Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 246. (Read 229433 times)

member
Activity: 185
Merit: 15
Two things you should never abandon: Family & BTC
We need a strong random search repo .. coz i think searching in ranges is useless (including random range search).. pure random search is  the only way .. the only thing that "might" beat extreme randomness is randomness itself .. think about it, you might open a random search bat file to search for the easiest puzzle and find it immediately .. or you can open it and it keeps running for centuries without luck .. but at least you know you could get lucky with randomness ..on the other hand, searching in ranges GUARANTEES you'll stay stuck for a long while especially if the puzzle prv key turns out to be located way far in the range .. i tried keyhunt for cpu but it's too slow .. also tried random bitcrack search but i hate the fact that it creates sample points to start searching from .. it's exactly like random range search not a pure random one .. could not find any software that utilizes gpu for absolute random search
newbie
Activity: 8
Merit: 1
jr. member
Activity: 67
Merit: 1
is it faster if we use brute force attack on addresses in the puzzle by tools like bitbruteforce, plutus, btcbf... I mean these tools are generate random wallets (in 2^256 range) then check a list for matching an wallet with balance, which chance to success is much lower than 0. If now we use these tools but control the range to generate wallet only in 2^64 or 2^71-74... to find matching address in puzzle (the address list still can contain funded addresses).
I think this method will give more chance than kangaroo/bsgs or bitcrack, while solving puzzle they can find some funded addresses but still ignore them because it's not match with their target - addresses in puzzle only
those listed codes are slow in python like turtle  speed
example:https://github.com/Xefrok/BitBruteForce-Wallet
Code:
import time
import datetime as dt
import smtplib
import os
import multiprocessing
from multiprocessing import Pool
import binascii, hashlib, base58, ecdsa
import pandas as pd
from tqdm import tqdm
def ripemd160(x):
    d = hashlib.new('ripemd160')
    d.update(x)
    return d

r = 0
cores=2


def seek(r, df_handler):
global num_threads
LOG_EVERY_N = 1000
start_time = dt.datetime.today().timestamp()
i = 0
print("Core " + str(r) +":  Searching Private Key..")
for xxxxx in tqdm(range(1000000)):
i=i+1
# generate private key , uncompressed WIF starts with "5"
priv_key = os.urandom(32)
fullkey = '80' + binascii.hexlify(priv_key).decode()
sha256a = hashlib.sha256(binascii.unhexlify(fullkey)).hexdigest()
sha256b = hashlib.sha256(binascii.unhexlify(sha256a)).hexdigest()
WIF = base58.b58encode(binascii.unhexlify(fullkey+sha256b[:8]))

# get public key , uncompressed address starts with "1"
sk = ecdsa.SigningKey.from_string(priv_key, curve=ecdsa.SECP256k1)
vk = sk.get_verifying_key()
publ_key = '04' + binascii.hexlify(vk.to_string()).decode()
hash160 = ripemd160(hashlib.sha256(binascii.unhexlify(publ_key)).digest()).digest()
publ_addr_a = b"\x00" + hash160
checksum = hashlib.sha256(hashlib.sha256(publ_addr_a).digest()).digest()[:4]
publ_addr_b = base58.b58encode(publ_addr_a + checksum)
priv = WIF.decode()
pub = publ_addr_b.decode()
time_diff = dt.datetime.today().timestamp() - start_time
if (i % LOG_EVERY_N) == 0:
print('Core :'+str(r)+" K/s = "+ str(i / time_diff))
#print ('Worker '+str(r)+':'+ str(i) + '.-  # '+pub + ' # -------- # '+ priv+' # ')
pub = pub + '\n'
filename = 'bit.txt'
with open(filename) as f:
for line in f:
if pub in line:
msg = "\nPublic: " + str(pub) + " ---- Private: " + str(priv) + "YEI"
text = msg
#UNCOMMENT IF 2FA from gmail is activated, or risk missing your winning ticket;)
#server = smtplib.SMTP("smtp.gmail.com", 587)
#server.ehlo()
#server.starttls()
#server.login("[email protected]", "password")
#fromaddr = "[email protected]"
#toaddr = "[email protected]"
#server.sendmail(fromaddr, toaddr, text)
print(text)
with open('Wallets.txt','a') as f:
f.write(priv)
f.write('     ')
f.write(pub)
f.write('\n')
f.close()
time.sleep(30)
print ('WINNER WINNER CHICKEN DINNER!!! ---- ' +dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), pub, priv)
break




contador=0
if __name__ == '__main__':
jobs = []
df_handler = pd.read_csv(open('bit.txt', 'r'))
for r in range(cores):
p = multiprocessing.Process(target=seek, args=(r,df_handler))
jobs.append(p)
p.start()
the fastest python library is here: https://github.com/iceland2k14/secp256k1
member
Activity: 185
Merit: 15
Two things you should never abandon: Family & BTC
Hello guys, first time writing here but have been reading a lot in the forum .. i was just thinking the puzzle #64 could be in the range 8 or 9 other than a, b , c , d , e ,f .. and nobody is looking in 8 or 9 and maybe that's why no one could still find the puzzle lol .. do we have any record of these ranges being scanned or not? Like in pool scanning or so?
newbie
Activity: 8
Merit: 1
is it faster if we use brute force attack on addresses in the puzzle by tools like bitbruteforce, plutus, btcbf... I mean these tools are generate random wallets (in 2^256 range) then check a list for matching an wallet with balance, which chance to success is much lower than 0. If now we use these tools but control the range to generate wallet only in 2^64 or 2^71-74... to find matching address in puzzle (the address list still can contain funded addresses).
I think this method will give more chance than kangaroo/bsgs or bitcrack, while solving puzzle they can find some funded addresses but still ignore them because it's not match with their target - addresses in puzzle only
legendary
Activity: 1974
Merit: 1077
^ Will code for Bitcoins
Alright, this question might sound stupid but pardon me, i need to educate myself about this but I'm not able to find any piece of info on internet that can put this confusion at ease. So when a new block is mined it says COINBASE (Newly Generated Coins) so from where are these new coins getting generated? if the definition of poW is just authenticating a transaction how is authenticating a transaction generating new coins??. what is a coin? what data does it hold?  the next question is what is actually inside a private key..?? when we say a coin has anyone in here read the data in the coin? what is a Bitcoin (i know its a digital currency)  but i really wanna know what bitcoin truly is  is it just a number associated with the private key..?? (what i mean by it is, lets say 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH has 1btc, where is that 1 btc..?? how is a value given..? from where is it generated? what is coinbase? when i recive 1btc in my wallet what am i receiving..?

would greatly appreciate an answer
thanks

You have some reading to do, can start here:
https://en.bitcoinwiki.org/wiki/Bitcoin_FAQ_(Frequently_Asked_Questions)

hey i was wondering if you any fastest miners or asics ..?

Is this a bot? Question has no meaning.
newbie
Activity: 27
Merit: 4
Alright, this question might sound stupid but pardon me, i need to educate myself about this but I'm not able to find any piece of info on internet that can put this confusion at ease. So when a new block is mined it says COINBASE (Newly Generated Coins) so from where are these new coins getting generated? if the definition of poW is just authenticating a transaction how is authenticating a transaction generating new coins??. what is a coin? what data does it hold?  the next question is what is actually inside a private key..?? when we say a coin has anyone in here read the data in the coin? what is a Bitcoin (i know its a digital currency)  but i really wanna know what bitcoin truly is  is it just a number associated with the private key..?? (what i mean by it is, lets say 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH has 1btc, where is that 1 btc..?? how is a value given..? from where is it generated? what is coinbase? when i recive 1btc in my wallet what am i receiving..?

would greatly appreciate an answer
thanks

You have some reading to do, can start here:
https://en.bitcoinwiki.org/wiki/Bitcoin_FAQ_(Frequently_Asked_Questions)

hey i was wondering if you any fastest miners or asics ..?
newbie
Activity: 27
Merit: 4

Each one can scan 23 TKey/s using CuBitcrack or the whole 16 Tesla's GPUs?

I don't think there's a method to crack puzzles fast, unless of course if you have public key.

