256 bits cannot be solved with anything. It does not matter what programming language is used.
What if it only used 4 bits?
It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
import time
import os
import sys
import random
import secp256k1 as ice
import gmpy2
if os.name == 'nt':
os.system('cls')
else:
os.system('clear')
t = time.ctime()
sys.stdout.write(f"\033[?25l")
sys.stdout.write(f"\033[01;33m[+] Kangaroo: {t}\n")
sys.stdout.flush()
modulo = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
order = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141)
Gx = gmpy2.mpz(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
Gy = gmpy2.mpz(0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
# Define Point class
class Point:
def __init__(self, x=0, y=0):
self.x = gmpy2.mpz(x)
self.y = gmpy2.mpz(y)
PG = Point(Gx, Gy)
Z = Point(0, 0) # zero-point, infinite in real x, y - plane
def add(P, Q, p=modulo):
if P == Z:
return Q
elif Q == Z:
return P
elif P.x == Q.x and (P.y != Q.y or P.y == 0):
return Z
elif P.x == Q.x:
m = (3 * P.x * P.x) * gmpy2.invert(2 * P.y, p) % p
else:
m = (Q.y - P.y) * gmpy2.invert(Q.x - P.x, p) % p
x = (m * m - P.x - Q.x) % p
y = (m * (P.x - x) - P.y) % p
return Point(x, y)
def mul2(P, p=modulo):
if P == Z:
return Z
m = gmpy2.f_mod(3 * P.x * P.x * gmpy2.invert(2 * P.y, p), p)
x = gmpy2.f_mod(m * m - 2 * P.x, p)
y = gmpy2.f_mod(m * (P.x - x) - P.y, p)
return Point(x, y)
def mulk(k, P=PG, p=modulo):
if k == 0:
return Z
elif k == 1:
return P
elif k % 2 == 0:
return mulk(k // 2, mul2(P, p), p)
else:
return add(P, mulk((k - 1) // 2, mul2(P, p), p), p)
def X2Y(X, y_parity, p=modulo):
X_cubed = gmpy2.powmod(X, 3, p)
X_squared = gmpy2.powmod(X, 2, p)
tmp = gmpy2.f_mod(X_cubed + 7, p)
Y = gmpy2.powmod(tmp, gmpy2.f_div(gmpy2.add(p, 1), 4), p)
if y_parity == 1:
Y = gmpy2.f_mod(-Y, p)
return Y
def comparator(A, Ak, B, Bk):
result = set(A).intersection(set(B))
if result:
sol_kt = A.index(next(iter(result)))
sol_kw = B.index(next(iter(result)))
HEX = "%064x" % abs(Ak[sol_kt] - Bk[sol_kw])
dec = int(HEX, 16)
wifc = ice.btc_pvk_to_wif(HEX)
wifu = ice.btc_pvk_to_wif(HEX, False)
caddr = ice.privatekey_to_address(0, True, dec)
uaddr = ice.privatekey_to_address(0, False, dec)
total_time = time.time() - starttime
print('\n[+] total time: %.2f sec' % (total_time))
t = time.ctime()
print(f"\033[32m[+] PUZZLE SOLVED: {t} \033[0m")
print(f"\033[32m[+] Private key (wif) Compressed : {wifc} \033[0m")
with open("KEYFOUNDKEYFOUND.txt", "a") as file:
file.write("\n\nSOLVED " + t)
file.write(f"\nTotal Time: {total_time:.2f} sec")
file.write(f"\nRandom seed: {seed}")
file.write("\nPrivate Key (decimal): " + str(dec))
file.write("\nPrivate Key (hex): " + HEX)
file.write("\nPrivate key (wif) Compressed : " + wifc)
file.write("\nPrivate key (wif) Uncompressed: " + wifu)
file.write("\nBitcoin address Compressed: " + caddr)
file.write("\nBitcoin address Uncompressed: " + uaddr)
file.write(
"\n-------------------------------------------------------------------------------------------------------------------------------------------\n"
)
file.close()
return True
else:
return False
def check(P, Pindex, DP_rarity, A, Ak, B, Bk):
if P.x % DP_rarity == 0:
A.append(gmpy2.mpz(P.x))
Ak.append(gmpy2.mpz(Pindex))
return comparator(A, Ak, B, Bk)
else:
return False
# Generate a list of powers of two for faster access
def generate_powers_of_two(hop_modulo):
return [gmpy2.mpz(1 << pw) for pw in range(hop_modulo)]
def search(P, W0, DP_rarity, Nw, Nt, hop_modulo, upper_range_limit, lower_range_limit, powers_of_two):
solved = False
