It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
Pr = 115792089237316195423570985008687907853269984665640564039457584007908834671663
E = EllipticCurve (GF (P), [0,7])
N = E.order ()
G = E(55066263022277343669578718895168534326250603453777594175500187360389116729240,32670510020758816978083085130507043184471273380659243275938904335757337482424) # on E
T = E(26864879445837655118481716049217967286489564259939711339119540571911158650839,29571359081268663540055655726653840143920402820693420787986280659961264797165) # on E
numInt = 5646546546563131314723897429834729834798237429837498237498237489273948728934798237489723489723984729837489237498237498237498237498273493729847
numMod = numInt %N
numInv = pow(numMod ,N-2,N) # detail -> https://stackoverflow.com/questions/59234775/how-to-calculate-2-to-the-power-of-a-large-number-modulo-another-large-number
numMod * G
numMod * T
(T-G) * numInv
print (5*T)
print (2*G)
print (numMod * G)
print (numMod * (-G))
print (numMod * T)
print ((numMod-3) * (T-G))
import gmpy2
modulo = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
order = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy = 0X483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
PG = Point(Gx,Gy)
Z = Point(0,0) # zero-point, infinite in real x,y - plane
# return (g, x, y) a*x + b*y = gcd(x, y)
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, x, y = egcd(b % a, a)
return (g, y - (b // a) * x, x)
def modinv(m, n = modulo):
while m < 0:
m += n
g, x, _ = egcd(m, n)
if g == 1:
return x % n
else: print (' no inverse exist')
def mul2(Pmul2, p = modulo):
R = Point(0,0)
#c = 3*Pmul2.x*Pmul2.x*modinv(2*Pmul2.y, p) % p
c = 3*Pmul2.x*Pmul2.x*gmpy2.invert(2*Pmul2.y, p) % p
R.x = (c*c-2*Pmul2.x) % p
R.y = (c*(Pmul2.x - R.x)-Pmul2.y) % p
return R
def add(Padd, Q, p = modulo):
if Padd.x == Padd.y == 0: return Q
if Q.x == Q.y == 0: return Padd
if Padd == Q: return mul2(Q)
R = Point()
dx = (Q.x - Padd.x) % p
dy = (Q.y - Padd.y) % p
c = dy * gmpy2.invert(dx, p) % p
#c = dy * modinv(dx, p) % p
R.x = (c*c - Padd.x - Q.x) % p
R.y = (c*(Padd.x - R.x) - Padd.y) % p
return R # 6 sub, 3 mul, 1 inv
def mulk(k, Pmulk, p = modulo):
if k == 0: return Z
if k == 1: return Pmulk
if (k % 2 == 0): return mulk(k//2, mul2(Pmulk, p), p)
return add(Pmulk, mulk((k-1)//2, mul2(Pmulk, p), p), p)