All you can do in my opinion is to search randomly in puzzle 64 using 16 Tesla's GPUs with the speed of 23TKey/s and hope for luck to get the private key.

if you perform 23 TKey/s
you need modified bitcrack and my list
that will take 7 days to find

are you sure we can find the privatekey in 7 days..?
legendary
Activity: 1974
Merit: 1077
^ Will code for Bitcoins
Alright, this question might sound stupid but pardon me, i need to educate myself about this but I'm not able to find any piece of info on internet that can put this confusion at ease. So when a new block is mined it says COINBASE (Newly Generated Coins) so from where are these new coins getting generated? if the definition of poW is just authenticating a transaction how is authenticating a transaction generating new coins??. what is a coin? what data does it hold?  the next question is what is actually inside a private key..?? when we say a coin has anyone in here read the data in the coin? what is a Bitcoin (i know its a digital currency)  but i really wanna know what bitcoin truly is  is it just a number associated with the private key..?? (what i mean by it is, lets say 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH has 1btc, where is that 1 btc..?? how is a value given..? from where is it generated? what is coinbase? when i recive 1btc in my wallet what am i receiving..?

would greatly appreciate an answer
thanks

You have some reading to do, can start here:
https://en.bitcoinwiki.org/wiki/Bitcoin_FAQ_(Frequently_Asked_Questions)
newbie
Activity: 27
Merit: 4
Alright, this question might sound stupid but pardon me, i need to educate myself about this but I'm not able to find any piece of info on internet that can put this confusion at ease. So when a new block is mined it says COINBASE (Newly Generated Coins) so from where are these new coins getting generated? if the definition of poW is just authenticating a transaction how is authenticating a transaction generating new coins??. what is a coin? what data does it hold?  the next question is what is actually inside a private key..?? when we say a coin has anyone in here read the data in the coin? what is a Bitcoin (i know its a digital currency)  but i really wanna know what bitcoin truly is  is it just a number associated with the private key..?? (what i mean by it is, lets say 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH has 1btc, where is that 1 btc..?? how is a value given..? from where is it generated? what is coinbase? when i recive 1btc in my wallet what am i receiving..?

would greatly appreciate an answer
thanks
newbie
Activity: 10
Merit: 0
Target found!!0xcb8f4f9ff46b0325
 16jY77KNQXnocoT8HkgTJ9SfasE9biH1Fh
               --------
a bit of an exciting address Sad  Cool

full member
Activity: 282
Merit: 114
what are you practicing here?  Cheesy Cheesy Cheesy Cheesy Cheesy Cheesy

For those gibuses who have a problem with me (or rather with themselves) - it's not your business to whom and I pay. Watch your nose.
And for all those who want to contribute or learn something - I invite you to the fresh topic that was created for this challenge: https://bitcointalksearch.org/topic/bitcoin-challenge-transaction-1000-btc-total-bounty-to-solvers-updated-5218972
newbie
Activity: 9
Merit: 1
Hi there!

Guys, may someone tell me what speed on Kangaroo and full priv <-> address brute (aka bitcrack implementation) could expect for RX 580 8 Gb, GTX 1070 ti, RTX 2070 - and your justification for your assumptions.

We know there are several implementations algorithms for different platforms and yet i've seen different speed numbers and so wondered "why?":

GTX 1070 ti has 2432 CUDA cores

RTX 2070 has  2304 CUDA cores

RX 580 has 2048 stream processors

And all have different architecture - sure i understands that (even Turing dramatically differs from Pascal in sense of "instructions" set or pipe or how to call this differences)

======================

Anyway, from the first glance i could expect close speeds from these three cards and so i am asking here what really could be achieved with these cards and the reason for limit.

P.S. Have been tried Kangaroo on my RTX 2070 (~1000 MKey/s) - found that memory overclock plays significant role that means that memory in the case of RTX 2070 (and probably my config) was a limiting factor (CUDA cores probably but not surely could provide more computational power == more speed)

P.S.S. I am on the south of Ukraine under occupation mostly without money and having bad mood - so i've returned to this problem just to smooth my mood a bit.


(https://github.com/HomelessPhD/BTC32)

So, hey, could someone answer this question?

(By the way, how are you guys? Still bruting?)
jr. member
Activity: 184
Merit: 3
import random
from combi import *
import gmpy2

list2 = ["1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum"] # pz 20 > dec 863317 bit 11010010110001010101


F1="01"

aa1=F1[0]*50
aa2=F1[1]*50

def find_permutation(lst,K,numberbit1,numberbit0):

    l = lst

    N = numberbit0
    M = numberbit1

    if N == len(l):
        return F1[1] * N
    
    if M == len(l):
        return F1[1] * M

    result = ''    

    for i in range (0, len(lst)-1):
        K0 = gmpy2.comb(len(l)-1, M)

        if (K < K0):
            result += F1[0]
            l.remove (F1[0])
        else:
            result += F1[1]
            l.remove (F1[1])
            M -=1
            K = K - K0

    result += l[0]

    return result



#ccount0 = 0

#a1 = "0"*22
#a2 = "1"*22
#a3 = a1+a2

#perm_space = PermSpace(a3)

#print(perm_space.length)
#print(perm_space.index(a4))
#( 44!/22!/22!)/2^20 2006625,140876770019531 collision
# 2104098963720 (44!/22!/22!)

#1048576×1048576 = 1099511627776
#1099511627776×1099511627776 = 1208925819614629174706176
#100!/50!/50!             100891344545564193334812497256                          
#44!/22!/22!       2104098963720


#aa = perm_space[2]
#aaa = "".join(aa)
        
#print(aaa)

pzbit = "11010010110001010101" #"11010010110001010101"
                                                                                
for XXX in range(1000000,1048576,1):

    ccount0 = 0
    
    random.seed()
    gnoy= XXX #random.randrange(1000000,1048576,1) #1048576
    saki = 1099511627776 * gnoy #random.randrange(1,1048576,1) #2^256×2^256
    
    #print(gnoy,"1208925819614629174706176 //",saki,1208925819614629174706176//saki)
    #print("")

    X2=0 #X=10
    while X2 <= 100891344545564193334812497256-1:

        if X2 >= 1208925819614629174706176:
            break
        else:
            pass
        
        #count0 = 0
        
        X=X2 #X=10
        while X <= X2: #+100


            ccount0 += 1

            if ccount0 >= 1048576: #1048576 3000
                break
            
            
        
            #aa = perm_space[X]
            #aaa = "".join(aa)    
            #count0 += 1

            a3 = list(aa1+aa2)
            K = X #perm_int
            numberbit1 = len(aa1)
            numberbit0 = len(aa2)
            aa = find_permutation(a3,K,numberbit1,numberbit0)

            random.seed(aa)

            Nn = "0","1"

            RRR = [] #func()

            for RR in range(20): # "bit" set log2(x)=20 2^20 = 1048576, 1048576/20 = 52428,8
                DDD = random.choice(Nn)
                RRR.append(DDD)

            d = ''.join(RRR)
                #print(d,count0,aa,X)
            #print(bin(X)[2:],XXX,saki,"loop count","step",d,aa,X2,ccount0)
                #break

            if pzbit in d:
                print(bin(X)[2:],gnoy,"1099511627776 *",saki,"step",d,aa,X,X2,ccount0,XXX)
                #print("")
                #print("")
                break

            X=X+1


        X2=X2+saki
            
            #print("")
            #print(X2)
            #print("")


                
print("pz end")
input() #"pause"



***


import random
from combi import *
import gmpy2
import time

list2 = ["1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum"] # pz 20 > dec 863317 bit 11010010110001010101


F1="01"

aa1=F1[0]*50
aa2=F1[1]*50

def find_permutation(lst,K,numberbit1,numberbit0):

    l = lst

    N = numberbit0
    M = numberbit1

    if N == len(l):
        return F1[1] * N
    
    if M == len(l):
        return F1[1] * M

    result = ''    

    for i in range (0, len(lst)-1):
        K0 = gmpy2.comb(len(l)-1, M)

        if (K < K0):
            result += F1[0]
            l.remove (F1[0])
        else:
            result += F1[1]
            l.remove (F1[1])
            M -=1
            K = K - K0

    result += l[0]

    return result



#ccount0 = 0

#a1 = "0"*22
#a2 = "1"*22
#a3 = a1+a2

#perm_space = PermSpace(a3)

#print(perm_space.length)
#print(perm_space.index(a4))
#( 44!/22!/22!)/2^20 2006625,140876770019531 collision
# 2104098963720 (44!/22!/22!)

