given by the strategy of playing 5 throws and then leaving. In this case the expected value for a large number of rounds is 2.64 which means that for every unit of betting currency you get 2.64 units as a profit.
To answer the extra credit question, with typical calculations:
A player with no strategy that just stays in for all throws and all rounds until he gets bored, can expect to receive 1 unit for every 1 unit that they play with. 0% return
A player playing the optimal strategy can expect to receive 3.64 units for every 1 unit that they play with. (3.64-1)/1=2.64 = 264% return. In other words, he gets an improvement of 264% over having no strategy.
Really enjoyed the challenge and the analysis, which proved the basic pool-hopping premise also to myself. I suppose that taking this analysis to the Bitcoin mining conditions, a similar result can be made plain, with much larger numbers of course.
Feel free to use the spreadsheet if you find it useful. And thanks for the very informative posts you've done so far.
I just hope I win this competition, as I have little luck mining lately
.