Hello! @NotATether Great to have you here in this thread... you are very welcome. I have some interesting news from the other thread. And I also have a method that almost solved this one. And more other interesting things. I will send the link of this tool that you asked for.
The other day we will talk in private
I am newbie
how to run code with sage and python
can you provide sage and python code
off topic post below
r1: 99935505760319748698811422354322418311203851828465328908708024011195996180829
s1: 14810718830809274529170993651437030466460552688297005873719201854608653306524
e1: 84635513758865831094131084311208775267495704821994249663954751780286420288259
r2: 115035229747891778996889965749694763606205313739267493174821202115705061416296
s2: 56412229366601912356674994073152925730313351483910294670205660420888695151902
e2: 711922952377524543467576566144169816136170490747613227449590530659320692002
s1-1: 49589235156255394867995584868850296899036724345858375131186053009052960413985
s2-1: 75860710922369590624024015031955497020040967297713867268831531011990818769063
s2-1e2: 24319896032458654235859288439366790171987421552616806414321622974227628294346
s1-1e1: 33373073398809441106621025265904429856170478887328914010434069704980389675914
s2-1r2: 102756882304321902845902604711749179835279156262963247575454606290129811589248
s1-1r1: 109263722787838616791900575947640359553086907200677310074463510255775504782173
1 - s2-1e2 + s1-1e1: 9053177366350786870761736826537639684183057334712107596112446730752761381569
s2-1r2 - s1-1r1: 109285248753799481477573013772796728135029813341360841883596259175872468301412
(s2-1r2 - s1-1r1)-1: 88597492899895469960154264896435952736065060080234931949365434864574123803941
dU: 74071287274168731384314914382498140270634658281328726941106265589917762050271
thanks in advance...
Hello! @NotATether Great to have you here in this thread... you are very welcome. I have some interesting news from the other thread. And I also have a method that almost solved this one. And more other interesting things. I will send the link of this tool that you asked for.
The other day we will talk in private
I am newbie
how to run code with sage and python
can you provide sage and python code
off topic post below
r1: 99935505760319748698811422354322418311203851828465328908708024011195996180829
s1: 14810718830809274529170993651437030466460552688297005873719201854608653306524
e1: 84635513758865831094131084311208775267495704821994249663954751780286420288259
r2: 115035229747891778996889965749694763606205313739267493174821202115705061416296
s2: 56412229366601912356674994073152925730313351483910294670205660420888695151902
e2: 711922952377524543467576566144169816136170490747613227449590530659320692002
s1-1: 49589235156255394867995584868850296899036724345858375131186053009052960413985
s2-1: 75860710922369590624024015031955497020040967297713867268831531011990818769063
s2-1e2: 24319896032458654235859288439366790171987421552616806414321622974227628294346
s1-1e1: 33373073398809441106621025265904429856170478887328914010434069704980389675914
s2-1r2: 102756882304321902845902604711749179835279156262963247575454606290129811589248
s1-1r1: 109263722787838616791900575947640359553086907200677310074463510255775504782173
1 - s2-1e2 + s1-1e1: 9053177366350786870761736826537639684183057334712107596112446730752761381569
s2-1r2 - s1-1r1: 109285248753799481477573013772796728135029813341360841883596259175872468301412
(s2-1r2 - s1-1r1)-1: 88597492899895469960154264896435952736065060080234931949365434864574123803941
dU: 74071287274168731384314914382498140270634658281328726941106265589917762050271
thanks in advance...
This works with standard signature. Mine are forged signatures or you can call them blind signatures. The calculation is much more complicated! I believe it is totally solvable ... If you can get some method that can merge the calculation of a standard signature vs forged signature it would be good.
I was using the other thread to do some calculations. Remembering that the forged signatures that I recreate do not need to sign data or prove anything ... it just needs to be forged and that they have the values r, s and h that satisfy the calculation to find a private key. I know it's confusing. I will show some calculations related to my other thread .
PRIVADE KEY = 74071287274168731384314914382498140270634658281328726941106265589917762050271
p = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 84635513758865831094131084311208775267495704821994249663954751780286420288259
r1 = 99935505760319748698811422354322418311203851828465328908708024011195996180829
s1 = 49589235156255394867995584868850296899036724345858375131186053009052960413985
z2 = 0
r2 = 115035229747891778996889965749694763606205313739267493174821202115705061416296
s2 = 38207519993275076423632821614369697864201677311262964726666122651535684123121
x = GF(p)
x (1+s1*z1-s2*z2)/(s2*r2-s1*r1)
x = 74071287274168731384314914382498140270634658281328726941106265589917762050271This one has the same parameters as the 3,350 BTC puzzle same private key and the nonce of the second signature (k1 / 2 = k2) the second nonce k is half the nonce of the first signature.The difference is that here I know the k
p = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 84161583072841456669059952378962616999584763854943151345373830328904632908285
r1 = 94314914130653988673888770692000596437449719230712969855406611816122161753818
s1 = 22494341240730831470571507988479127051360132620614139425560703058275568234720
z2 = 84635513758865831094131084311208775267495704821994249663954751780286420288259
r2 = 99935505760319748698811422354322418311203851828465328908708024011195996180829
s2 = 49589235156255394867995584868850296899036724345858375131186053009052960413985
x = GF(p)
x (
43622407236688973229510697286560312319272310986763330555167501359776293201463+s1*z1-s2*z2)/(s2*r2-s1*r1)
x = 74071287274168731384314914382498140270634658281328726941106265589917762050271
I inverted the order and replaced s1 with its own inverse modular and did the same with s2. Then replace 1+ with k +. It is already a way to try to find some method that solves it.
Look at this one ... it's getting fun!
p = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 0
r1 = 99935505760319748698811422354322418311203851828465328908708024011195996180829
s1 = 107074468996081319021460734830045966618222458319611877930291706090648733800102
z2 = 0
r2 = 115035229747891778996889965749694763606205313739267493174821202115705061416296
s2 = 38207519993275076423632821614369697864201677311262964726666122651535684123121
x = GF(p)
x (1+s1*z1-s2*z2)/(s2*r2-s1*r1)
x = 74071287274168731384314914382498140270634658281328726941106265589917762050271
Now this last one ...
p = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 84635513758865831094131084311208775267495704821994249663954751780286420288258
r1 = 99935505760319748698811422354322418311203851828465328908708024011195996180829
s1 = 60641406722465826032271764495324651446430317390841265423474818277065347735949
z2 = 27086795414784162292297506376302057554366609881154614249233399373002336547922
r2 = 115035229747891778996889965749694763606205313739267493174821202115705061416296
s2 = 5926985887680998340381673345353182670979487968029788012609647734652828070871
x = GF(p)
x (1+s1*z1-s2*z2)/(s2*r2-s1*r1)
x = 74071287274168731384314914382498140270634658281328726941106265589917762050271
Blind and forged signatures are not useless! it is possible to calculate them with real signatures.
I am trying to improve these methods. I still have a lot of work to do