#1048576×1048576 = 1099511627776
#1099511627776×1099511627776 = 1208925819614629174706176
#100!/50!/50!             100891344545564193334812497256                          
#44!/22!/22!       2104098963720


#aa = perm_space[2]
#aaa = "".join(aa)
        
#print(aaa)

ccount20 = 0

pzbit = "11010010110001010101" #"11010010110001010101"
                                                                                
for XXX in range(1,1208925819614629174706176,1):

    #print("loop start",ccount20)
    #print("")

    ccount0 = 0
    
    #random.seed()
    #gnoy= XXX #random.randrange(1000000,1048576,1) #1048576
    #saki = 1099511627776 * gnoy #random.randrange(1,1048576,1) #2^256×2^256
    
    #print(gnoy,"1208925819614629174706176 //",saki,1208925819614629174706176//saki)
    #print("")

    #X2=0 #X=10
    #while X2 <= 100891344545564193334812497256-1:

        #if X2 >= 1208925819614629174706176:
            #break
        #else:
            #pass
        
        #count0 = 0
        
        #X=X2 #X=10
        #while X <= X2: #+100


    #ccount0 += 1

            #if ccount0 >= 1048576:
                #break
    

    for S1 in range(20,40,1):
        for S2 in range(1):


            random.seed()
            
            Nn1 = "1","0","0","0","0","0"

            RRR1 = [] #func()

            for RR1 in range(S1): # bit len   1000000000000000000000000000000000000000000000000000000000000000000000000000000 00 1048576×1099511627776×1048576 = 1208925819614629174706176
                DDD1 = random.choice(Nn1)
                RRR1.append(DDD1)

            d1 = ''.join(RRR1)

            llen = bin(1208925819614629174706176)[2:]
            llen2 = len(llen)
          
            
            

            d0 = "0"
            d2 = "1"+d1 # bit len   1000000000000000000000000000000000000000000000000000000000000000000000000000000 00 1048576×1099511627776×1048576 = 1208925819614629174706176
            llen3 = llen2-len(d2)
            d3 = d2+d0*llen3
            

            f1=len(d3)
            while f1 >= len(d2):
              
                
                f2 = d3[0:f1]
                d4 = int(f2,2)
                
                ccount0 += 1
                ccount20 += 1

                if d4 <= 1208925819614629174706176:
                    #ccount0 += 1
                            #print(d3,d2)

                                #aa = perm_space[X]
                                #aaa = "".join(aa)    
                                #count0 += 1

                    a3 = list(aa1+aa2)
                    K = d4 #perm_int
                    numberbit1 = len(aa1)
                    numberbit0 = len(aa2)
                    aa = find_permutation(a3,K,numberbit1,numberbit0)

                    random.seed(aa)

                    Nn = "0","1"

                    RRR = [] #func()

                    for RR in range(20): # "bit" set log2(x)=20 2^20 = 1048576, 1048576/20 = 52428,8
                        DDD = random.choice(Nn)
                        RRR.append(DDD)

                    d = ''.join(RRR)
                                        #print(d,count0,aa,X)
                                    #print(bin(X)[2:],XXX,saki,"loop count","step",d,aa,X2,ccount0)
                                        #break

                            
                            #print(FD,d2,d3,aa,d,pzbit)
                    #print(S1,S2,"",ccount0,f2,d4,d,pzbit)

                    if pzbit in d:
                        print(S1,S2,"",ccount0,f2,d4,d,aa,d,pzbit,ccount20)
                        print("")
                        print("")
                        pass
                        #time.sleep(10.0)

                                    #X=X+1


                                #X2=X2+saki
                                    
                                    #print("")
                                    #print(X2)
                                    #print("")

                f1=f1-1

                        
print("pz end")
input() #"pause"



*** random search


from os import system
system("title "+__file__)
import random
import time
import gmpy2
import secp256k1 as ice

list2 = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF",
        "1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU","1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR","12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4",
        "1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF","1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE",
        "15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb","1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8","15qsCm78whspNQFydGJQk5rexzxTQopnHZ",
        "13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC","14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2","1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D",
        "1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK","1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq","16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf",
        "19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt","1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74","1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5",
        "17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad","1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL","15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b",
        "18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8","1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX","1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL",
        "1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n","1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX","1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf",
        "1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu","18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB","15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc",
        "1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao","1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL","12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg",
        "1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3","18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos","1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4",
        "1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv","1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV","1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z",
        "1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6","1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7","17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT",
        "1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh","1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx","1CdufMQL892A69KXgv6UNBD17ywWqYpKut",
        "1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N","1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5","1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz",
        "1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4","1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj","1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz",
        "1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua","16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy","1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R",
        "17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD","13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3","16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v",
        "1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq","15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA","1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT",
        "1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt","1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo","1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo",
        "15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD","13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1","1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux",
        "19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg","1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P","18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL",
        "1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV","1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2","1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy",
        "13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV","1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN","18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg",
        "1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN","1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ","1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE",
        "14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9","19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG","14u4nA5sugaswb6SZgn5av2vuChdMnD9E5",
        "174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy", "1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv"]

#262!/131!/131! 364950428295639250777230977182937950631063637653015344224357416878384793565048
#               1461501637330902918203684832716283019655932542976 2^160
#               115792089237316195423570985008687907853269984665640564039457584007913129639936 2^256 (340282366920938463463374607431768211456*340282366920938463463374607431768211456 = 2^256)

F1="01"

aa1=F1[0]*131
aa2=F1[1]*131

def find_permutation(lst,K,numberbit1,numberbit0):

    l = lst

    N = numberbit0
    M = numberbit1

    if N == len(l):
        return F1[1] * N
    
    if M == len(l):
        return F1[1] * M

    result = ''    

    for i in range (0, len(lst)-1):
        K0 = gmpy2.comb(len(l)-1, M)

        if (K < K0):
            result += F1[0]
            l.remove (F1[0])
        else:
            result += F1[1]
            l.remove (F1[1])
            M -=1
            K = K - K0

    result += l[0]

    return result


#ccount0 = 0

for XXX in range(1,1000000000000,1): # loop step

    llen = bin(115792089237316195423570985008687907853269984665640564039457584007913129639936)[2:]
    llen2 = len(llen)
    d0 = "0"
    
    ccount0 = 0
    
    for S1 in range(2,128,1):   # half bit len for collision to dec set
        for S2 in range(1):    # random loop for ^ "half bit len for collision to dec set"

            random.seed()
            
            Nn1 = "0","1"  # ours dropout "1","0","0","0","0","0","0","0","0","0","0","0","0","0","0","0"

            RRR1 = []

            for RR1 in range(S1):
                DDD1 = random.choice(Nn1)
                RRR1.append(DDD1)

            d1 = ''.join(RRR1)

            #llen = bin(115792089237316195423570985008687907853269984665640564039457584007913129639936)[2:]
            #llen2 = len(llen)
            #d0 = "0"
            
            d2 = "1"+d1 # bit len for collision to dec set , 18446744073709551616 * 18446744073709551616 = 340282366920938463463374607431768211456 , 18446744073709551616 * 340282366920938463463374607431768211456 * 18446744073709551616 = 115792089237316195423570985008687907853269984665640564039457584007913129639936

            llen3 = llen2-len(d2) # num zeros +

            d3 = d2+d0*llen3
            
            print(S1,S2,"",ccount0,d3)
            
            f1=len(d3)
            while f1 >= len(d2):
              
                f2 = d3[0:f1]
                d4 = int(f2,2)
                            
                if d4 <= 115792089237316195423570985008687907853269984665640564039457584007913129639936:
                    ccount0 += 1
                    a3 = list(aa1+aa2)
                    K = d4 #perm_int
                    numberbit1 = len(aa1)
                    numberbit0 = len(aa2)
                    aa = find_permutation(a3,K,numberbit1,numberbit0)

                    random.seed(aa) # init collision seed

                    Nn = "0","1"

                    RRR = [] #func()

                    for RR in range(160): # bit collision seeded len
                        DDD = random.choice(Nn)
                        RRR.append(DDD)

                    d = ''.join(RRR)

                    #print(S1,S2,"",ccount0,f2,d4,d,aa)

                    ii = 64
                    while ii <= 160:
                        dd = (d)[0:ii]
                        b = int(dd,2)
                        if b >= 9223372036854775807:
                            
                            #key = Key.from_int(b)
                            addr = ice.privatekey_to_address(0, True, b) #key.address
                                    
