[6]dacb99a98b80d48adbd8b94c9a7905996503d2ab
[5]32f51406f6d584a5b62365de425d01f308fc56a33682492284cc7577ceeb8868
Let's pretend there was funds in the address in your example 1ArWUwF2WfPnDubReohn2vtPodfPpG5Evq , still they won't be able to move those funds since they don't know the private key of that address, the steps you provided is not enough to do that.
If you hash the public key of the address above, you will get [5], if you hash [6] you'd still get [5]. And I don't know how we could spend the funds if it was loaded, I'm not trying to find people's private keys, this is about hash collisions.
"avalanche effect"?
Not applicable to SHA-256, I just exercised the method to prove avalanche effect is an illusion, Satoshi inadvertently created an algorithm that can be used to draw a map of all SHA-256 collisions, it's like a knife cutting it's own handle.
This is as far as I am willing to go on this matter, I have decided to stop working on it and will not publish further findings, telling people 5x5=25 makes it easy, but showing them "25" makes it hard for them to figure out the proper equation. I need to confuse the outsiders, while the insiders know what 5-5-2-5 means.
i haven't had time to go through all the replies here. But did anyone successfully find the collision?
No, we are just talking about how to easily find them, one way is brute force, other way is beyond my comprehension, you should read "vjudeu's posts to know what I mean.😉
Even if we find a collision, we must not publicly disclose it to the world, instead we should convince the world that the algorithm
"is no longer secure".If anyone is interested to further discussing the issue, come and visit my special penthouse at
digaran's tower.