t = [gmpy2.mpz(lower_range_limit + gmpy2.mpz(random.randint(0, upper_range_limit - lower_range_limit))) for _ in range(Nt)]
T = [mulk(ti) for ti in t]
dt = [gmpy2.mpz(0) for _ in range(Nt)]
w = [gmpy2.mpz(random.randint(0, upper_range_limit - lower_range_limit)) for _ in range(Nw)]
W = [add(W0, mulk(wk)) for wk in w]
dw = [gmpy2.mpz(0) for _ in range(Nw)]
print('[+] tame and wild herds are prepared')
Hops, Hops_old = 0, 0
t0 = time.time()
while not solved:
for k in range(Nt):
Hops += 1
pw = T[k].x % hop_modulo
dt[k] = powers_of_two[pw]
solved = check(T[k], t[k], DP_rarity, T, t, W, w)
if solved: break
t[k] += dt[k]
T[k] = add(P[int(pw)], T[k])
if solved: break
for k in range(Nw):
Hops += 1
pw = W[k].x % hop_modulo
dw[k] = powers_of_two[pw]
solved = check(W[k], w[k], DP_rarity, W, w, T, t)
if solved: break
w[k] += dw[k]
W[k] = add(P[int(pw)], W[k])
if solved: break
t1 = time.time()
if (t1 - t0) > 5:
print('\r[+] Hops: %.0f h/s' % ((Hops - Hops_old) / (t1 - t0)), end='', flush=True)
t0 = t1
Hops_old = Hops
print('[+] Hops:', Hops)
return 'sol. time: %.2f sec' % (time.time() - starttime)
puzzles = [\
('0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69',32),\
('03a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4',40),\
('025e466e97ed0e7910d3d90ceb0332df48ddf67d456b9e7303b50a3d89de357336',44),\
('026ecabd2d22fdb737be21975ce9a694e108eb94f3649c586cc7461c8abf5da71a',45),\
('03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6',50),\
('0230210c23b1a047bc9bdbb13448e67deddc108946de6de639bcc75d47c0216b1b',65),\
('03633cbe3ec02b9401c5effa144c5b4d22f87940259634858fc7e59b1c09937852',130)]
puzzle = 45
for elem in puzzles:
s, n = elem
if puzzle == n: break
kangaroo_power = puzzle // 10
DP_rarity = 1 << int(((puzzle - 2*kangaroo_power)/2 - 2))
hop_modulo = ((puzzle - 1) // 2) + kangaroo_power
Nt = Nw = 2**kangaroo_power
X = gmpy2.mpz(s[2:66], 16)
Y = X2Y(X, gmpy2.mpz(s[:2]) - 2)
W0 = Point(X,Y)
starttime = oldtime = time.time()
search_range = 2**(puzzle-1)
lower_range_limit = 2 ** (puzzle - 1)
upper_range_limit = (2 ** puzzle) - 1
print(f"[+] [Puzzle]: {puzzle}")
print(f"[+] [Lower range limit]: {lower_range_limit}")
print(f"[+] [Upper range limit]: {upper_range_limit}")
# Precompute powers of two for faster access
powers_of_two = generate_powers_of_two(hop_modulo)
# Initialize variables
T, t, dt = [], [], []
W, w, dw = [], [], []
#Random seed Config
dd = list(str(random.randint(1,2**256)))
random.shuffle(dd); random.shuffle(dd)
seed = int(''.join(dd))
print(f"[+] [Random seed]: {seed}")
random.seed(seed)
Hops = 0
N_tests = 1
P = [PG]
for k in range(255): P.append(mul2(P[k]))
print('[+] P-table prepared')
for k in range(N_tests):
solved = False
search(P, W0, DP_rarity, Nw, Nt, hop_modulo, upper_range_limit, lower_range_limit, powers_of_two)
print('[+] Average time to solve: %.2f sec' % ((time.time()-starttime)/N_tests))
02b5c3acff8a44ff0948bf094d949d1d39734318a752e6215169a835f72314a79a
02b5c3acff8a44ff0948bf094d949d1d39734318a752e6215169a835f72314a79a
02b5c3acff8a44ff0948bf094d949d1d39734318a752e6215169a835f72314a79a
import random
import hashlib
from sage.crypto.util import ascii_to_bin
from sage.arith.misc import random_prime
from sage.crypto.util import ascii_to_bin
from sage.crypto.util import bin_to_ascii
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
E = EllipticCurve(GF(p), [0, 7])
r = 0x
s = 0x
z = 0x
G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)) # Base point
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def make_public(r, s, z):
R = E.lift_x(Integer(r))
w = int(modinv(s, n))
u1 = int((z * w) % n)
u2 = int((r * w) % n)
u_n2 = modinv(u2, n) % n