                            if addr in list2:
                                        
                                print ("found!!!",b,addr)
                                s1 = str(b)
                                s2 = addr
                                f=open("a.txt","a")
                                f.write(s1)
                                f.write(s2)      
                                f.close()
                                pass
                            else:
                                
                                #print(S1,S2,"",ccount0,f2,d4,d,aa,addr)
                                pass
                        ii=ii+1


                f1=f1-1

                        
print("pz end")
input() #"pause"



*** step by step, just insert a string 128 long (128+128 for 64 pz...)

1000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000001
0000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000011
0000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000111
...


from os import system
system("title "+__file__)
import random
import time
import gmpy2
import secp256k1 as ice

list2 = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF",
        "1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU","1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR","12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4",
        "1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF","1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE",
        "15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb","1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8","15qsCm78whspNQFydGJQk5rexzxTQopnHZ",
        "13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC","14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2","1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D",
        "1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK","1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq","16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf",
        "19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt","1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74","1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5",
        "17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad","1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL","15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b",
        "18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8","1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX","1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL",
        "1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n","1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX","1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf",
        "1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu","18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB","15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc",
        "1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao","1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL","12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg",
        "1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3","18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos","1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4",
        "1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv","1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV","1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z",
        "1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6","1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7","17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT",
        "1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh","1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx","1CdufMQL892A69KXgv6UNBD17ywWqYpKut",
        "1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N","1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5","1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz",
        "1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4","1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj","1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz",
        "1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua","16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy","1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R",
        "17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD","13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3","16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v",
        "1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq","15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA","1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT",
        "1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt","1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo","1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo",
        "15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD","13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1","1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux",
        "19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg","1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P","18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL",
        "1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV","1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2","1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy",
        "13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV","1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN","18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg",
        "1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN","1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ","1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE",
        "14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9","19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG","14u4nA5sugaswb6SZgn5av2vuChdMnD9E5",
        "174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy", "1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv"]

#262!/131!/131! 364950428295639250777230977182937950631063637653015344224357416878384793565048
#               1461501637330902918203684832716283019655932542976 2^160
#               115792089237316195423570985008687907853269984665640564039457584007913129639936 2^256 (340282366920938463463374607431768211456*340282366920938463463374607431768211456 = 2^256)

F1="01"

aa1=F1[0]*131
aa2=F1[1]*131

def find_permutation(lst,K,numberbit1,numberbit0):

    l = lst

    N = numberbit0
    M = numberbit1

    if N == len(l):
        return F1[1] * N
    
    if M == len(l):
        return F1[1] * M

    result = ''    

    for i in range (0, len(lst)-1):
        K0 = gmpy2.comb(len(l)-1, M)

        if (K < K0):
            result += F1[0]
            l.remove (F1[0])
        else:
            result += F1[1]
            l.remove (F1[1])
            M -=1
            K = K - K0

    result += l[0]

    return result



def lexico_permute_string(s):
    a = list(s)
    n = len(a) - 1
    while True:
        yield ''.join(a)
        for j in range(n-1, -1, -1):
            if a[j] < a[j + 1]:
                break
        else:
            return
        v = a[j]
        for k in range(n, j, -1):
            if v < a[k]:
                break
        a[j], a[k] = a[k], a[j]
        a[j+1:] = a[j+1:][::-1]

        
s = "0000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000011" #128!/126!/2!  8128
sv = lexico_permute_string(s)
ccount0 = 0

for XXX in sv: # loop step

    llen = bin(115792089237316195423570985008687907853269984665640564039457584007913129639936)[2:]
    llen2 = len(llen)
    d0 = "0"
    
    ccount0 += 1
    
    

    d1 = XXX #''.join(RRR1)

    #llen = bin(115792089237316195423570985008687907853269984665640564039457584007913129639936)[2:]
    #llen2 = len(llen)
    #d0 = "0"
            
    d2 = "1"+d1 # bit len for collision to dec set , 18446744073709551616 * 18446744073709551616 = 340282366920938463463374607431768211456 , 18446744073709551616 * 340282366920938463463374607431768211456 * 18446744073709551616 = 115792089237316195423570985008687907853269984665640564039457584007913129639936

    llen3 = llen2-len(d2) # num zeros +

    d3 = d2+d0*llen3
            
    print(XXX,"",ccount0,d3)
            
    f1=len(d3)
    while f1 >= len(d2):
              
        f2 = d3[0:f1]
        d4 = int(f2,2)
                            
        if d4 <= 115792089237316195423570985008687907853269984665640564039457584007913129639936:
            #ccount0 += 1
            a3 = list(aa1+aa2)
            K = d4 #perm_int
            numberbit1 = len(aa1)
            numberbit0 = len(aa2)
            aa = find_permutation(a3,K,numberbit1,numberbit0)

            random.seed(aa) # init collision seed

            Nn = "0","1"

            RRR = [] #func()

            for RR in range(160): # bit collision seeded len
                DDD = random.choice(Nn)
                RRR.append(DDD)

            d = ''.join(RRR)

            #print(d3,"",ccount0,f2,d4,d,aa)

            ii = 64
            while ii <= 160:
                dd = (d)[0:ii]
                b = int(dd,2)
                if b >= 9223372036854775807:
                            
                    #key = Key.from_int(b)
                    addr = ice.privatekey_to_address(0, True, b) #key.address
                                    
                    if addr in list2:
                                        
                        print ("found!!!",b,addr)
                        s1 = str(b)
                        s2 = addr
                        f=open("a.txt","a")
                        f.write(s1)
                        f.write(s2)      
                        f.close()
                        pass
                    else:
                                
                        #print(d3,"",ccount0,f2,d4,d,aa,addr)
                        pass
                ii=ii+1


        f1=f1-1

                        
print("pz end")
input() #"pause"

jr. member
Activity: 184
Merit: 3
https://bitcointalksearch.org/topic/m.59102356 continuing the flight...

1048576×1048576 = 1099511627776
1099511627776×1099511627776 = 1208925819614629174706176

for 64 will be

18446744073709551616×18446744073709551616 = 340282366920938463463374607431768211456
340282366920938463463374607431768211456×340282366920938463463374607431768211456=115792089237316195423570985008687907853269984665640564039457584007913129639936

for 160, 256 bit likewise...

and select the size of "collisions" for them...

or the same

1048576×1099511627776×1048576 = 1208925819614629174706176

i.e. the 20th puzzle jumps within 1^2-2^20 blablabla

532368669374487342350336 484187 ×1099511627776×1000001
181088827760010590158848 164700 ×1099511627776×1000002
619892701383498689150976 563789 ×1099511627776×1000002
644019977303000002592768 585732 ×1099511627776×1000003
1120137428268770255699968 1018757 ×1099511627776×1000003
280959330078426262405120 255531 ×1099511627776×1000004
352372895955598358609920 320481 ×1099511627776×1000004
15992476587985050009600 14546 ×1099511627776×1000005
147981810864471083581440 134589 ×1099511627776×1000005
849455045036521008660480 772572 ×1099511627776×1000005
1092999181290656105496576 994072 ×1099511627776×1000006
142265848123988914470912 129390 ×1099511627776×1000008
520451395515858448023552 473345 ×1099511627776×1000008
852452687023533572751360 775296×1099511627776× 1000008
181419951836283866710016 165000 ×1099511627776×1000009
697292360654493845553152 634179 ×1099511627776×1000009
722959214526753365032960 657522×1099511627776× 1000010
...

in some it pops up several times

11011000101111010000110010010101010000000000000000000000000000000000000000         11010010110001010101 0000000000000000000110100111010101010100110111011111111001111110010001110011100 011011110001010111101  15992476587985050009600  14546 ×1099511627776× 1000005
11111010101100001110000101011101011000000000000000000000000000000000000000000      11010010110001010101 0000000000000000011111111011000011100000111110011001010110000101001111111101111 011001101010101011110  147981810864471083581440 134589 ×1099511627776×1000005
1011001111100001000011001101111000000111000000000000000000000000000000000000000 0   11010010110001010101 0000000000000001111101000000111100110111011100100001110000110000001111111111011 111101101011001111001  849455045036521008660480 772572 ×1099511627776×1000005

1000000000000000000000000000000000000000000000000000000000000000000000000000000 00      1208925819614629174706176 2^81-1
10000011001010111110101110111100110000000000000000000000000000000000000000             9678753217407715639296
10111011010111111110111010111111010000000000000000000000000000000000000000             13825815258173381017600
10010111001010110000000101001111000000000000000000000000000000000000000000             11154228800040674000896
10111110101100110011101011100000000000000000000000000000000000000000000                1758898127588428873728
11011000101111010000110010010101010000000000000000000000000000000000000000             15992476587985050009600
10110110000100000010110100011101100000000000000000000000000000000000000000             13433892166917160960000
10000111010010110111010111000001010000000000000000000000000000000000000000             9982991658226125111296
111011110101001111100011100100000000000000000000000000000000000000000000               4414816667071118573568
100001010011010001011111010101100000000000000000000000000000000000000000000            19657526330993040949248
10110110010000110111011111000100000000000000000000000000000000000000000000             13448675964968748711936
11110011011110011110111110111101010000000000000000000000000000000000000000             17965381037568078905344
1110111100000110010011001111000000000000000000000000000000000000000000000              8818451670323662159872
1000011000011011000000001000101100000000000000000000000000000000000000000              4947618827496440463360
100100111110101101001101011000000000000000000000000000000000000000000000               2728626692560540139520
11000100100110101011111100111100100000000000000000000000000000000000000000             14506850144679672938496
101001011000001000110101011100000000000000000000000000000000000000000000               3053095300706074624000
10010111100011000101000001101000000000000000000000000000000000000000000                1397784525321399173120
100100101010101100001111011010000000000000000000000000000000000000000000000            21644406558527521292288
10010011001100100110000001100100000000000000000000000000000000000000000000             10861205560344509939712
111010101001010001011011111100000000000000000000000000000000000000000000               4327228515271319748608
1100010100010110010101011011010100000000000000000000000000000000000000000              7271235947948482232320
1100010110011001000110101001110000000000000000000000000000000000000000000              7290081768563586105344
10011011010110100110101111001000000000000000000000000000000000000000000000             11463043410452910440448
11100100010110110011101101100110000000000000000000000000000000000000000                2106215804518520586240
1001000001011110000110111110101110000000000000000000000000000000000000000              5326224838426200375296
10011101011001011101011101111110110000000000000000000000000000000000000000             11613909172213287747584
100011001010110010110101111100100000000000000000000000000000000000000000000            20759914316371675054080
101011001001011100110101111111000000000000000000000000000000000000000000               3183735872628465860608
11010000101000001100111000100110100000000000000000000000000000000000000000             15394040034216221081600
100010111110000101001110001110011000000000000000000000000000000000000000000            20642659225394107908096
1011000110011010001111110011011110000000000000000000000000000000000000000              6552376728949719302144
11111111111011100001010100111000100000000000000000000000000000000000000000             18884301677095521615872
100000010100111110101011100111111000000000000000000000000000000000000000000            19082966744245204942848
11000001111011000000110000100100000000000000000000000000000000000000000000             14308922462804134330368
11010011100100001010100000001110100000000000000000000000000000000000000000             15610746387332732026880
111010111110110100001110001100010000000000000000000000000000000000000000               4352066501634477260800
100011100000001010111011111001101110000000000000000000000000000000000000000            20957077306601793126400
10110001010010011101100101011111000000000000000000000000000000000000000000             13081580359739640905728
1011110100011001100001010010011010000000000000000000000000000000000000000              6976547096570307280896
111110011011101000101011000001010000000000000000000000000000000000000000               4606654095766289645568
1011001000100111010000110010000000000000000000000000000000000000000000000              6572699170591182159872
1100001011101010111110000010001110000000000000000000000000000000000000000              7191199344262830358528
100101010011000100110110001111111100000000000000000000000000000000000000000            22016887670665522446336
11001111001000111101011000100100000000000000000000000000000000000000000000             15284233257106557370368
1101000000001101101100110110101000000000000000000000000000000000000000000              7675820033246287101952
11000010101101100101001001001000000000000000000000000000000000000000000                1795902996263741685760
1110000001110001100000010010110000000000000000000000000000000000000000000              8280499078575465431040
10100001010010101110011000011000000000000000000000000000000000000000000000             11901291293835867979776
11000100011110111001001101011111000000000000000000000000000000000000000000             14497865615155673432064
11101001011000111111011010011010000000000000000000000000000000000000000000             17221177932612567564288
10000111100011111110100111101001000000000000000000000000000000000000000000             10002722103015984070656
1001001001001001101101000011100000000000000000000000000000000000000000000              5397071132389644697600
100100011100100101011100000001010000000000000000000000000000000000000000               2689287368284924018688
1110111000101100110010100111101000000000000000000000000000000000000000000              8787105231532512509952
110010001100100111011100000000000000000000000000000000000000000000000000               3703894315638410182656
11110100011011110111011001111010100000000000000000000000000000000000000000             18036149182643067420672
11110010101111111001110011010000000000000000000000000000000000000000000000             17911676820374964666368
1111010000000000000110000011010000000000000000000000000000000000000000000              9002024733118352588800
10000111110011001000101110110101010000000000000000000000000000000000000000             10020198093771088330752
10011111110000001000001111100001000000000000000000000000000000000000000000             11787617945548664864768
1010001110110011110000010011101110000000000000000000000000000000000000000              6039543966877786046464
101110100100101111111101100001010000000000000000000000000000000000000000               3436570076666975485952
1010110000001110111111101100001100000000000000000000000000000000000000000              6347840992086851584000
1100010101101100111001010101010000000000000000000000000000000000000000000              7283710705611042717696
101011010101100010001101001000000000000000000000000000000000000000000                  399708439522897297408
10101000011100000110000001011100000000000000000000000000000000000000000000             12428602310673146314752
10101110011010111011001010111101110000000000000000000000000000000000000000             12869975770262824550400
100000011110011101111001101001000000000000000000000000000000000000000000000            19170476228187059650560
11011110110001010110110001110101000000000000000000000000000000000000000000             16437612233317349851136
100010101100000011110011000011000000000000000000000000000000000000000000000            20476433214725444075520
100010100000100110000000010010010100000000000000000000000000000000000000000            20370682478836041383936
100100001011101101010011110110001000000000000000000000000000000000000000000            21358636137332818837504
11010000000100110010011010001001010000000000000000000000000000000000000000             15353210834301573136384
11000110111110000010011010001100000000000000000000000000000000000000000                1835168229948320120832
10001000001101001010010111010000000000000000000000000000000000000000000000             10050203443936188432384
1011110010011110111101010000000100000000000000000000000000000000000000000              6958883896368388112384
11001110111110111110101010010110100000000000000000000000000000000000000000             15272727063634951274496
10000000001010101111011001011010010000000000000000000000000000000000000000             9457116009838443233280
110000010101011101101100000110110000000000000000000000000000000000000000               3566521045891541893120
10100000110100110011100101110011000000000000000000000000000000000000000000             11866797498612163018752
100010101110110110000001011001111000000000000000000000000000000000000000000            20502118048242849546240
1100001000101100001110000100001010000000000000000000000000000000000000000              7163709440307081773056
10101011111010101101011111101111000000000000000000000000000000000000000000             12685261974049921171456
11110011000110111001101001101110000000000000000000000000000000000000000000             17938191332172550373376
10110100001010001010100110010001100000000000000000000000000000000000000000             13293375865116969402368
11110000101110111110100100010000000000000000000000000000000000000000000000             17763035796148578156544
1001011100000100000001010101000000000000000000000000000000000000000000                 696437020210526945280
101101000000010110101000011000000000000000000000000000000000000000000000               3320821614587112587264
10101000001010011100111101010110000000000000000000000000000000000000000                1551032862808469405696
10100000111111001111000110010010000000000000000000000000000000000000000000             11878822245956684087296
10101111001111101110010100100111000000000000000000000000000000000000000000             12930849137520573153280
10110011111100111000001110100101100000000000000000000000000000000000000000             13278056958945398882304
100001011011001101011101100101100000000000000000000000000000000000000000000            19730732905885901783040
1101000001111011010110001101111000000000000000000000000000000000000000000              7691621730575567552512
110011001111001111001011001100000000000000000000000000000000000000000000               3780702978584795414528
111000011000010000010101110001100000000000000000000000000000000000000000               4160035147675468824576
1111101110001110011100100000110000000000000000000000000000000000000000                 1160099260548991942656
1110000101101100110110011111000000000000000000000000000000000000000000                 1039590245173370552320
10101000011010100101110000100100000000000000000000000000000000000000000000             12426868178526004051968
11111010111111011000010101010010000000000000000000000000000000000000000                2314977058025419833344
100100000010100011100110000100100000000000000000000000000000000000000000000            21274225675292362407936
110001111000010110010011110101100000000000000000000000000000000000000000               3680527342792309997568
110100110101010111001001110000000000000000000000000000000000000000000                  487305585327811330048
100011101001000001011000011101000000000000000000000000000000000000000000               2629838849349517312000
10000101000110111000011001100101000000000000000000000000000000000000000000             9821601382159792209920
10110000111010001100100001110000000000000000000000000000000000000000000                1631700368465162403840
100011100001011010110110101001100100000000000000000000000000000000000000000            20968594694201281609728
10001000111110100010000110001110000000000000000000000000000000000000000000             10107124149355454398464