u_n1 = - u1 * modinv(u2, n) % n
pub = u_n1 * G + u_n2 * R
pub2 = u_n1 * G + u_n2 * (-R)
return pub, pub2
def calc_u(r, s, z):
mod_s = modinv(s, n) % n
u1 = mod_s * z % n
u2 = mod_s * r % n
print("u1 =", hex(u1), "n-u1 =", hex(n - u1))
print("u2 =", hex(u2), "n-u2 =", hex(n - u2))
return u1, u2
u1, u2 = calc_u(r, s, z)
def verify(r, s, z, pub, k):
w = int(modinv(s, n))
u1 = int((z * w) % n)
u2 = int((r * w) % n)
D = u1 * G + u2 * pub
x, y = D.xy()
x = int(x)
if (r % n) == (x % n):
print(f"Signature k matches: {hex(k)} ")
return True
else:
print(f"Signature k is invalid {hex(k)} ")
return False
# Calculate the modular inverse of s (w = s^(-1) mod n)
g, x, y = egcd(s, n)
w = x % n
def find_k(r, s, z, pub):
# Step 1: Calculate w = s^(-1) mod n
w = int(modinv(s, n))
# Step 2: Calculate u1 and u2
u1 = int((z * w) % n)
u2 = int((r * w) % n)
# Step 3: Recover the elliptic curve point R
R = u1 * G + u2 * pub
# Extract x-coordinate from R
x_R, _ = R.xy()
x_R = int(x_R)
# Calculate k
k = (x_R - z) * modinv(w, n) % n
print("k:",k)
return k
# Call the function to find k
k = find_k(r, s, z, pub1)
print("Found k:", hex(k))
pub1, pub2 = make_public(r, s, z)
print("public_key1", pub1)
print("pub1_x=", hex(pub1.xy()[0]))
print("public_key2", pub2)
print("pub2_x=", hex(pub2.xy()[0]))
print("Step 1: Calculate g, x, y using extended Euclidean algorithm")
print("g:", hex(g))
print("x:", hex(x))
print("y:", hex(y))
print("Step 2: Calculate w (modular inverse of s)")
print("Calculated w:", hex(w))
print()
def find_k_bruteforce(r, s, z, pub):
i = 1
while True:
k_candidate = (r * i + z) * modinv(s, n) % n
# Verify the signature using the candidate k
if verify(r, s, z, pub, k_candidate):
print("Found k:", hex(k_candidate))
break
else:
print(f"Attempt {i}: Incorrect k value {hex(k_candidate)}")
i += 1 # Increment the attempt counter
# Call the function to find k using brute force
find_k_bruteforce(r, s, z, pub1)
def find_private_key(r, s, z, k, pub):
# Calculate w = s^(-1) mod n
w = int(modinv(s, n))
# Calculate u1 and u2
u1 = int((z * w) % n)
u2 = int((r * w) % n)
# Recover the elliptic curve point R
R = u1 * G + u2 * pub
# Extract x-coordinate from R
x_R, _ = R.xy()
x_R = int(x_R)
# Calculate private key d
d = (k * x_R - z) * modinv(r, n) % n
return d
def find_private_key_bruteforce(r, s, z, k, pub, i):
k_candidate = (r * i + z) * modinv(s, n) % n
# Calculate private key d
d = (k_candidate * r - z) * modinv(k_candidate, n) % n
return d
# Call the function to find k using the formula-based approach
k_formula = find_k(r, s, z, pub1)
d_formula = find_private_key(r, s, z, k_formula, pub1)
print("Private key (formula-based):", hex(d_formula))
# Call the function to find k using brute force
k_bruteforce = find_k_bruteforce(r, s, z, pub1)
i_bruteforce = 1
d_bruteforce = find_private_key_bruteforce(r, s, z, k_bruteforce, pub1, i_bruteforce)
print(f"Private key (brute-force attempt {i_bruteforce}):", hex(d_bruteforce))
guessed_k_values = []
i = 1
while True:
k = (r * i + z) * modinv(s, n) % n
# Calculate R using the guessed k value
guessed_R = k * G
guessed_k_values.append((i, k, guessed_R))
# Check if the guessed R value matches the original r value
if guessed_R.xy()[0] == r:
print(f"The correct k value ({k}) for iteration {i} is found.")
# Calculate the private key using the correct k value
d_bruteforce = find_private_key_bruteforce(r, s, z, k, pub1, i)
print(f"Corresponding private key: {hex(d_bruteforce)}")
break # Exit the loop if the correct k is found
i += 1 # Increment the iteration counter
02b5c3acff8a44ff0948bf094d949d1d39734318a752e6215169a835f72314a79a