1100000110000100101111100111101010000000000000000000000000000000000000000000000        456932713417561520209920
10010001101110110111011101011111110000000000000000000000000000000000000000             10753145046293777743872
100100001011010011001010011011001011110000000000000000000000000000000000000000         170838943426624490569728
111010100110110000000001100001111010010000000000000000000000000000000000000000         276756528897123353100288
1001111001011100110110010011101000000100000000000000000000000000000000000000000 0       747846657576038148603904
1101010111001010100011111010011110011100000000000000000000000000000000000000000 0       1009600654567916108251136

1110000101110111100001101101101110110100000000000000000000000000000000000000000        532368669374487342350336
100110010110001101100001010011011101100000000000000000000000000000000000000000         181088827760010590158848
1000001101000100011100110101111110011000000000000000000000000000000000000000000 0       619892701383498689150976
1000100001100000011001001001011011001001000000000000000000000000000000000000000 0       644019977303000002592768
1110110100110010110001011000101110001100000000000000000000000000000000000000000 0       1120137428268770255699968
111011011111101101010111110111001010000000000000000000000000000000000000000000         280959330078426262405120
1001010100111100010110001000111100000000000000000000000000000000000000000000000        352372895955598358609920
11011000101111010000110010010101010000000000000000000000000000000000000000             15992476587985050009600
11111010101100001110000101011101011000000000000000000000000000000000000000000          147981810864471083581440
1011001111100001000011001101111000000111000000000000000000000000000000000000000 0       849455045036521008660480

1011111111111110011001000000000000000000000000000000000000000000000                    110676840451932160000         100661×1099511627776×1000
1110000001100000001111110010000000000000000000000000000000000000000000                 1034751492411621376000        941102×1099511627776×1000
10001100010010001001010111110000000000000000000000000000000000000000                   161735907546524286976         146952×1099511627776×1001
1000000111110101111110111000110000000000000000000000000000000000000000                 599338725049651691520         543466×1099511627776×1003
1010111010110111000001100000000000000000000000000000000000000000000000                 805730424346065764352         729889×1099511627776×1004
1101111111110000011000000010000000000000000000000000000000000000000000                 1032736201947117256704        935527×1099511627776×1004
110010110111111010100000011000000000000000000000000000000000000000000                  469226680670150983680         424637×1099511627776×1005
1110010010110010000110001000110000000000000000000000000000000000000000                 1054672702468899471360        954448×1099511627776×1005

10000000000000000000000000000000000000000                                              1099511627776
1000000000000000000000000000000000000000000000000000000000000000000000000000000 00      1208925819614629174706176

1000000111110101111110111000110000000000000000000000000000000000000000
1110010010110010000110001000110000000000000000000000000000000000000000
1__00_0_1_110______110__100011

10000000000000000000000000000000000000000                                              1×1099511627776×1
100000000000000000000000000000000000000000                                             1×1099511627776×2
110000000000000000000000000000000000000000                                             1×1099511627776×3
1000000000000000000000000000000000000000000                                            1×1099511627776×4
1010000000000000000000000000000000000000000                                            1×1099511627776×5
100000000000000000000000000000000000000000                                             2×1099511627776×1
110000000000000000000000000000000000000000                                             3×1099511627776×1
1000000000000000000000000000000000000000000                                            4×1099511627776×1
1010000000000000000000000000000000000000000                                            5×1099511627776×1
1100100000000000000000000000000000000000000000                                         50×1099511627776×1
1111101000000000000000000000000000000000000000000                                      500×1099511627776×1
1111101010000000000000000000000000000000000000000                                      501×1099511627776×1
11111010100000000000000000000000000000000000000000                                     501×1099511627776×2
1001110010010000000000000000000000000000000000000000                                   501×1099511627776×5
1111111100000000000000000000000000000000000000000                                      510×1099511627776×1
111111110             510
10011100010000000000000000000000000000000000000000000                                  5000×1099511627776×1
1001110001000         5000
11000011010100000000000000000000000000000000000000000000                               50000×1099511627776×1
1100001101010000      50000
110000110101000000000000000000000000000000000000000000000                              50000×1099511627776×2
11011011101110100000000000000000000000000000000000000000000                            50000×1099511627776×9
11110100001001000000000000000000000000000000000000000000000                            50000×1099511627776×10
11110100001001000000000000000000000000000000000000000000000                            500000×1099511627776×1
1111010000100100000   500000
101010101110011000000000000000000000000000000000000000000000                           700000×1099511627776×1
110110111011101000000000000000000000000000000000000000000000                           900000×1099511627776×1
111101000010010000000000000000000000000000000000000000000000                           1000000×1099511627776×1
11110100001001000000  1000000
1000000000000000000000000000000000000000000000000000000000000                          1048576×1099511627776×1
100000000000000000000 1048576
111111111111111111110000000000000000000000000000000000000000                           1048575×1099511627776×1
11111111111111111111  1048575
1111111111111111111100000000000000000000000000000000000000000000000000000000000 000000000000000000000 1048575×1208925819614629174706176×1
1011111010111100001000000000000000000000000000000000000000000000000                    1000000×1099511627776×100
1111000110000100100111010000000000000000000000000000000000000000000000                 1000000×1099511627776×1013
100110101001001001010000000000000000000000000000000000000000000                        5000×1099511627776×1013


1099511627776×1099511627776 1208925819614629174706176
1208925819614629174706176×1208925819614629174706176 1461501637330902918203684832716283019655932542976

1011111010111100001000000000000000000000000000000000000000000000000                                          1000000×1099511627776×100
1011111010111100001000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000  1000000×1208925819614629174706176×100
1011111010111100001000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000 1000000×1461501637330902918203684832716283019655932542976×100

262!/131!/131! 364950428295639250777230977182937950631063637653015344224357416878384793565048
1048575×1208925819614629174706176×1048575 1329225460484924342264618696048640000  1208925819614629174706176×1099511627776 1329227995784915872903807060280344576
80!/40!/40!                               107507208733336176461620
100!/50!/50!                              100891344545564193334812497256
140!/70!/70!                              93820969697840041204785894580506297666600
120!/60!/60!                              96614908840363322603893139521372656
130!/65!/65!                              95067625827960698145584333020095113100



here it turns out so zeros are added for 20 puzzles, this is 40 + 40 zeros


1000000000000000000000000000000000000000000000000000000000000000000000000000000 00      1208925819614629174706176
1111111111111111111111111111111111111111111111111111111111111111111111111111111 1       1208925819614629174706176(-1)

10000011000100100000100001000000101000000000000000                                     576453884411904             11010010110001010101 0000000000000000000000000000000000111011111111101010111110111101010101110111011 011110111101101111011 1450500
1000011000100111000001000000000000000000000000000000000                                18880272506290176           11010010110001010101 0000000000000000000000000000000101110101101100111110101011110100011001011111111 111101111111111011101 1700914
10000000000011010000011100000000000000000000                                           8799590023168               11010010110001010101 0000000000000000000000000000000000000111111101101111110111011111111111011111110 111000101111111010011 3402713
100101000000000010010000000000001000000000000000000000000000000000000000000            21841269246843326300160     11010010110001010101 0000000000000000000111110110110000111100110111001010100011010011110100011111100 110101011110111110011 231490
100000001111000100000100000000000000000000000000000000000000                           580700744018034688          11010010110001010101 0000000000000000000000000000100011111111111111011011011111110110010111111000110 111101100101111001010 258790
1000000000000010010000101100000000001000000000000000000000000000                       9224008379343568896         11010010110001010101 0000000000000000000000000010111110111111101101010111000110110111110110101100110 111111100110111010010 3224774
1010000100000100000000000000000001000000000                                            5532454748672               11010010110001010101 0000000000000000000000000000000000000111010001110111111110111111100111111110110 111111111011001111111 3464692
10001010000110000000100100000000000000000000000000                                     607343339372544             11010010110001010101 0000000000000000000000000000000000111101011101010110111010111100111101111001111 110111010111111111111 845038
101000000000100111001000000010000000000000000000000000000000000                        5765984128772079616         11010010110001010101 0000000000000000000000000010000111010111110011011100110111111001000110111110111 000111101111111111011 531959
1011100000000010011010001100100110000000000000000                                      404640974962688             11010010110001010101 0000000000000000000000000000000000110101011111110110111111111111111111110010100 001001101111111101111 624928
10101000100000100100000101000000000000000000000                                        92638696964096              11010010110001010101 0000000000000000000000000000000000011010011111011110111111111001111111110111100 011101010111011111111 1363131
100000000000000101001010010010000000000                                                274888729600                11010010110001010101 0000000000000000000000000000000000000001111101001111001110111101111111110111111 101111111111110110111 2584878
1000001000100000000111000000010000000000000                                            4471075643392               11010010110001010101 0000000000000000000000000000000000000110110101111111110111011111110111011011111 111111111011011000111 460364
10000000000000001000010000100100100101000000000000000000000000000000000                1180610218174911086592      11010010110001010101 0000000000000000000000111111100111001101111110111000101011111101111100101100101 010101001001101101011 639556
10000101100101100100000001000000000000                                                 143437860864                11010010110001010101 0000000000000000000000000000000000000001100111101111111111011111101011111011010 111111111011011111111 306764
10000111100100000000110000001001100000000000000000000000000000000                      19536641653416656896        11010010110001010101 0000000000000000000000000100101111101101100010111101100111111011100001111111111 011100110110011100111 545697
1100000000001000000001001001010000010000000000                                         52785167270912              11010010110001010101 0000000000000000000000000000000000010011101111101111100111101100100111111101101 111110111111110111111 521087
1110000001000000100010001000000001000000000000000000000000                             252485399178379264          11010010110001010101 0000000000000000000000000000010111101010101111111001110111110011110110111000011 001110111100111111111 2088597
10000100001000000010000010100100000000000000000                                        72636760719360              11010010110001010101 0000000000000000000000000000000000010111100111111111111110010110101110101111110 111111111111100111100 2993930
10000010000000000000000000000011000100000000000000000000000000000000000                1199038366474748035072      11010010110001010101 0000000000000000000000111111110101010110010110101110111111111111100111001010100 011100110101000110110 3188671
1101000000010000000000000000010011                                                     13962838035                 11010010110001010101 0000000000000000000000000000000000000000100111111111110011111111101111111111110 010111111111101111011 3544993
1001000000110000000000100100000000000000000000000000000000000000000000000000000        340453189689176777293824    11010010110001010101 0000000000000000111101110001111111111011101011011110101101001110000011000001001 101110100111111100000 3706349
10100101000000001010010110010100010000000000000000000000000000000000                   190234961158489505792       11010010110001010101 0000000000000000000000010100011000011100111111110111101111111001011100101101111 100101111101111000110 9665405

11101111101111011101010101111111011111000000000                                        131799304879616             11010010110001010101 0000000000000000000000000000000000011101111101101111101011111110111111011111101 011100111111111110000 171916
111111101101111101011111111111111111100000000000000000000000000000000000000000         300900407024389665587200    11010010110001010101 0000000000000000111001011011001101100100111001011111011001111101111100110110011 011000110100110011010 912410
11111111101111011110110111111010111100000000000000000000000000000000000000000          150963379505513073999872    11010010110001010101 0000000000000000100000110111101111001111110000111001100011110001111100111000011 110011001111110101011 66735
11111111111111010111001111010111111111100000000000000000                               72054793048031232           11010010110001010101 0000000000000000000000000000001011110101100100111011010000111111101100101111111 011111111111111101110 1285381
11110111111111110111111101011111000000000                                              2130286919168               11010010110001010101 0000000000000000000000000000000000000011111111111111110111111101000111101111101 011111011110101101111 2017397
1110111110111111111011111101110111101111000000000                                      527215284182528             11010010110001010101 0000000000000000000000000000000000111010111111110011111011111111111011011010101 100101111101111001111 2074411
111111100111110101111101111111100111110000000000000000000000000000000                  586814457269698166784       11010010110001010101 0000000000000000000000101011011110111011111101000001111110101111110111011101100 101001100101111000101 865171
11110110110111011011110111001111100000000000000000000000000000000                      35577165604173381632        11010010110001010101 0000000000000000000000000110111011011110111001011101101000110111011111110110011 110110110010100111011 1969013
10111101110111111111111111101101111000000000000000000000000000                         3420483897526321152         11010010110001010101 0000000000000000000000000001101011011010111100111001001111011011111100111111011 011100111011010111110 2335793
1111111111111111101111101111101000000000000000000000000000000000000000000000000 0       1208921134182166849126400   11010010110001010101 0000000000000010101100111101011111010111111010000100110010011110001110110010011 100110001110100111110 2737277
110111101111110101101111111100000000000000000000000000000000000000000000               4113439263260321775616      11010010110001010101 0000000000000000000010100000101101101111011001110111000110011111111101011101111 101011011100110110001 2915316
1110111111111010101101100101100000000000000000000000000000000                          2161541776039477248         11010010110001010101 0000000000000000000000000001001111111101011111001101101001111001111011110111100 111101011000111101101 3096661
11110011111010111110111111111111011000                                                 261908856792                11010010110001010101 0000000000000000000000000000000000000001111011111110111011111110111101011011111 110101111100111111111 187237
111111101101011101101101011101101111011000000000000000000000000000000                  587624523626472013824       11010010110001010101 0000000000000000000000101011011111110100010111000111111100011111100111100001011 101110011111100101101 324378
1101110011111111111010111111100000000000000000000000000000000000000000                 1019181200498545917952      11010010110001010101 0000000000000000000000111011111101101011101000010011010010001011010111111110011 101010010111111110111 3195532
111111011010101111101111111100000000000000                                             4358045417472               11010010110001010101 0000000000000000000000000000000000000110101111110111101111111111111011111111110 001011011111011111100 6086716
111110111001011011011001001100000000000000000000000000000                              141632157423501312          11010010110001010101 0000000000000000000000000000001111101111111000011101011001101111111101111111111 101110111101001101000 6186611
1011111111111110011001000000000000000000000000000000000000000000000                    110676840451932160000       11010010110001010101 0000000000000000000000001101111111111010111101110111000011101111111000110110111 110101101010000100011 6374746
111111111101100101111111111000                                                         1073111032                  11010010110001010101 0000000000000000000000000000000000000000001111101101111110111111111111111111111 111111101001101111110 7087942
11110111101111111110011101110000000000000000000                                        136201796845568             11010010110001010101 0000000000000000000000000000000000011101111111111110011111010110001111111111111 111111111100010110001 7247521

10000000000000000000000000000000000000000                                              1099511627776
1111111111111111111111111111111111111111                                               1099511627776(-1)


1000000000000000000000000000000000000000000000000000000000000000000000000000000 00       1208925819614629174706176
1111111111111111111111111111111111111111111111111111111111111111111111111111111 1        1208925819614629174706176(-1)

1000001100010010000010000100000010100000 0000000000                                     576453884411904             11010010110001010101
1000011000100111000001000000000000000000 000000000000000                                18880272506290176           11010010110001010101
1000000000001101000001110000000000000000 0000                                           8799590023168               11010010110001010101
1001010000000000100100000000000010000000 00000000000000000000000000000000000            21841269246843326300160     11010010110001010101
1000000011110001000001000000000000000000 00000000000000000000                           580700744018034688          11010010110001010101
1000000000000010010000101100000000001000 000000000000000000000000                       9224008379343568896         11010010110001010101
1010000100000100000000000000000001000000 000                                            5532454748672               11010010110001010101
1000101000011000000010010000000000000000 0000000000                                     607343339372544             11010010110001010101
1010000000001001110010000000100000000000 00000000000000000000000                        5765984128772079616         11010010110001010101
1011100000000010011010001100100110000000 000000000                                      404640974962688             11010010110001010101
1010100010000010010000010100000000000000 0000000                                        92638696964096              11010010110001010101
100000000000000101001010010010000000000                                                 274888729600                11010010110001010101
1000001000100000000111000000010000000000 000                                            4471075643392               11010010110001010101
1000000000000000100001000010010010010100 0000000000000000000000000000000                1180610218174911086592      11010010110001010101
10000101100101100100000001000000000000                                                  143437860864                11010010110001010101
1000011110010000000011000000100110000000 0000000000000000000000000                      19536641653416656896        11010010110001010101
1100000000001000000001001001010000010000 000000                                         52785167270912              11010010110001010101
1110000001000000100010001000000001000000 000000000000000000                             252485399178379264          11010010110001010101

10000000000000000000000000000000000000000                                               1099511627776
1111111111111111111111111111111111111111                                                1099511627776(-1)


1111111111111111111111111111111111111111 1099511627775
 
1011110111011111111111111110110111100000 815506910688    /1048576 777727,995574951171875
1011111111111110011001000000000000000000 824606720000    /1048576 786406,25
1101110011111111111010111111100000000000 949186459648    /1048576 905214,748046875
1101111011111101011011111111000000000000 957734711296    /1048576 913366,99609375
1110111110111101110101010111111101111100 1029682069372   /1048576 981981,343624114990234375
1110111110111111111011111101110111101111 1029717351919   /1048576 982014,99168300628662109375
1110111111111010101101100101100000000000 1030703437824   /1048576 982955,396484375
11110011111010111110111111111111011000   261908856792    /1048576 249775,74996185302734375
1111011011011101101111011100111110000000 1060282158976   /1048576 1011163,8631591796875
1111011110111111111001110111000000000000 1064076537856   /1048576 1014782,46484375
1111011111111111011111110101111100000000 1065143459584   /1048576 1015799,960693359375
1111101110010110110110010011000000000000 1080567607296   /1048576 1030509,57421875
1111110110101011111011111111000000000000 1089511354368   /1048576 1039038,99609375
1111111001111101011111011111111001111100 1093027102332   /1048576 1042391,874629974365234375
1111111011010111011011010111011011110110 1094535968502   /1048576 1043830,8415431976318359375
1111111011011111010111111111111111111000 1094669303800   /1048576 1043957,99999237060546875
1111111110111101111011011111101011110000 1098403150576   /1048576 1047518,8737640380859375
111111111101100101111111111000           1073111032      /1048576 1023,39842987060546875
1111111111111101011100111101011111111110 1099468888062   /1048576 1048535,2402324676513671875
1111111111111111101111101111101000000000 1099507366400   /1048576 1048571,93603515625

1000000000000000100001000010010010010100 549764474004    /1048576 524296,258930206298828125      7
100000000000000101001010010010000000000  274888729600    /1048576 262154,3212890625              6
1000000000000010010000101100000000001000 549793742856    /1048576 524324,17188262939453125       6
1000000000001101000001110000000000000000 549974376448    /1048576 524496,4375                    6
1000000011110001000001000000000000000000 553799385088    /1048576 528144,25                      6
1000001000000000000000000000001100010000 558345749264    /1048576 532480,0007476806640625        4
1000001000100000000111000000010000000000 558884455424    /1048576 532993,7509765625              6
1000001100010010000010000100000010100000 562943246496    /1048576 536864,515777587890625         8
1000010000100000001000001010010000000000 567474693120    /1048576 541186,0400390625              6
10000101100101100100000001000000000000   143437860864    /1048576 136793,00390625                8
1000011000100111000001000000000000000000 576180191232    /1048576 549488,25                      7
1000011110010000000011000000100110000000 582237292928    /1048576 555264,7523193359375           10
1000101000011000000010010000000000000000 593108729856    /1048576 565632,5625                    6
1001000000110000000000100100000000000000 619280744448    /1048576 590592,140625                  5
1001010000000000100100000000000010000000 635664597120    /1048576 606217,0001220703125           5
1010000000001001110010000000100000000000 687358871552    /1048576 655516,501953125               7
1010000100000100000000000000000001000000 691556843584    /1048576 659520,00006103515625          4
1010010100000000101001011001010001000000 708680455232    /1048576 675850,34869384765625          11
1010100010000010010000010100000000000000 723739820032    /1048576 690212,078125                  7
1011100000000010011010001100100110000000 790314404224    /1048576 753702,5491943359375           12
1100000000001000000001001001010000010000 824768238608    /1048576 786560,2861480712890625        7
1101000000010000000000000000010011       13962838035     /1048576 13316,00001811981201171875     6
1110000001000000100010001000000001000000 963155361856    /1048576 918536,53131103515625          7

40!/39!/1!  40
40!/38!/2!  780
40!/37!/3!  9880
40!/36!/4!  91390
40!/35!/5!  658008
40!/34!/6!  3838380
40!/33!/7!  18643560
40!/32!/8!  76904685
40!/31!/9!  273438880
40!/30!/10! 847660528
40!/29!/11! 2311801440
40!/28!/12! 5586853480

3838380/2^20 3,660564422607421875


1000000000000000000000000000000000000000 549755813888
549755813888/1048576 524288

524288 549755813888/1048576
524296
524324
524496

18446744073709551616
1844674407

1111111111111111111111111111111111011011111110101111111111111101111111111101111 1110111111111111111111111110111111111111111011010000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000
1000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000 170141183460469231731687303715884105728
170141183460469231731687303715884105728/18446744073709551616 9223372036854775808

9223372036854775808 170141183460469231731687303715884105728/18446744073709551616

128!/127!/1!  128
128!/126!/2!  8128
128!/125!/3!  341376
128!/124!/4!  10668000
128!/123!/5!  264566400
128!/122!/6!  5423611200
128!/121!/7!  94525795200
128!/120!/8!  1429702652400
128!/119!/9!  19062702032000
128!/118!/10! 226846154180800
128!/117!/11! 2433440563030400
128!/116!/12! 23726045489546400
128!/115!/13! 211709328983644800
128!/114!/14! 1739040916651368000



below are scripts to demonstrate using the example of 20 puzzles and to search for 64 and others
newbie
Activity: 9
Merit: 1
P.S.S. I am on the south of Ukraine under occupation mostly without money
However you have the money for a rtx2070 many can't afford it and don't whine.

true - i was lucky to get one at the beginning of my PhD program.
member
Activity: 174
Merit: 12
P.S.S. I am on the south of Ukraine under occupation mostly without money
However you have the money for a rtx2070 many can't afford it and don't whine.
newbie
Activity: 9
Merit: 1
Hi there!

Guys, may someone tell me what speed on Kangaroo and full priv <-> address brute (aka bitcrack implementation) could expect for RX 580 8 Gb, GTX 1070 ti, RTX 2070 - and your justification for your assumptions.

We know there are several implementations algorithms for different platforms and yet i've seen different speed numbers and so wondered "why?":

GTX 1070 ti has 2432 CUDA cores

RTX 2070 has  2304 CUDA cores

RX 580 has 2048 stream processors

And all have different architecture - sure i understands that (even Turing dramatically differs from Pascal in sense of "instructions" set or pipe or how to call this differences)

======================

Anyway, from the first glance i could expect close speeds from these three cards and so i am asking here what really could be achieved with these cards and the reason for limit.

P.S. Have been tried Kangaroo on my RTX 2070 (~1000 MKey/s) - found that memory overclock plays significant role that means that memory in the case of RTX 2070 (and probably my config) was a limiting factor (CUDA cores probably but not surely could provide more computational power == more speed)

P.S.S. I am on the south of Ukraine under occupation mostly without money and having bad mood - so i've returned to this problem just to smooth my mood a bit.


(https://github.com/HomelessPhD/BTC32)
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
What ranges tal you brainless ?

You most-probably didn't get the point. Look again at the address what i marked in black.

16jY7qLJAaf5ELEDCNdGqgR8c46CFuCXXk See that? FuCXXk

You got it now? Cheesy

Balance is zero. Fuck,or Fxxck not warned..
member
Activity: 194
Merit: 14
What ranges tal you brainless ?

You most-probably didn't get the point. Look again at the address what i marked in black.

16jY7qLJAaf5ELEDCNdGqgR8c46CFuCXXk See that? FuCXXk

You got it now? Cheesy
Jump to: