Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 269. (Read 229433 times)

full member
Activity: 706
Merit: 111
newbie
Activity: 2
Merit: 0
can you please share a python program to find private key from public key using baby giant step method
jr. member
Activity: 184
Merit: 3
another search option, but not fast  Grin

each of the 3 according to their position...

i.e 2^... trimming and structuring from smallest to largest, so that all sets are completely filled from 1 to 1000, from 1 to 1000000 etc.

2 numbers

970
  
436
  
974
  
005
6 05 0 0 1
51 50 1 1 0
  
023
  
690
  
481

3 numbers

970
80 079 2 1 0
98 097 1 2 0
710 709 2 0 1
791 790 1 0 2
908 907 0 2 1
971 970 0 1 2
  
436
347 346 1 0 2
365 364 2 0 1
437 436 0 1 2
464 463 0 2 1
635 634 2 1 0
644 643 1 2 0
  
974
480 479 2 1 0
498 497 1 2 0
750 749 2 0 1
795 794 1 0 2
948 947 0 2 1
975 974 0 1 2
  
005
6 005 0 0 2
16 015 0 0 2
26 025 0 0 2
36 035 0 0 2
46 045 0 0 2
51 050 0 0 1
52 051 0 0 1
53 052 0 0 1
54 053 0 0 1
55 054 0 0 1
56 055 0 0 1
57 056 0 0 1
58 057 0 0 1
59 058 0 0 1
60 059 0 0 1
66 065 0 0 2
76 075 0 0 2
86 085 0 0 2
96 095 0 0 2
106 105 1 1 2
151 150 2 2 1
206 205 1 1 2
251 250 2 2 1
306 305 1 1 2
351 350 2 2 1
406 405 1 1 2
451 450 2 2 1
501 500 1 1 0
502 501 1 1 0
503 502 1 1 0
504 503 1 1 0
505 504 1 1 0
506 505 1 1 0
507 506 1 1 0
508 507 1 1 0
509 508 1 1 0
510 509 1 1 0
511 510 2 2 0
521 520 2 2 0
531 530 2 2 0
541 540 2 2 0
551 550 2 2 0
561 560 2 2 0
571 570 2 2 0
581 580 2 2 0
591 590 2 2 0
606 605 1 1 2
651 650 2 2 1
706 705 1 1 2
751 750 2 2 1
806 805 1 1 2
851 850 2 2 1
906 905 1 1 2
951 950 2 2 1
  
023
24 023 0 1 2
33 032 0 2 1
204 203 1 0 2
231 230 2 0 1
303 302 1 2 0
321 320 2 1 0
  
690
70 069 1 2 0
97 096 2 1 0
610 609 0 2 1
691 690 0 1 2
907 906 2 0 1
961 960 1 0 2
  
481
149 148 1 2 0
185 184 2 1 0
419 418 0 2 1
482 481 0 1 2
815 814 2 0 1
842 841 1 0 2

or 6 numbers

Quote
count = 0

v = []
S=[]

Nn =['970', '436', '974', '005', '023', '690', '481'] #970 436 974 005 023 690 481
for elem in Nn:
    h1 = elem #970436974005023690481 108717677802902655490863978809014617508706260176761067916188909553243434167589
    print("   ")
    print(elem)
    g1 = ([h1[i:i + 1] for i in range(0, len(h1), 1)])


    g = g1





    i = 256
    while i <= 10000:
        a=pow(2,i)
        b = str(a)[1:6]
        v.append(b)
        i=i+1

    j = set(v)
    jj = sorted(j)
    for elem in jj:
        count += 1
        if g[0] in elem:
            if g[1] in elem:
                if g[2] in elem:
                    
                    print(count,elem,elem.index(g[0]),elem.index(g[1]),elem.index(g[2]))
                    j = (elem,elem.index(g[0]),elem.index(g[1]),elem.index(g[2]))
                    S.append(j)
                    #print(sorted(S))
        #print(elem)
    
    count = 0


well, we get at 3 numbers combinations 0 0 0 2 2 2, at 6 nembers 0 0 0 4 4 4. 2x2x2=8 8x8x8x8x8x8x8 = 2097152,  4x4x4 = 64 64x64x64x64x64x64x64 = 44392781971456

at 3 numbers the spread is large for step by step
at 6 nembers less spread but more combinations 0 0 0 4 4 4.

that is, the search looks like this

970
530 04739 4 2 0
  
436
516 04639 1 3 2
  
974
530 04739 4 2 1
  
005
500 04507 0 0 2
  
023
584 05236 0 2 3

690
516 04639 2 4 0

481  
511 04581 1 3 4

from 500 to 600 step by step 100×100×100×100×100×100×100 = 100000000000000
  
maybe can get something out of this...

or for 22 pz. lenght 0 1, 10×10×10×10×10×10×10×10×10×10×10= 100000000000

Quote
count = 0

v = []
S=[]

      
h2 = ("9704369740050236904811") #970436974005023690481 108717677802902655490863978809014617508706260176761067916188909553243434167589
g2 = ([h2[i:i + 1] for i in range(0, len(h2), 1)])

Nn =g2 #970 436 974 005 023 690 481
for elem in Nn:
    h1 = elem #970436974005023690481 108717677802902655490863978809014617508706260176761067916188909553243434167589
    print("   ")
    print(elem)
    g1 = ([h1[i:i + 1] for i in range(0, len(h1), 1)])


    g = g1





    i = 256
    while i <= 10000:
        a=pow(2,i)
        b = str(a)[1:3]
        v.append(b)
        i=i+1

    j = set(v)
    jj = sorted(j)
    for elem in jj:
        count += 1
        if g[0] in elem:
            
                
            if count >= 50:
                if count <= 60:
                    
                    print(count,elem,elem.index(g[0]))
                    j = (elem,elem.index(g[0]))
                    S.append(j)
                    #print(sorted(S))
        #print(elem)
    
    count = 0

9
50 49 1
60 59 1
  
7
58 57 1
  
0
51 50 1
  
4
50 49 0
55 54 1
  
3
54 53 1
  
6
57 56 1
  
9
50 49 1
60 59 1
  
7
58 57 1
  
4
50 49 0
55 54 1
  
0
51 50 1
  
0
51 50 1
  
5
51 50 0
52 51 0
53 52 0
54 53 0
55 54 0
56 55 0
57 56 0
58 57 0
59 58 0
60 59 0
  
0
51 50 1
  
2
53 52 1
  
3
54 53 1
  
6
57 56 1
  
9
50 49 1
60 59 1
  
0
51 50 1
  
4
50 49 0
55 54 1
  
8
59 58 1
  
1
52 51 1
  
1
52 51 1

if I think correctly 2 positions 0 and 1 for 11 seats calculated as 2×2×2×2×2×2×2×2×2×2×2=2048, by 10 step by step, 10×10×10×10×10×10×10×10×10×10×10= 100000000000,  2048×100000000000 = 204800000000000.

204800000000000
vs
9999999999999999999999

although need 10 hike 22 multiply(( but anyway an interesting result from 50 to 60, from 0 to 10 another result.

111111101111111         119666659114170         32639
111111111111111         191206974700443         32767
111111110111010         409118905032525         32698
111111111111111         611140496167764         32767
1101111010101111        2058769515153876        57007
1111110111111111        4216495639600700        65023
1111111111111111        6763683971478124        65535
1111100111111111        9974455244496707        63999
11110111111111111       30045390491869460       126975  
11111111111111010       44218742292676575       131066
111110101111111111      138245758910846492      257023  
111111111111111111      199976667976342049      262143
010111111101111111      525070384258266191      98175
1110111101111111111     1135041350219496382     490495
1110111011111101111     1425787542618654982     489455
1111111011011111111     3908372542507822062     521983
1111111111011111111     8993229949524469768     524031
11011111111111111100    30568377312064202855    917500
111111111110111111111   970436974005023690481   2096639
11011111111111111111111 22538323240989823823367 7340031

...
4
50 49 0
55 54 1
...
such can be considered by 1
legendary
Activity: 952
Merit: 1385
Precisely it will be:
<8000000000000000/7cce5efdaccf6808, ffffffffffffffff/7cce5efdaccf6808>

;-)
hero member
Activity: 583
Merit: 502
For those who do not believe the keys are random: what would be the next value?


< 3.5
VTC
member
Activity: 84
Merit: 14
For those who do not believe the keys are random: what would be the next value?



< 2.5
legendary
Activity: 952
Merit: 1385
For those who do not believe the keys are random: what would be the next value?

jr. member
Activity: 149
Merit: 7
rosengold, is it available to test freely.. or not yet.? thanks

not yet, I want to show a minimum working script in the bits +50, I'll share when I finish it.
jr. member
Activity: 480
Merit: 4
Hi guys,

In continuation to this thread: https://bitcointalksearch.org/topic/brute-force-on-bitcoin-addresses-video-of-the-action-1305887

While playing around with my bot, I found out this mysterious transaction:

https://blockchain.info/tx/08389f34c98c606322740c0be6a7125d9860bb8d5cb182c02f98461e5fa6cd15

those 32.896 BTC were sent to multiple addresses, all the private keys of those addresses seem to be generated by some kind of formula.

For example:

Address 2:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU74sHUHy8S
1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb
Biginteger PVK value: 3
Hex PVK value: 3

Address 3:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU76rnZwVdz
19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA
Biginteger PVK value: 7
Hex PVK value: 7

Address 4:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU77MfhviY5
1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e
Biginteger PVK value: 8
Hex PVK value: 8

Address 5:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU7Dq8Au4Pv
1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k
Biginteger PVK value: 21
Hex PVK value: 15

Address 6:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU7Tmu6qHxS
1PitScNLyp2HCygzadCh7FveTnfmpPbfp8
Biginteger PVK value: 49
Hex PVK value: 31

Address 7:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU7hDgvu64y
1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC
Biginteger PVK value: 76
Hex PVK value: 4C

Address 8:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU8xvGK1zpm
1M92tSqNmQLYw33fuBvjmeadirh1ysMBxK
Biginteger PVK value: 224
Hex PVK value: E0

Address 9:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUB3vfDKcxZ
1CQFwcjw1dwhtkVWBttNLDtqL7ivBonGPV
Biginteger PVK value: 467
Hex PVK value: 1d3

Address 10:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUBTL67V6dE
1LeBZP5QCwwgXRtmVUvTVrraqPUokyLHqe
Biginteger PVK value: 514
Hex PVK value: 202

Address 11:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUGxXgtm63M
1PgQVLmst3Z314JrQn5TNiys8Hc38TcXJu
Biginteger PVK value: 1155
Hex PVK value: 483

Address 12:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUW5RtS2JN1
1DBaumZxUkM4qMQRt2LVWyFJq5kDtSZQot
Biginteger PVK value: 2683
Hex PVK value: a7b

Address 13:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUspniiQZds
1Pie8JkxBT6MGPz9Nvi3fsPkr2D8q3GBc1
Biginteger PVK value: 5216
Hex PVK value: 1460

Address 14:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFVfZyiN5iEG
1ErZWg5cFCe4Vw5BzgfzB74VNLaXEiEkhk
Biginteger PVK value: 10544
Hex PVK value: 2930

and so on...

until the addresses 50 (1MEzite4ReNuWaL5Ds17ePKt2dCxWEofwk) it was already cracked by someone.

Any ideas what's the formula behind the generation of these addresses?

Address 2, pvk decimal value: 3
Address 3, pvk decimal value: 7
Address 4, pvk decimal value: 8
Address 5, pvk decimal value: 21
Address 6, pvk decimal value: 49
Address 7, pvk decimal value: 76
Address 8, pvk decimal value: 224
Address 9, pvk decimal value: 467
Address 10, pvk decimal value: 514
Address 11, pvk decimal value: 1155
Address 12, pvk decimal value: 2683
Address 13, pvk decimal value: 5216
Address 14, pvk decimal value: 10544
Address 15 and after, pvk decimal value: ?

The prize would be ~32 BTC Smiley

EDIT: If you find the solution feel free to leave a tip Smiley 1DPUhjHvd2K4ZkycVHEJiN6wba79j5V1u3


i do not see the possibility in solving this complex technology with the help of this detail as it is almost not to be computed by humans but by a computer. although its an old post but then it is simply a computerized puzzle.
full member
Activity: 431
Merit: 105
rosengold, is it available to test freely.. or not yet.? thanks
jr. member
Activity: 149
Merit: 7
At this time we have two possibilities well tested to solve #64 or #120:
for #64 once we don't know this public key we need to find solutions by brute force searching the range in a faster way that we can, (maybe using steps ? looking for patterns ?).

for #120 and others known public keys you can try (by your own luck) for example the Jean_Luc solution for server, rent some GPU power at Vast.ai and TRY IT, of course there's no warranty.

I'm working on something useful in python but it is very slow, that's why I convinced that the future of this puzzle is the computer distributed solutions by GPU.   
newbie
Activity: 1
Merit: 0
Pvk creation based on time. So as long as it is made later on in time the value of it will be higher.

Or.. this never happened.

A Bitcoin address, or simply address, is an identifier of 26-35 alphanumeric characters, beginning with the number 1, 3 or bc1 that represents a possible destination for a bitcoin payment. Addresses can be generated at no cost by any user of Bitcoin

19g7Xg7yWJ3FiFF1WTZj2WR1g1h59Hmb1k

Or bot error.

Anyways.

19g7Xg7yWJ3FiFF1WTZj2WR1g1h59Hmb1k
jr. member
Activity: 184
Merit: 3
hi andzhig,

is this the one we should use or the previous one, so much code put on my screen,
i am totally lost there, as others.

better such a variation with many copies running simultaneously...

Quote

and what if found pk. its only in the saved txt file . but is it also on the screen i mean?
thanks for you'r code
learn a little Python 3 (at least video on YouTube). The found pk will be saved to the file, and the process itself runs on the screen. You can disable the display on "the screen", it will increase the speed but begin to consume more PC resources and have to reduce the number of simultaneously running copies.

***

can try selection for mixing... take the first 3000 characters 2^... by 3, 1000 parts, set "000-999" - these 1000 parts get somewhere under 300-400 parts for mixing

Quote
from collections import Counter
import random
from bit import Key
#from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())

import time

Nn =['000', '001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '014', '015',
     '016', '017', '018', '019', '020', '021', '022', '023', '024', '025', '026', '027', '028', '029', '030', '031',
     '032', '033', '034', '035', '036', '037', '038', '039', '040', '041', '042', '043', '044', '045', '046', '047',
     '048', '049', '050', '051', '052', '053', '054', '055', '056', '057', '058', '059', '060', '061', '062', '063',
     '064', '065', '066', '067', '068', '069', '070', '071', '072', '073', '074', '075', '076', '077', '078', '079',
     '080', '081', '082', '083', '084', '085', '086', '087', '088', '089', '090', '091', '092', '093', '094', '095',
     '096', '097', '098', '099', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111',
     '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '124', '125', '126', '127', '128',
     '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144',
     '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160',
     '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176',
     '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192',
     '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
     '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224',
     '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240',
     '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256',
     '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272',
     '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
     '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304',
     '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320',
     '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336',
     '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352',
     '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
     '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384',
     '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400',
     '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416',
     '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432',
     '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
     '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464',
     '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480',
     '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496',
     '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512',
     '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
     '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544',
     '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560',
     '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576',
     '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592',
     '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
     '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624',
     '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640',
     '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656',
     '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672',
     '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
     '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704',
     '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720',
     '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736',
     '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752',
     '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
     '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784',
     '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800',
     '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816',
     '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832',
     '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
     '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864',
     '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880',
     '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896',
     '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912',
     '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
     '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944',
     '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960',
     '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976',
     '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992',
     '993', '994', '995', '996', '997', '998', '999']

print(len(Nn))
h1 = ("970436974005023690481") #970436974005023690481 108717677802902655490863978809014617508706260176761067916188909553243434167589
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])

i = 10000
while i <=20000:
    a = pow(2,i)
    b = str(a)[0:3000]
    gg = ([b[i:i + 3] for i in range(0, len(b), 3)])
    #print(b,gg,len(gg))
    g1=set(Nn)-set(gg)
    
    if g[0] in g1:
        if g[1] in g1:
            if g[2] in g1:
                if g[3] in g1:
                    if g[4] in g1:
                        if g[5] in g1:
                            if g[6] in g1:
                                print(b,gg,len(gg))
                                print(i,g1,len(g1))
        
    i=i+1
[/size]


2^14498 cut len 3000
Quote
2152172790526322282099048994652258508039603039673211733525713441471518983250474 7360041039773915274567293680864225895507932709564948320163241212931673778531899 0524808857926336915199883613973746542291305938597070283011445043178315417723607 2497877218342746897036946143899633009485907301180549119732550640205706015686523 7883974861049757146050661420786318094481237008442411377435910672001403838503655 9525908310416962264754458491058346870024682233770517889727950256254795201630066 0839492151296157576281334193296933193816542890109597207206619280251229140461096 7228785809710341207467929234300094319000188937234352054173848404249321290486427 1640662983677351122416826608904274177651759727441211171397193420184116071242127 3025865019876039979401213434959259171621798188931685037360393330066109615247661 0639226563066239006185070554324419389777877278419364179881690946497850665756042 5512284583410796057725507021712705673730813487964567279040458316102925224471002 1796988113114411719333019955847307131324406746073036302613816586663172324126971 7348929492192636427381543125209629990294371448968364418297984667041995755695468 2878090667564912201637203398916187311203013782002394867602480619967926804038786 0228535717898300360781481652248200590441365021319031578276718309034241769952861 3051319780141525171709465146705223972519126036749966268479285602255643865580737 2810883680347255091659621946303681236814726070301897660205435192741396500595666 7969791110787590283194001200732332134468771069415330572918688116723948512318494 8254170895845357928652934471588879009951971248506865773554280007005431404280554 4423993447445001851574125869379603975888134762319678349842123681048814916810990 2871043773645632263387844877486647591511371611137639148910953423978720842341256 4263315446498123819029926875682394493313588134287231843820369714013354244436009 5335156520475311161435107808670937473266220762905585457221128188171178724994961 9513450096700627750668479345590207588989080162610572276390821216938915211709166 2152744754359033552296810601798663835801932812377303213423606045395311399704661 5652934984087493205342567132709472875979817538230156895089965528831402748920615 0138053937443120082803845065976564166421910061701622642446222260971142769639619 6155174839469735981877545363221921605864385299286149328024669909181177366988570 6108299896215415204888018824397856044971848580359996233207326775935237163465182 5033512127110203384283406960915649157214771336621102670088691076653292125058372 3130866474370322462605007448911985619385087307044452137120143045936893765867094 8022811013085498507516624747470406845935925354852408146018304294070935636001122 9452499101930798817047051124249072073746300572519763589684650095919487913747482 7273407298884609911195447866255419152094055853247568215452848445639682201386262 8061660269728842157374027716516166718795006142251330860630045517139533089814581 3523671424604261157812972474197909635081458614264746631882583448099483552384560 88745460765177329317229449264273834227092569650361104381486763417054354332823
['215', '217', '279', '052', '632', '228', '209', '904', '899', '465', '225', '850', '803', '960', '303', '967', '321', '173', '352', '571', '344', '147', '151', '898', '325', '047', '473', '600', '410', '397', '739', '152', '745', '672', '936', '808', '642', '258', '955', '079', '327', '095', '649', '483', '201', '632', '412', '129', '316', '737', '785', '318', '990', '524', '808', '857', '926', '336', '915', '199', '883', '613', '973', '746', '542', '291', '305', '938', '597', '070', '283', '011', '445', '043', '178', '315', '417', '723', '607', '249', '787', '721', '834', '274', '689', '703', '694', '614', '389', '963', '300', '948', '590', '730', '118', '054', '911', '973', '255', '064', '020', '570', '601', '568', '652', '378', '839', '748', '610', '497', '571', '460', '506', '614', '207', '863', '180', '944', '812', '370', '084', '424', '113', '774', '359', '106', '720', '014', '038', '385', '036', '559', '525', '908', '310', '416', '962', '264', '754', '458', '491', '058', '346', '870', '024', '682', '233', '770', '517', '889', '727', '950', '256', '254', '795', '201', '630', '066', '083', '949', '215', '129', '615', '757', '628', '133', '419', '329', '693', '319', '381', '654', '289', '010', '959', '720', '720', '661', '928', '025', '122', '914', '046', '109', '672', '287', '858', '097', '103', '412', '074', '679', '292', '343', '000', '943', '190', '001', '889', '372', '343', '520', '541', '738', '484', '042', '493', '212', '904', '864', '271', '640', '662', '983', '677', '351', '122', '416', '826', '608', '904', '274', '177', '651', '759', '727', '441', '211', '171', '397', '193', '420', '184', '116', '071', '242', '127', '302', '586', '501', '987', '603', '997', '940', '121', '343', '495', '925', '917', '162', '179', '818', '893', '168', '503', '736', '039', '333', '006', '610', '961', '524', '766', '106', '392', '265', '630', '662', '390', '061', '850', '705', '543', '244', '193', '897', '778', '772', '784', '193', '641', '798', '816', '909', '464', '978', '506', '657', '560', '425', '512', '284', '583', '410', '796', '057', '725', '507', '021', '712', '705', '673', '730', '813', '487', '964', '567', '279', '040', '458', '316', '102', '925', '224', '471', '002', '179', '698', '811', '311', '441', '171', '933', '301', '995', '584', '730', '713', '132', '440', '674', '607', '303', '630', '261', '381', '658', '666', '317', '232', '412', '697', '173', '489', '294', '921', '926', '364', '273', '815', '431', '252', '096', '299', '902', '943', '714', '489', '683', '644', '182', '979', '846', '670', '419', '957', '556', '954', '682', '878', '090', '667', '564', '912', '201', '637', '203', '398', '916', '187', '311', '203', '013', '782', '002', '394', '867', '602', '480', '619', '967', '926', '804', '038', '786', '022', '853', '571', '789', '830', '036', '078', '148', '165', '224', '820', '059', '044', '136', '502', '131', '903', '157', '827', '671', '830', '903', '424', '176', '995', '286', '130', '513', '197', '801', '415', '251', '717', '094', '651', '467', '052', '239', '725', '191', '260', '367', '499', '662', '684', '792', '856', '022', '556', '438', '655', '807', '372', '810', '883', '680', '347', '255', '091', '659', '621', '946', '303', '681', '236', '814', '726', '070', '301', '897', '660', '205', '435', '192', '741', '396', '500', '595', '666', '796', '979', '111', '078', '759', '028', '319', '400', '120', '073', '233', '213', '446', '877', '106', '941', '533', '057', '291', '868', '811', '672', '394', '851', '231', '849', '482', '541', '708', '958', '453', '579', '286', '529', '344', '715', '888', '790', '099', '519', '712', '485', '068', '657', '735', '542', '800', '070', '054', '314', '042', '805', '544', '423', '993', '447', '445', '001', '851', '574', '125', '869', '379', '603', '975', '888', '134', '762', '319', '678', '349', '842', '123', '681', '048', '814', '916', '810', '990', '287', '104', '377', '364', '563', '226', '338', '784', '487', '748', '664', '759', '151', '137', '161', '113', '763', '914', '891', '095', '342', '397', '872', '084', '234', '125', '642', '633', '154', '464', '981', '238', '190', '299', '268', '756', '823', '944', '933', '135', '881', '342', '872', '318', '438', '203', '697', '140', '133', '542', '444', '360', '095', '335', '156', '520', '475', '311', '161', '435', '107', '808', '670', '937', '473', '266', '220', '762', '905', '585', '457', '221', '128', '188', '171', '178', '724', '994', '961', '951', '345', '009', '670', '062', '775', '066', '847', '934', '559', '020', '758', '898', '908', '016', '261', '057', '227', '639', '082', '121', '693', '891', '521', '170', '916', '621', '527', '447', '543', '590', '335', '522', '968', '106', '017', '986', '638', '358', '019', '328', '123', '773', '032', '134', '236', '060', '453', '953', '113', '997', '046', '615', '652', '934', '984', '087', '493', '205', '342', '567', '132', '709', '472', '875', '979', '817', '538', '230', '156', '895', '089', '965', '528', '831', '402', '748', '920', '615', '013', '805', '393', '744', '312', '008', '280', '384', '506', '597', '656', '416', '642', '191', '006', '170', '162', '264', '244', '622', '226', '097', '114', '276', '963', '961', '961', '551', '748', '394', '697', '359', '818', '775', '453', '632', '219', '216', '058', '643', '852', '992', '861', '493', '280', '246', '699', '091', '811', '773', '669', '885', '706', '108', '299', '896', '215', '415', '204', '888', '018', '824', '397', '856', '044', '971', '848', '580', '359', '996', '233', '207', '326', '775', '935', '237', '163', '465', '182', '503', '351', '212', '711', '020', '338', '428', '340', '696', '091', '564', '915', '721', '477', '133', '662', '110', '267', '008', '869', '107', '665', '329', '212', '505', '837', '231', '308', '664', '743', '703', '224', '626', '050', '074', '489', '119', '856', '193', '850', '873', '070', '444', '521', '371', '201', '430', '459', '368', '937', '658', '670', '948', '022', '811', '013', '085', '498', '507', '516', '624', '747', '470', '406', '845', '935', '925', '354', '852', '408', '146', '018', '304', '294', '070', '935', '636', '001', '122', '945', '249', '910', '193', '079', '881', '704', '705', '112', '424', '907', '207', '374', '630', '057', '251', '976', '358', '968', '465', '009', '591', '948', '791', '374', '748', '272', '734', '072', '988', '846', '099', '111', '954', '478', '662', '554', '191', '520', '940', '558', '532', '475', '682', '154', '528', '484', '456', '396', '822', '013', '862', '628', '061', '660', '269', '728', '842', '157', '374', '027', '716', '516', '166', '718', '795', '006', '142', '251', '330', '860', '630', '045', '517', '139', '533', '089', '814', '581', '352', '367', '142', '460', '426', '115', '781', '297', '247', '419', '790', '963', '508', '145', '861', '426', '474', '663', '188', '258', '344', '809', '948', '355', '238', '456', '088', '745', '460', '765', '177', '329', '317', '229', '449', '264', '273', '834', '227', '092', '569', '650', '361', '104', '381', '486', '763', '417', '054', '354', '332', '823'] 1000
[/size]
"000-999" - 2^14498 cut len 3000 = 357 parts for mix (example for 970436974005023690481, 970 436 974 005 023 690 481)

Quote
2^14498 {'901', '939', '825', '243', '353', '769', '434', '181', '530', '777', '776', '566', '409', '547', '553', '927', '924', '691', '648', '198', '413', '407', '548', '186', '752', '380', '733', '331', '041', '278', '069', '253', '974', '466', '998', '685', '836', '687', '623', '970', '144', '592', '382', '403', '035', '383', '339', '634', '195', '488', '688', '843', '337', '031', '433', '577', '026', '732', '469', '437', '768', '005', '550', '175', '313', '376', '729', '149', '701', '871', '534', '838', '985', '202', '535', '443', '492', '894', '366', '710', '029', '887', '388', '259', '884', '854', '322', '391', '835', '617', '432', '722', '275', '923', '972', '755', '051', '245', '290', '510', '105', '222', '575', '055', '844', '647', '802', '295', '362', '676', '155', '086', '616', '401', '932', '999', '761', '572', '866', '117', '034', '879', '880', '753', '612', '200', '153', '537', '172', '363', '429', '375', '365', '007', '141', '189', '828', '906', '913', '461', '257', '395', '788', '874', '523', '793', '414', '890', '049', '557', '150', '405', '451', '982', '263', '468', '241', '037', '288', '760', '159', '625', '404', '075', '307', '562', '821', '270', '918', '206', '218', '262', '526', '797', '942', '065', '609', '645', '323', '422', '629', '350', '833', '504', '208', '900', '545', '003', '604', '250', '536', '386', '605', '490', '606', '320', '210', '719', '164', '169', '194', '692', '686', '454', '582', '749', '731', '281', '952', '596', '081', '240', '277', '479', '780', '573', '578', '646', '515', '922', '100', '783', '587', '309', '840', '876', '593', '931', '841', '886', '980', '771', '476', '552', '598', '561', '947', '030', '966', '357', '509', '063', '565', '599', '892', '668', '531', '627', '750', '421', '779', '767', '620', '631', '690', '214', '023', '618', '594', '882', '138', '196', '794', '653', '442', '356', '511', '855', '494', '675', '053', '439', '806', '989', '341', '956', '518', '635', '742', '700', '969', '093', '418', '462', '126', '555', '101', '829', '334', '373', '012', '799', '481', '298', '539', '296', '589', '056', '702', '143', '514', '098', '306', '077', '183', '588', '930', '348', '576', '235', '695', '859', '293', '158', '067', '448', '436', '185', '546', '707', '015', '452', '167', '080', '324', '929', '977', '285', '223', '004', '611', '764', '369', '819', '282', '248', '540', '991', '427', '496', '740', '463', '751', '832', '411', '387', '160', '124', '033', '450', '919', '549', '455', '865', '399', '174', '076'} 357
[/size]

the crap is that you have to sort through everything in order, from 2^10000 to 2^20000...

***

or take 00-99 set, 22 num puzzle length, 2^512-1024

Quote
from collections import Counter
import random
from bit import Key
#from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())

import time

Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']

print("00-99 lenght",len(Nn))
print("*****")

h1 = ("9704369740050236904812") #970436974005023690481 108717677802902655490863978809014617508706260176761067916188909553243434167589
g = ([h1[i:i + 2] for i in range(0, len(h1), 2)])
print(g)
print("*****")

i = 512
while i <=1024:
    a = pow(2,i)
    b = str(a)[0:150]
    gg = ([b[i:i + 2] for i in range(0, len(b), 2)])
    #print(b,gg,len(gg))
    g1=set(Nn)-set(gg)
   
    if g[0] in g1:
        if g[1] in g1:
            if g[2] in g1:
                if g[3] in g1:
                    if g[4] in g1:
                        if g[5] in g1:
                            if g[6] in g1:
                                print(b,gg,len(gg))
                                print(i,g1,len(g1))
       
    i=i+1
 

00-99 lenght 100
*****
['97', '04', '36', '97', '40', '05', '02', '36', '90', '48', '12']
*****
1582914569427869017987216134525742016224840634247755775450003558994542240681803 94989002496679195548793342509712650329177184873621956320774379229539265 ['15', '82', '91', '45', '69', '42', '78', '69', '01', '79', '87', '21', '61', '34', '52', '57', '42', '01', '62', '24', '84', '06', '34', '24', '77', '55', '77', '54', '50', '00', '35', '58', '99', '45', '42', '24', '06', '81', '80', '39', '49', '89', '00', '24', '96', '67', '91', '95', '54', '87', '93', '34', '25', '09', '71', '26', '50', '32', '91', '77', '18', '48', '73', '62', '19', '56', '32', '07', '74', '37', '92', '29', '53', '92', '65'] 75

2^582 {'04', '20', '63', '10', '76', '46', '68', '36', '17', '90', '03', '85', '14', '08', '12', '51', '30', '22', '88', '23', '86', '41', '44', '47', '94', '43', '05', '66', '98', '27', '31', '60', '13', '02', '16', '97', '28', '83', '70', '33', '59', '40', '75', '11', '64', '72', '38'} 47


6483618076376551497675637287017439298456947237878807656243214577641645017832668 97874954226397984967857530919783015748309749242355533089891857324192830 ['64', '83', '61', '80', '76', '37', '65', '51', '49', '76', '75', '63', '72', '87', '01', '74', '39', '29', '84', '56', '94', '72', '37', '87', '88', '07', '65', '62', '43', '21', '45', '77', '64', '16', '45', '01', '78', '32', '66', '89', '78', '74', '95', '42', '26', '39', '79', '84', '96', '78', '57', '53', '09', '19', '78', '30', '15', '74', '83', '09', '74', '92', '42', '35', '55', '33', '08', '98', '91', '85', '73', '24', '19', '28', '30'] 75

594 {'04', '20', '48', '69', '10', '46', '68', '36', '17', '90', '03', '00', '50', '14', '06', '25', '12', '58', '22', '23', '71', '86', '41', '44', '47', '54', '05', '67', '27', '31', '60', '13', '18', '02', '97', '93', '34', '70', '99', '82', '59', '40', '11', '81', '52', '38'} 46


3827252586451048778865508126095030941032993580173332782213605898919000286184804 87938625922563193922631543171072275306339217017539353677701956462607679 ['38', '27', '25', '25', '86', '45', '10', '48', '77', '88', '65', '50', '81', '26', '09', '50', '30', '94', '10', '32', '99', '35', '80', '17', '33', '32', '78', '22', '13', '60', '58', '98', '91', '90', '00', '28', '61', '84', '80', '48', '79', '38', '62', '59', '22', '56', '31', '93', '92', '26', '31', '54', '31', '71', '07', '22', '75', '30', '63', '39', '21', '70', '17', '53', '93', '53', '67', '77', '01', '95', '64', '62', '60', '76', '79'] 75

2^663 {'37', '15', '04', '20', '69', '46', '68', '36', '03', '85', '49', '57', '14', '06', '08', '12', '19', '74', '51', '73', '23', '41', '44', '47', '29', '43', '05', '66', '55', '18', '24', '02', '16', '97', '87', '83', '96', '34', '89', '82', '40', '11', '72', '52', '42'} 45


9475818434452569184258908010635391572612829694315775214471753161780096146767437 05035936528826078172577201984068073164798688708523019295893215507370020 ['94', '75', '81', '84', '34', '45', '25', '69', '18', '42', '58', '90', '80', '10', '63', '53', '91', '57', '26', '12', '82', '96', '94', '31', '57', '75', '21', '44', '71', '75', '31', '61', '78', '00', '96', '14', '67', '67', '43', '70', '50', '35', '93', '65', '28', '82', '60', '78', '17', '25', '77', '20', '19', '84', '06', '80', '73', '16', '47', '98', '68', '87', '08', '52', '30', '19', '29', '58', '93', '21', '55', '07', '37', '00', '20'] 75

2^754 {'32', '15', '04', '48', '76', '46', '36', '56', '03', '85', '49', '01', '74', '51', '22', '88', '23', '86', '95', '41', '54', '05', '66', '27', '79', '13', '24', '02', '92', '39', '09', '97', '83', '89', '99', '33', '59', '40', '11', '64', '72', '38', '62'} 43

7507516828804700229971157695509256861311759593549503536677899390762631562619231 70794741019858033138084855401918470546261918269066630224326176146090663 ['75', '07', '51', '68', '28', '80', '47', '00', '22', '99', '71', '15', '76', '95', '50', '92', '56', '86', '13', '11', '75', '95', '93', '54', '95', '03', '53', '66', '77', '89', '93', '90', '76', '26', '31', '56', '26', '19', '23', '17', '07', '94', '74', '10', '19', '85', '80', '33', '13', '80', '84', '85', '54', '01', '91', '84', '70', '54', '62', '61', '91', '82', '69', '06', '66', '30', '22', '43', '26', '17', '61', '46', '09', '06', '63'] 75

2^850 {'37', '32', '04', '20', '48', '36', '65', '21', '49', '57', '14', '35', '25', '08', '12', '58', '73', '88', '41', '44', '29', '45', '05', '98', '67', '55', '27', '79', '60', '78', '18', '24', '02', '16', '39', '97', '87', '83', '96', '34', '81', '59', '40', '64', '72', '52', '38', '42'} 48


9076030935533343889148330677184451660957398691768765008885326289770145612551296 22525127145078220428826781447625850203277865347439907779362665301868348 ['90', '76', '03', '09', '35', '53', '33', '43', '88', '91', '48', '33', '06', '77', '18', '44', '51', '66', '09', '57', '39', '86', '91', '76', '87', '65', '00', '88', '85', '32', '62', '89', '77', '01', '45', '61', '25', '51', '29', '62', '25', '25', '12', '71', '45', '07', '82', '20', '42', '88', '26', '78', '14', '47', '62', '58', '50', '20', '32', '77', '86', '53', '47', '43', '99', '07', '77', '93', '62', '66', '53', '01', '86', '83', '48'] 75

2^930 {'37', '15', '04', '63', '69', '10', '46', '68', '36', '56', '21', '17', '49', '08', '19', '74', '30', '22', '80', '73', '23', '95', '41', '94', '54', '05', '98', '67', '55', '27', '31', '79', '60', '13', '24', '02', '16', '92', '97', '28', '96', '34', '84', '70', '81', '59', '40', '75', '11', '64', '72', '52', '38'} 53


7260824748426675111318664541747561328765918953415012007108261031816116490041036 98020101716062576343061425158100680162622292277951926223490132241494678 ['72', '60', '82', '47', '48', '42', '66', '75', '11', '13', '18', '66', '45', '41', '74', '75', '61', '32', '87', '65', '91', '89', '53', '41', '50', '12', '00', '71', '08', '26', '10', '31', '81', '61', '16', '49', '00', '41', '03', '69', '80', '20', '10', '17', '16', '06', '25', '76', '34', '30', '61', '42', '51', '58', '10', '06', '80', '16', '26', '22', '29', '22', '77', '95', '19', '26', '22', '34', '90', '13', '22', '41', '49', '46', '78'] 75

2^933 {'37', '15', '04', '63', '68', '36', '56', &#
full member
Activity: 431
Merit: 105
hi andzhig,

is this the one we should use or the previous one, so much code put on my screen,
i am totally lost there, as others.

better such a variation with many copies running simultaneously...

Quote

and what if found pk. its only in the saved txt file . but is it also on the screen i mean?
thanks for you'r code
jr. member
Activity: 184
Merit: 3
some observations...

let's take our number

5 1 1 2 3 1 2 2 1 3 970 436 974 005 023 690 481



['184', '203', '096', '790', '320', '841', '947', '148', '479',
 '794', '069', '230', '749', '709', '050', '079', '481', '302',
 '907', '005', '960', '364', '500', '346', '634', '418', '970',
 '643', '974', '097', '436', '023', '032', '690', '814', '906',
 '463', '497', '609'] 39

and look for it

5 1 1 2 3 1 2 2 1 3 973 906 004 096 437 154 820
5 1 1 2 3 1 2 2 1 3 079 093 076 359 480 144 620
5 1 1 2 3 1 2 2 1 3 809 410 972 609 375 604 304
5 1 1 2 3 1 2 2 1 3 170 723 890 509 460 469 403
5 1 1 2 3 1 2 2 1 3 405 606 879 740 019 243 093
5 1 1 2 3 1 2 2 1 3 312 045 009 487 706 499 360
5 1 1 2 3 1 2 2 1 3 479 509 207 603 894 631 040
5 1 1 2 3 1 2 2 1 3 945 397 631 642 407 000 809
5 1 1 2 3 1 2 2 1 3 376 407 803 146 052 009 949
5 1 1 2 3 1 2 2 1 3 196 437 027 986 495 034 000
5 1 1 2 3 1 2 2 1 3 761 099 042 040 697 380 354
5 1 1 2 3 1 2 2 1 3 076 653 480 794 100 499 032
5 1 1 2 3 1 2 2 1 3 190 364 409 496 537 807 200
5 1 1 2 3 1 2 2 1 3 699 549 038 470 067 030 124
5 1 1 2 3 1 2 2 1 3 479 576 002 109 398 434 060
5 1 1 2 3 1 2 2 1 3 294 070 357 308 949 106 064
5 1 1 2 3 1 2 2 1 3 438 003 976 401 492 069 750
5 1 1 2 3 1 2 2 1 3 405 903 328 794 906 006 147
5 1 1 2 3 1 2 2 1 3 327 534 941 060 907 409 608
5 1 1 2 3 1 2 2 1 3 295 480 019 306 039 407 674
5 1 1 2 3 1 2 2 1 3 039 091 440 782 765 346 900
5 1 1 2 3 1 2 2 1 3 273 060 959 091 634 474 008
5 1 1 2 3 1 2 2 1 3 704 641 069 980 734 295 003
5 1 1 2 3 1 2 2 1 3 400 109 952 044 383 706 697
5 1 1 2 3 1 2 2 1 3 840 934 762 753 009 094 610
5 1 1 2 3 1 2 2 1 3 403 467 735 090 290 809 164
5 1 1 2 3 1 2 2 1 3 660 349 005 402 738 994 701
5 1 1 2 3 1 2 2 1 3 354 281 907 904 664 930 070
5 1 1 2 3 1 2 2 1 3 794 480 706 340 302 019 569
5 1 1 2 3 1 2 2 1 3 739 059 062 464 370 109 048
5 1 1 2 3 1 2 2 1 3 770 969 039 424 065 001 483
5 1 1 2 3 1 2 2 1 3 187 740 406 654 309 209 930
5 1 1 2 3 1 2 2 1 3 704 909 380 964 256 031 704
5 1 1 2 3 1 2 2 1 3 405 384 179 927 096 306 004
5 1 1 2 3 1 2 2 1 3 583 670 369 002 144 049 970
5 1 1 2 3 1 2 2 1 3 048 909 662 039 145 040 737
5 1 1 2 3 1 2 2 1 3 495 800 103 407 649 967 023
5 1 1 2 3 1 2 2 1 3 659 160 433 009 028 770 944
5 1 1 2 3 1 2 2 1 3 006 653 144 093 972 009 748
5 1 1 2 3 1 2 2 1 3 863 920 046 534 970 940 107
5 1 1 2 3 1 2 2 1 3 976 986 740 334 091 254 000
5 1 1 2 3 1 2 2 1 3 413 000 249 490 769 630 758
5 1 1 2 3 1 2 2 1 3 074 381 409 497 069 030 652
5 1 1 2 3 1 2 2 1 3 467 021 005 890 330 749 964
5 1 1 2 3 1 2 2 1 3 964 320 761 549 489 007 030
5 1 1 2 3 1 2 2 1 3 007 346 982 910 675 090 434
5 1 1 2 3 1 2 2 1 3 504 387 709 494 102 936 600
5 1 1 2 3 1 2 2 1 3 805 094 964 307 004 736 921
5 1 1 2 3 1 2 2 1 3 000 534 392 940 064 767 981
5 1 1 2 3 1 2 2 1 3 004 479 374 896 090 305 621
5 1 1 2 3 1 2 2 1 3 043 920 007 567 440 398 196
5 1 1 2 3 1 2 2 1 3 508 047 329 406 697 019 430
5 1 1 2 3 1 2 2 1 3 056 090 467 473 390 291 084
5 1 1 2 3 1 2 2 1 3 740 009 995 734 806 602 413
5 1 1 2 3 1 2 2 1 3 032 967 499 035 401 784 060
5 1 1 2 3 1 2 2 1 3 004 059 729 036 907 483 641
5 1 1 2 3 1 2 2 1 3 942 034 500 947 606 108 379
5 1 1 2 3 1 2 2 1 3 040 542 083 703 946 979 160
5 1 1 2 3 1 2 2 1 3 090 465 770 306 194 348 902
5 1 1 2 3 1 2 2 1 3 417 744 938 029 000 356 960 *
5 1 1 2 3 1 2 2 1 3 402 160 038 054 046 979 973
5 1 1 2 3 1 2 2 1 3 493 697 704 080 690 250 314



some coincide but there are also which do not match

5 1 1 2 3 1 2 2 1 3 417 744 938 029 000 356 960 *

numer >   0   1   0   0   1   0   0   1   0   0   417 110100001
numer >   0   0   0   0   2   0   0   1   0   0   744 1011101000
numer >   0   0   0   1   0   0   0   0   1   1   938 1110101010
numer >   1   0   1   0   0   0   0   0   0   1   029 11101
numer >   3   0   0   0   0   0   0   0   0   0   000 0
numer >   0   0   0   1   0   1   1   0   0   0   356 101100100
numer >   1   0   0   0   0   0   1   0   0   1   960 1111000000

  ['690', '417', '741', '563', '365', '069', '609', '839', '983',
 '174', '474', '447', '096', '356', '653', '536', '960', '290',
 '714', '398', '209', '635', '147', '744', '092', '902', '471',
 '389', '906', '920', '029', '938', '000', '893'] 34

960 our 690 5 1 1 2 3 1 2 2 1 3 970 436 974 005 023 690 481

but such a set does not repeat theoretically they can be excluded from the set 000-999

5 1 1 2 3 1 2 2 1 3 805 094 964 307 004 736 921

numer >   1   0   0   0   0   1   0   0   1   0   805 1100100101
numer >   1   0   0   0   1   0   0   0   0   1   094 1011110
numer >   0   0   0   0   1   0   1   0   0   1   964 1111000100
numer >   1   0   0   1   0   0   0   1   0   0   307 100110011
numer >   2   0   0   0   1   0   0   0   0   0   004 100
numer >   0   0   0   1   0   0   1   1   0   0   736 1011100000
numer >   0   1   1   0   0   0   0   0   0   1   921 1110011001


['049', '649', '004', '694', '736', '964', '058', '508', '904',
 '307', '637', '219', '496', '409', '703', '094', '129', '580',
 '805', '367', '040', '400', '085', '192', '376', '073', '921',
 '490', '291', '730', '673', '763', '940', '946', '370', '469',
 '850', '037', '912'] 39

looks like "same eggs side view" take 39 pieces from 000-999, by 7 mix them, take 39 pieces from 000-999, by 7 mix them... e.t.c
 
jr. member
Activity: 184
Merit: 3
Quote
i=1 #4096
while i <=128: #8192
    a = 2**i
    #b = 2**18
    #c = 8*256

    aa = str(a)[0:21]
    bina = bin(int(aa))[2:]
    ed0 = aa.count("0")
    ed1 = aa.count("1")
    ed2 = aa.count("2")
    ed3 = aa.count("3")
    ed4 = aa.count("4")
    ed5 = aa.count("5")
    ed6 = aa.count("6")
    ed7 = aa.count("7")
    ed8 = aa.count("8")
    ed9 = aa.count("9")

    print("2 ^",i,"numer >","{:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d}".format(ed0,ed1,ed2,ed3,ed4,ed5,ed6,ed7,ed8,ed9)," ",aa,bina) #print("numer >",ed0,ed1,ed2,ed3,ed4,ed5,ed6,ed7,ed8,ed9,a,"2^",i)
    i=i+1

above 6 can not jump...

***

for 2^256 78 long 108717677802902655490863978809014617508706260176761067916188909553243434167589

numer >   1   1   0   0   0   0   0   0   1   0   108 1101100
numer >   0   1   0   0   0   0   0   2   0   0   717 1011001101
numer >   0   0   0   0   0   0   1   2   0   0   677 1010100101
numer >   1   0   1   0   0   0   0   0   1   0   802 1100100010
numer >   1   0   1   0   0   0   0   0   0   1   902 1110000110
numer >   0   0   0   0   0   2   1   0   0   0   655 1010001111
numer >   1   0   0   0   1   0   0   0   0   1   490 111101010
numer >   0   0   0   1   0   0   1   0   1   0   863 1101011111
numer >   0   0   0   0   0   0   0   1   1   1   978 1111010010
numer >   1   0   0   0   0   0   0   0   1   1   809 1100101001
numer >   1   1   0   0   1   0   0   0   0   0   014 1110
numer >   0   1   0   0   0   0   1   1   0   0   617 1001101001
numer >   1   0   0   0   0   1   0   0   1   0   508 111111100
numer >   1   0   0   0   0   0   1   1   0   0   706 1011000010
numer >   1   0   1   0   0   0   1   0   0   0   260 100000100
numer >   0   1   0   0   0   0   1   1   0   0   176 10110000
numer >   0   1   0   0   0   0   1   1   0   0   761 1011111001
numer >   1   0   0   0   0   0   1   1   0   0   067 1000011
numer >   0   1   0   0   0   0   1   0   0   1   916 1110010100
numer >   0   1   0   0   0   0   0   0   2   0   188 10111100
numer >   1   0   0   0   0   0   0   0   0   2   909 1110001101
numer >   0   0   0   1   0   2   0   0   0   0   553 1000101001
numer >   0   0   1   1   1   0   0   0   0   0   243 11110011
numer >   0   0   0   1   2   0   0   0   0   0   434 110110010
numer >   0   1   0   0   0   0   1   1   0   0   167 10100111
numer >   0   0   0   0   0   1   0   0   1   1   589 1001001101

108 717 677 802 902 655 490 863 978 809 014 617 508 706 260 176 761 067 916 188 909 553 243 434 167 589

gives out (i.e. 1   1   0   0   0   0   0   0   1   0   108, 1   1   0   0   0   0   0   0   1   0   801, 1   1   0   0   0   0   0   0   1   0   018, 1   1   0   0   0   0   0   0   1   0   810)

['767', '260', '180', '717', '836', '206', '401', '655', '196', '556', '028', '553', '082', '798', '434',
 '108', '987', '409', '904', '920', '490', '508', '820', '344', '810', '099', '761', '355', '081', '716',
 '909', '850', '818', '638', '940', '058', '683', '760', '863', '620', '961', '140', '443', '209', '423',
 '342', '902', '691', '094', '602', '167', '881', '410', '671', '041', '706', '890', '169', '104', '607',
 '076', '092', '809', '897', '617', '243', '098', '958', '290', '176', '085', '771', '324', '018', '990',
 '916', '670', '535', '980', '789', '067', '580', '177', '188', '089', '805', '589', '801', '677', '386',
 '029', '598', '879', '026', '368', '432', '802', '234', '895', '776', '062', '978', '049', '908', '565',
 '859', '014', '280', '619', '208', '985'] 111 (< elements count)

and another random number that has parts of a piece...

101 506 725 079 789 546 315 929 093 771 998 496 957 437 588 026 236 470 847 499 157 765 417 055 320 576

need to consider how it can be used  Grin

***

going back to "the parrots"...

they just add up there

999 numer      >   0   0   0   0   0   0   0   0   0   3   999 1111100111
999999 numer >   0   0   0   0   0   0   0   0   0   6   999999 11110100001000111111

404 numer      >   1   0   0   0   2   0   0   0   0   0   404 110010100
404404 numer >   2   0   0   0   4   0   0   0   0   0   404404 1100010101110110100

321 numer      >   0   1   1   1   0   0   0   0   0   0   321 101000001
321321 numer >   0   2   2   2   0   0   0   0   0   0   321321 1001110011100101001

505 numer      >   1   0   0   0   0   2   0   0   0   0   505 111111001
506 numer      >   1   0   0   0   0   1   1   0   0   0   506 111111010
505506 numer >   2   0   0   0   0   3   1   0   0   0   505506 1111011011010100010

***

999999999999999999990 numer >   1   0   0   0   0   0   0   0   0  20   999999999999999999990 1101100011010111001001101011011100010111011110100111111111111111110110
999999999999999999991 numer >   0   1   0   0   0   0   0   0   0  20   999999999999999999991 1101100011010111001001101011011100010111011110100111111111111111110111
999999999999999999992 numer >   0   0   1   0   0   0   0   0   0  20   999999999999999999992 1101100011010111001001101011011100010111011110100111111111111111111000
999999999999999999993 numer >   0   0   0   1   0   0   0   0   0  20   999999999999999999993 1101100011010111001001101011011100010111011110100111111111111111111001
999999999999999999994 numer >   0   0   0   0   1   0   0   0   0  20   999999999999999999994 1101100011010111001001101011011100010111011110100111111111111111111010
999999999999999999995 numer >   0   0   0   0   0   1   0   0   0  20   999999999999999999995 1101100011010111001001101011011100010111011110100111111111111111111011
999999999999999999996 numer >   0   0   0   0   0   0   1   0   0  20   999999999999999999996 1101100011010111001001101011011100010111011110100111111111111111111100
999999999999999999997 numer >   0   0   0   0   0   0   0   1   0  20   999999999999999999997 1101100011010111001001101011011100010111011110100111111111111111111101
999999999999999999998 numer >   0   0   0   0   0   0   0   0   1  20   999999999999999999998 1101100011010111001001101011011100010111011110100111111111111111111110
999999999999999999999 numer >   0   0   0   0   0   0   0   0   0  21   999999999999999999999 1101100011010111001001101011011100010111011110100111111111111111111111

***

numer >   1   0   0   0   0   0   0   1   0   1   970 1111001010
numer >   0   0   0   1   1   0   1   0   0   0   436 110110100
numer >   0   0   0   0   1   0   0   1   0   1   974 1111001110
numer >   2   0   0   0   0   1   0   0   0   0   005 101
numer >   1   0   1   1   0   0   0   0   0   0   023 10111
numer >   1   0   0   0   0   0   1   0   0   1   690 1010110010
numer >   0   1   0   0   1   0   0   0   1   0   481 111100001

numer >   5   1   1   2   3   1   2   2   1   3   970436974005023690481 1101001001101110000100101101100100001100011010011011000100111011110001

and search... for example (here he glues xxx into a string and counts, but need to count separately for 3, or so normal  Cheesy)

5 1 1 2 3 1 2 2 1 3 973906004096437154820
5 1 1 2 3 1 2 2 1 3 079093076359480144620
5 1 1 2 3 1 2 2 1 3 809410972609375604304
5 1 1 2 3 1 2 2 1 3 170723890509460469403
5 1 1 2 3 1 2 2 1 3 405606879740019243093
5 1 1 2 3 1 2 2 1 3 312045009487706499360
5 1 1 2 3 1 2 2 1 3 479509207603894631040
5 1 1 2 3 1 2 2 1 3 945397631642407000809
5 1 1 2 3 1 2 2 1 3 376407803146052009949
5 1 1 2 3 1 2 2 1 3 196437027986495034000
5 1 1 2 3 1 2 2 1 3 761099042040697380354
5 1 1 2 3 1 2 2 1 3 076653480794100499032
5 1 1 2 3 1 2 2 1 3 190364409496537807200
5 1 1 2 3 1 2 2 1 3 699549038470067030124
5 1 1 2 3 1 2 2 1 3 479576002109398434060
5 1 1 2 3 1 2 2 1 3 294070357308949106064

Quote
from collections import Counter
import random
from bit import Key
#from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())

import time


Nn =['000', '001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '014', '015',
     '016', '017', '018', '019', '020', '021', '022', '023', '024', '025', '026', '027', '028', '029', '030', '031',
     '032', '033', '034', '035', '036', '037', '038', '039', '040', '041', '042', '043', '044', '045', '046', '047',
     '048', '049', '050', '051', '052', '053', '054', '055', '056', '057', '058', '059', '060', '061', '062', '063',
     '064', '065', '066', '067', '068', '069', '070', '071', '072', '073', '074', '075', '076', '077', '078', '079',
     '080', '081', '082', '083', '084', '085', '086', '087', '088', '089', '090', '091', '092', '093', '094', '095',
     '096', '097', '098', '099', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111',
     '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '124', '125', '126', '127', '128',
     '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144',
     '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160',
     '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176',
     '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192',
     '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
     '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224',
     '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240',
     '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256',
     '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272',
     '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
     '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304',
     '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320',
     '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336',
     '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352',
     '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
     '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384',
     '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400',
     '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416',
     '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432',
     '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
     '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464',
     '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480',
     '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496',
     '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512',
     '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
     '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544',
     '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560',
     '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576',
     '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592',
     '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
     '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624',
     '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640',
     '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656',
     '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672',
     '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
     '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704',
     '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720',
     '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736',
     '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752',
     '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
     '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784',
     '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800',
     '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816',
     '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832',
     '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
     '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864',
     '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880',
     '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896',
     '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912',
     '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
     '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944',
     '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960',
     '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976',
     '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992',
     '993', '994', '995', '996', '997', '998', '999']

K = print(len(Nn),"set 000-999 length...")

#def func():
#    DDD = random.choice(RRR)
#    return DDD

RRR = []
while True:
    for RR in range(7): # set 000-999 screening out length
        DDD = random.choice(Nn)
        RRR.append(DDD)

    #print(RRR)

    #time.sleep(3.0)


    #aa = ["0000", "222222", "3333", "4444","1111"]
    
    G = ''.join(RRR)
    #print(G)

    ed0 = G.count("0")
    ed1 = G.count("1")
    ed2 = G.count("2")
    ed3 = G.count("3")
    ed4 = G.count("4")
    ed5 = G.count("5")
    ed6 = G.count("6")
    ed7 = G.count("7")
    ed8 = G.count("8")
    ed9 = G.count("9")
    
    if ed0 == 5:
        if ed1 == 1:
            if ed2 == 1:
                if ed3 == 2:
                    if ed4 == 3:
                        if ed5 == 1:
                            if ed6 == 2:
                                if ed7 == 2:
                                    if ed8 == 1:
                                        if ed9 == 3:
        
                                            print(ed0,ed1,ed2,ed3,ed4,ed5,ed6,ed7,ed8,ed9,G)
                                            if G == 970436974005023690481:
                                                print(ed0,ed1,ed2,ed3,ed4,ed5,ed6,ed7,ed8,ed9,G)
                                                break
                                            pass
                                                

                                        
    pass
    RRR=[]
[/size]

~ the all set (000-999) for 5 1 1 2 3 1 2 2 1 3 970 436 974 005 023 690 481

['184', '203', '096', '790', '320', '841', '947', '148', '479', '794', '069', '230', '749', '709', '050', '079', '481', '302', '907', '005', '960', '364', '500', '346', '634', '418', '970', '643', '974', '097', '436', '023', '032', '690', '814', '906', '463', '497', '609'] 39
jr. member
Activity: 184
Merit: 3
This is a random cripple...

16389 (< step count) 512 1024 (< 2^...) 288 (randrange(a,b,c < 288)https://docs.python.org/3/library/random.html) 666666666666666666666 21 (< num count) ... (800, 0) (800, 0) (800, 0) (800, 0) (800, 0) (800, 0) (800, 0) < 666 pos in 512 1024 (< 2^...)

txt saved.txt ? Yes, preferably create on c:\a.txt

***

better such a variation with many copies running simultaneously...

Quote
import random
from bit import Key
#from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())

import time

list = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR"]

Nn =['000', '001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '014', '015',
     '016', '017', '018', '019', '020', '021', '022', '023', '024', '025', '026', '027', '028', '029', '030', '031',
     '032', '033', '034', '035', '036', '037', '038', '039', '040', '041', '042', '043', '044', '045', '046', '047',
     '048', '049', '050', '051', '052', '053', '054', '055', '056', '057', '058', '059', '060', '061', '062', '063',
     '064', '065', '066', '067', '068', '069', '070', '071', '072', '073', '074', '075', '076', '077', '078', '079',
     '080', '081', '082', '083', '084', '085', '086', '087', '088', '089', '090', '091', '092', '093', '094', '095',
     '096', '097', '098', '099', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111',
     '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '124', '125', '126', '127', '128',
     '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144',
     '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160',
     '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176',
     '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192',
     '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
     '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224',
     '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240',
     '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256',
     '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272',
     '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
     '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304',
     '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320',
     '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336',
     '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352',
     '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
     '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384',
     '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400',
     '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416',
     '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432',
     '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
     '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464',
     '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480',
     '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496',
     '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512',
     '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
     '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544',
     '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560',
     '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576',
     '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592',
     '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
     '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624',
     '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640',
     '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656',
     '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672',
     '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
     '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704',
     '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720',
     '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736',
     '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752',
     '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
     '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784',
     '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800',
     '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816',
     '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832',
     '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
     '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864',
     '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880',
     '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896',
     '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912',
     '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
     '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944',
     '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960',
     '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976',
     '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992',
     '993', '994', '995', '996', '997', '998', '999']

K = print(len(Nn),"set 000-999 length...")

def func():
    DDD = random.choice(RRR)
    return DDD


#def func2():
#    DDD = random.choice(RRR2)
#    return DDD

RRR = []
#RRR2 = []

while True:

    for RR in range(15): # set 000-999 screening out length
        DDD = random.choice(Nn)
        RRR.append(DDD)

#    for RR2 in range(11): # set 000-999 screening out length
#        DDD2 = random.choice(RRR)
#        RRR2.append(DDD2)

    print(Nn)
    print("screening out...")
    print(RRR)
#    print(RRR2)
    time.sleep(3.0)
    print("loop start...")
    count = 0

    #Nn =['123', '099', '444', '996', '001', '911', '422']
    #nnn = Nn*1 # *1 *10000000
    #print (nnn)

    i=1
    while i <= 5000000:
        
        d = ''.join(random.sample(RRR,len(RRR)))
        dd = (d)[0:21]
        ran = int(dd)
        key1 = Key.from_int(ran)
        
        addr1 = key1.address
        
        if addr1 in list:

            print (ran,"found!!!")

            s5 = str(ran)
            f=open(u"C:/a.txt","a")
            f.write(s5 + '\n')
            f.close()

            break


        else:
            
            #pass
                                                                                            #pass
            count += 1
            print(count,ran,addr1,RRR) #(ran,baba,addr1,addr2," ",ed,"   ",k1,k2,k3,k4,k5,k6,k7)

        i=i+1
        
    RRR=[]
    count = 0
    #RRR2=[]
    print("loop end...")
    time.sleep(3.0)
    pass    
[/size]

here can combine with a type filter

for 3 characters it looks like this

Quote
Nn =['000', '001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '014', '015',
     '016', '017', '018', '019', '020', '021', '022', '023', '024', '025', '026', '027', '028', '029', '030', '031',
     '032', '033', '034', '035', '036', '037', '038', '039', '040', '041', '042', '043', '044', '045', '046', '047',
     '048', '049', '050', '051', '052', '053', '054', '055', '056', '057', '058', '059', '060', '061', '062', '063',
     '064', '065', '066', '067', '068', '069', '070', '071', '072', '073', '074', '075', '076', '077', '078', '079',
     '080', '081', '082', '083', '084', '085', '086', '087', '088', '089', '090', '091', '092', '093', '094', '095',
     '096', '097', '098', '099', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111',
     '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '124', '125', '126', '127', '128',
     '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144',
     '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160',
     '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176',
     '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192',
     '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
     '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224',
     '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240',
     '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256',
     '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272',
     '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
     '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304',
     '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320',
     '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336',
     '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352',
     '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
     '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384',
     '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400',
     '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416',
     '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432',
     '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
     '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464',
     '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480',
     '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496',
     '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512',
     '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
     '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544',
     '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560',
     '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576',
     '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592',
     '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
     '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624',
     '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640',
     '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656',
     '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672',
     '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
     '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704',
     '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720',
     '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736',
     '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752',
     '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
     '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784',
     '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800',
     '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816',
     '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832',
     '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
     '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864',
     '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880',
     '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896',
     '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912',
     '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
     '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944',
     '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960',
     '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976',
     '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992',
     '993', '994', '995', '996', '997', '998', '999']


h1 = ("108717677802902655490863978809014617508706260176761067916188909553243434167589")
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])

for elem in Nn:

    aa = elem
    bina = bin(int(aa))[2:]
    ed0 = aa.count("0")
    ed1 = aa.count("1")
    ed2 = aa.count("2")
    ed3 = aa.count("3")
    ed4 = aa.count("4")
    ed5 = aa.count("5")
    ed6 = aa.count("6")
    ed7 = aa.count("7")
    ed8 = aa.count("8")
    ed9 = aa.count("9")
    f1 = str(aa)[:1]
    f2 = str(aa)[:1]
    f3 = str(aa)[:1]
    f4 = str(aa)[:1]
    f5 = str(aa)[:1]
    f6 = str(aa)[:1]
    
    print("numer >","{:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d} {:3d}".format(ed0,ed1,ed2,ed3,ed4,ed5,ed6,ed7,ed8,ed9)," ",aa,bina) #print("numer >",ed0,ed1,ed2,ed3,ed4,ed5,ed6,ed7,ed8,ed9,a,"2^",i)
    

# numer >   1   1   1   1   2   0   4   3   0   5   199976667976342049

numer >   3   0   0   0   0   0   0   0   0   0   000 0
numer >   2   1   0   0   0   0   0   0   0   0   001 1
numer >   2   0   1   0   0   0   0   0   0   0   002 10
numer >   2   0   0   1   0   0   0   0   0   0   003 11
numer >   2   0   0   0   1   0   0   0   0   0   004 100
numer >   2   0   0   0   0   1   0   0   0   0   005 101
numer >   2   0   0   0   0   0   1   0   0   0   006 110
numer >   2   0   0   0   0   0   0   1   0   0   007 111
numer >   2   0   0   0   0   0   0   0   1   0   008 1000
numer >   2   0   0   0   0   0   0   0   0   1   009 1001
numer >   2   1   0   0   0   0   0   0   0   0   010 1010
numer >   1   2   0   0   0   0   0   0   0   0   011 1011
numer >   1   1   1   0   0   0   0   0   0   0   012 1100
numer >   1   1   0   1   0   0   0   0   0   0   013 1101
numer >   1   1   0   0   1   0   0   0   0   0   014 1110
numer >   1   1   0   0   0   1   0   0   0   0   015 1111
numer >   1   1   0   0   0   0   1   0   0   0   016 10000
numer >   1   1   0   0   0   0   0   1   0   0   017 10001
numer >   1   1   0   0   0   0   0   0   1   0   018 10010
numer >   1   1   0   0   0   0   0   0   0   1   019 10011
numer >   2   0   1   0   0   0   0   0   0   0   020 10100
...
somewhere in the center inverse

numer >   1   0   0   0   1   1   0   0   0   0   540 1000011100
numer >   0   1   0   0   1   1   0   0   0   0   541 1000011101
numer >   0   0   1   0   1   1   0   0   0   0   542 1000011110
numer >   0   0   0   1   1   1   0   0   0   0   543 1000011111
numer >   0   0   0   0   2   1   0   0   0   0   544 1000100000
numer >   0   0   0   0   1   2   0   0   0   0   545 1000100001
numer >   0   0   0   0   1   1   1   0   0   0   546 1000100010
numer >   0   0   0   0   1   1   0   1   0   0   547 1000100011
numer >   0   0   0   0   1   1   0   0   1   0   548 1000100100
numer >   0   0   0   0   1   1   0   0   0   1   549 1000100101
...
and further runs ending 3
numer >   0   1   0   0   0   0   0   0   0   2   991 1111011111
numer >   0   0   1   0   0   0   0   0   0   2   992 1111100000
numer >   0   0   0   1   0   0   0   0   0   2   993 1111100001
numer >   0   0   0   0   1   0   0   0   0   2   994 1111100010
numer >   0   0   0   0   0   1   0   0   0   2   995 1111100011
numer >   0   0   0   0   0   0   1   0   0   2   996 1111100100
numer >   0   0   0   0   0   0   0   1   0   2   997 1111100101
numer >   0   0   0   0   0   0   0   0   1   2   998 1111100110
numer >   0   0   0   0   0   0   0   0   0   3   999 1111100111

apparently the inversion also occurs with large numbers 21 characters long...

but it makes sense to filter the set in such a way (000-999)


2 ^ 1 numer >   0   0   1   0   0   0   0   0   0   0   2 10
2 ^ 2 numer >   0   0   0   0   1   0   0   0   0   0   4 100
2 ^ 3 numer >   0   0   0   0   0   0   0   0   1   0   8 1000
2 ^ 4 numer >   0   1   0   0   0   0   1   0   0   0   16 10000
2 ^ 5 numer >   0   0   1   1   0   0   0   0   0   0   32 100000
2 ^ 6 numer >   0   0   0   0   1   0   1   0   0   0   64 1000000
2 ^ 7 numer >   0   1   1   0   0   0   0   0   1   0   128 10000000
2 ^ 8 numer >   0   0   1   0   0   1   1   0   0   0   256 100000000
2 ^ 9 numer >   0   1   1   0   0   1   0   0   0   0   512 1000000000
2 ^ 10 numer >   1   1   1   0   1   0   0   0   0   0   1024 10000000000
2 ^ 11 numer >   1   0   1   0   1   0   0   0   1   0   2048 100000000000
2 ^ 12 numer >   1   0   0   0   1   0   1   0   0   1   4096 1000000000000
2 ^ 13 numer >   0   1   1   0   0   0   0   0   1   1   8192 10000000000000
2 ^ 14 numer >   0   1   0   1   1   0   1   0   1   0   16384 100000000000000
2 ^ 15 numer >   0   0   1   1   0   0   1   1   1   0   32768 1000000000000000
2 ^ 16 numer >   0   0   0   1   0   2   2   0   0   0   65536 10000000000000000
2 ^ 17 numer >   1   2   1   1   0   0   0   1   0   0   131072 100000000000000000
2 ^ 18 numer >   0   1   2   0   2   0   1   0   0   0   262144 1000000000000000000
2 ^ 19 numer >   0   0   2   0   1   1   0   0   2   0   524288 10000000000000000000
2 ^ 20 numer >   1   1   0   0   1   1   1   1   1   0   1048576 100000000000000000000
2 ^ 21 numer >   1   1   2   0   0   1   0   1   0   1   2097152 1000000000000000000000
2 ^ 22 numer >   1   1   0   1   3   0   0   0   0   1   4194304 10000000000000000000000
2 ^ 23 numer >   1   0   0   1   0   0   1   0   4   0   8388608 100000000000000000000000
2 ^ 24 numer >   0   2   1   0   0   0   2   3   0   0   16777216 1000000000000000000000000
2 ^ 25 numer >   0   0   1   3   2   2   0   0   0   0   33554432 10000000000000000000000000
2 ^ 26 numer >   1   1   0   0   1   0   2   1   2   0   67108864 100000000000000000000000000
2 ^ 27 numer >   0   2   2   1   1   0   0   2   1   0   134217728 1000000000000000000000000000
2 ^ 28 numer >   0   0   1   1   2   2   2   0   1   0   268435456 10000000000000000000000000000
2 ^ 29 numer >   1   1   1   1   0   1   1   1   1   1   536870912 100000000000000000000000000000
2 ^ 30 numer >   1   2   1   1   2   0   0   2   1   0   1073741824 1000000000000000000000000000000
2 ^ 31 numer >   0   1   1   1   3   0   1   1   2   0   2147483648 10000000000000000000000000000000
2 ^ 32 numer >   0   0   2   0   2   0   2   1   0   3   4294967296 100000000000000000000000000000000
2 ^ 33 numer >   0   0   1   1   1   2   0   0   2   3   8589934592 1000000000000000000000000000000000
2 ^ 34 numer >   0   3   0   0   1   0   1   2   2   2   17179869184 10000000000000000000000000000000000
2 ^ 35 numer >   0   0   0   4   1   1   1   1   2   1   34359738368 100000000000000000000000000000000000
2 ^ 36 numer >   0   1   0   1   1   0   3   3   1   1   68719476736 1000000000000000000000000000000000000
2 ^ 37 numer >   0   1   1   3   2   1   0   2   1   1   137438953472 10000000000000000000000000000000000000
2 ^ 38 numer >   1   0   1   0   3   0   1   3   1   2   274877906944 100000000000000000000000000000000000000
2 ^ 39 numer >   0   1   0   1   1   3   0   1   4   1   549755813888 1000000000000000000000000000000000000000
2 ^ 40 numer >   1   3   1   0   0   1   2   3   0   2   1099511627776 10000000000000000000000000000000000000000
2 ^ 41 numer >   1   1   4   1   0   4   0   0   0   2   2199023255552 100000000000000000000000000000000000000000
2 ^ 42 numer >   2   3   0   1   3   1   1   0   1   1   4398046511104 1000000000000000000000000000000000000000000
2 ^ 43 numer >   3   0   3   1   0   0   1   1   2   2   8796093022208 10000000000000000000000000000000000000000000
2 ^ 44 numer >   1   3   1   0   3   1   2   1   1   1   17592186044416 100000000000000000000000000000000000000000000
2 ^ 45 numer >   1   1   2   3   1   1   0   1   4   0   35184372088832 1000000000000000000000000000000000000000000000
2 ^ 46 numer >   1   1   0   1   3   0   3   4   1   0   70368744177664 10000000000000000000000000000000000000000000000
2 ^ 47 numer >   1   1   1   3   2   2   0   2   3   0   140737488355328 100000000000000000000000000000000000000000000000
2 ^ 48 numer >   1   2   1   0   2   1   3   3   1   1   281474976710656 1000000000000000000000000000000000000000000000000
2 ^ 49 numer >   0   2   3   2   2   2   1   0   0   3   562949953421312 10000000000000000000000000000000000000000000000000
2 ^ 50 numer >   1   2   3   0   2   1   2   0   2   3   1125899906842624 100000000000000000000000000000000000000000000000000
2 ^ 51 numer >   0   2   3   1   1   2   1   1   3   2   2251799813685248 1000000000000000000000000000000000000000000000000000
2 ^ 52 numer >   2   0   1   2   2   2   2   2   0   3   4503599627370496 10000000000000000000000000000000000000000000000000000
2 ^ 53 numer >   3   1   2   0   2   1   0   2   0   5   9007199254740992 100000000000000000000000000000000000000000000000000000
2 ^ 54 numer >   2   3   0   1   3   1   0   0   4   3   18014398509481984 1000000000000000000000000000000000000000000000000000000
2 ^ 55 numer >   2   1   1   2   0   0   3   2   3   3   36028797018963968 10000000000000000000000000000000000000000000000000000000
2 ^ 56 numer >   2   0   2   2   1   2   1   4   0   3   72057594037927936 100000000000000000000000000000000000000000000000000000000
2 ^ 57 numer >   1   4   1   0   2   4   0   2   4   0   144115188075855872 1000000000000000000000000000000000000000000000000000000000
2 ^ 58 numer >   1   4   2   2   2   1   1   3   2   0   288230376151711744 10000000000000000000000000000000000000000000000000000000000
2 ^ 59 numer >   2   0   2   3   3   2   2   2   2   0   576460752303423488 100000000000000000000000000000000000000000000000000000000000
2 ^ 60 numer >   2   3   2   0   2   2   4   1   1   2   1152921504606846976 1000000000000000000000000000000000000000000000000000000000000
2 ^ 61 numer >   3   1   3   4   1   2   1   0   1   3   2305843009213693952 10000000000000000000000000000000000000000000000000000000000000
2 ^ 62 numer >   2   3   1   1   3   0   3   2   3   1   4611686018427387904 100000000000000000000000000000000000000000000000000000000000000
2 ^ 63 numer >   2   0   3   3   1   2   1   3   3   1   9223372036854775808 1000000000000000000000000000000000000000000000000000000000000000
2 ^ 64 numer >   2   3   0   1   4   2   3   3   1   1   18446744073709551616 10000000000000000000000000000000000000000000000000000000000000000
2 ^ 65 numer >   1   3   2   4   3   0   1   1   3   2   36893488147419103232 100000000000000000000000000000000000000000000000000000000000000000
2 ^ 66 numer >   1   0   2   2   3   0   4   3   3   2   73786976294838206464 1000000000000000000000000000000000000000000000000000000000000000000
2 ^ 67 numer >   0   2   3   1   2   3   2   3   2   3   147573952589676412928 10000000000000000000000000000000000000000000000000000000000000000000
2 ^ 68 numer >   1   2   3   1   1   5   1   2   2   3   295147905179352825856 100000000000000000000000000000000000000000000000000000000000000000000
2 ^ 69 numer >   3   3   2   1   0   5   1   2   2   2   590295810358705651712 1000000000000000000000000000000000000000000000000000000000000000000000
2 ^ 70 numer >   3   6   2   2   2   1   1   2   1   1   118059162071741130342 1100110011001100110011001100110011001100110011001100110011001100110
2 ^ 71 numer >   1   3   4   3   4   0   3   0   3   0   236118324143482260684 11001100110011001100110011001100110011001100110011001100110011001100
2 ^ 72 numer >   0   1   4   2   3   1   5   1   2   2   472236648286964521369 110011001100110011001100110011001100110011001100110011001100110011001
2 ^ 73 numer >   1   0   3   3   4   1   1   3   0   5   944473296573929042739 1100110011001100110011001100110011001100110011001100110011001100110011
2 ^ 74 numer >   1   2   0   1   3   3   1   2   6   2   188894659314785808547 10100011110101110000101000111101011100001010001111010111000010100011
2 ^ 75 numer >   1   3   1   2   0   2   2   5   2   3   377789318629571617095 101000111101011100001010001111010111000010100011110101110000101000111
2 ^ 76 numer >   0   3   2   3   2   4   1   3   1   2   755578637259143234191 1010001111010111000010100011110101110000101000111101011100001010001111
2 ^ 77 numer >   0   5   2   1   2   3   2   2   4   0   151115727451828646838 10000011000100100110111010010111100011010100111111011111001110110110
2 ^ 78 numer >   2   1   3   4   2   2   3   2   0   2   302231454903657293676 100000110001001001101110100101111000110101001111110111110011101101100
2 ^ 79 numer >   3   1   1   3   3   2   2   2   2   2   604462909807314587353 1000001100010010011011101001011110001101010011111101111100111011011001
2 ^ 80 numer >   2   4   3   0   2   1   2   2   2   3   120892581961462917470 1101000110110111000101110101100011100010000110010110010100101011110
2 ^ 81 numer >   0   3   4   2   3   2   1   1   2   3   241785163922925834941 11010001101101110001011101011000111000100001100101100101001010111101
2 ^ 82 numer >   1   1   2   2   2   3   2   2   5   1   483570327845851669882 110100011011011100010111010110001110001000011001011001010010101111010
2 ^ 83 numer >   2   2   0   3   2   2   4   3   0   3   967140655691703339764 1101000110110111000101110101100011100010000110010110010100101011110100
2 ^ 84 numer >   1   4   2   4   2   1   2   1   2   2   193428131138340667952 10100111110001011010110001000111000110110100011110000100001000110000
2 ^ 85 numer >   1   1   3   3   0   3   5   1   3   1   386856262276681335905 101001111100010110101100010001110001101101000111100001000010001100001
2 ^ 86 numer >   0   4   3   3   1   3   2   4   1   0   773712524553362671811 1010011111000101101011000100011100011011010001111000010000100011000011
2 ^ 87 numer >   2   2   3   2   4   3   2   2   0   1   154742504910672534362 10000110001101111011110100000101101011110110110001101001101101011010
2 ^ 88 numer >   4   1   2   2   3   2   1   1   3   2   309485009821345068724 100001100011011110111101000001011010111101101100011010011011010110100
2 ^ 89 numer >   3   3   1   1   3   0   3   2   1   4   618970019642690137449 1000011000110111101111010000010110101111011011000110100110110101101001
2 ^ 90 numer >   3   1   3   3   2   1   0   2   3   3   123794003928538027489 1101011010111111100101001101010111100101011110100100001010111100001
2 ^ 91 numer >   4   0   1   0   2   3   1   5   3   2   247588007857076054979 11010110101111111001010011010101111001010111101001000010101111000011
2 ^ 92 numer >   2   5   1   0   2   4   1   2   0   4   495176015714152109959 110101101011111110010100110101011110010101111010010000101011110000111
2 ^ 93 numer >   3   3   3   3   2   1   0   0   1   5   990352031428304219919 1101011010111111100101001101010111100101011110100100001010111100001111
2 ^ 94 numer >   4   1   1   2   2   1   3   1   4   2   198070406285660843983 10101011110011000111011100010001100001000110000111001110111111001111
2 ^ 95 numer >   1   4   2   2   1   1   3   3   2   2   396140812571321687967 101010111100110001110111000100011000010001100001110011101111110011111
2 ^ 96 numer >   0   2   4   3   2   3   2   2   1   2   792281625142643375935 1010101111001100011101110001000110000100011000011100111011111100111111
2 ^ 97 numer >   1   2   3   1   1   5   2   2   4   0   158456325028528675187 10001001011100000101111101000001001101101011010010100101100101110011
2 ^ 98 numer >   4   2   1   3   1   4   2   3   0   1   316912650057057350374 100010010111000001011111010000010011011010110100101001011001011100110
2 ^ 99 numer >   4   4   1   3   3   1   1   2   2   0   633825300114114700748 100010010111000001011111010000010011011010110100101001
full member
Activity: 431
Merit: 105
Andzhig hi man,
could you please explain, what is this.


16389 512 1024 288 666666666666666666666 21 13JVTR27W6p1dfaYRDGfidAi6fsuAzeHa2 16w7NiRmoNCWcyNWHV6DBLrwPKQAhWC8dq   36     666 666 666 666 666 666 666   (800, 0) (800, 0) (800, 0) (800, 0) (800, 0) (800, 0) (800, 0)

so this is the bomb dot com software man. where is the pk. or only if found inside txt saved.txt ?
newbie
Activity: 24
Merit: 0
I'm not good at math ... But I don't think it's that easy! Can you create a tool that I can test? If you really did it ... I'll send you 3 BTC

If you use python:

copy this file "test.py"

Code:
#!/usr/bin/env python

p = 115792089237316195423570985008687907852837564279074904382605163141518161494337
a = 76470300715912249562689990107401687364194232406198996658976353330269918489458
b = 64658408237276871767689061520961436408509493287485285377611016482361694763299

b_inv =  pow(b, p-2, p)
w1 = a*b_inv % p
print (w1)

a_inv = pow(a, p-2, p)
w2 = b*a_inv % p
print (w2)

and then in the terminal:

python test.py

Code:
$ python  test.py
12447032699845648078645791161909514142990644957498005805208944683777961822095
66620152837833785920928131416087065201280002472666144035333386572317622196480


Dear Sir,
It is great full work. Could you please explain what is the value:
a = 76470300715912249562689990107401687364194232406198996658976353330269918489458
b = 64658408237276871767689061520961436408509493287485285377611016482361694763299

also final output value as following:

w1: 12447032699845648078645791161909514142990644957498005805208944683777961822095
w2: 66620152837833785920928131416087065201280002472666144035333386572317622196480
jr. member
Activity: 184
Merit: 3
-snip-
970 436 974 005 023 690 481 970436974005023690481 19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR pz 69 or 70 theoretically can recline but sometimes they are repeated 199 976 667 976 342 049

on the other hand, so mix that increasing the "portion" equally finds...
-snip-

What does this mean? I really do not understand you...
it means that if we take randomly 7 parts 970436974005023690481 970 436 974 005 023 690 481 then randomly finds around ~2000000 steps


Quote
import random
import time

Nn =['970', '436', '974', '005', '023', '690', '481]
nnn = Nn # *1 *10000000
#print (nnn)

h1 = ("970436974005023690481")
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])
#print(g)


def func():
    DDD = random.choice(nnn)
    return DDD

count = 0

while True:
    
    a = int(func()+func()+func()+func()+func()+func()+func())
    if a == 970436974005023690481:
        count += 1
        print(count,"find..............................",a)
        time.sleep(60.0)
        break
    else:
        count += 1
        #print(a)
        pass

    pass


if we add more parts the search time grows, for example for 10-11 parts around 30000000 steps (probably the pc speed also affects). 970 436 974 005 023 690 481 + 333 894 200 100

Quote
import random
import time

Nn =['970', '436', '974', '005', '023', '690', '481','333', '894', '200', '100']
nnn = Nn # *1 *10000000
#print (nnn)

h1 = ("970436974005023690481")
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])
#print(g)


def func():
    DDD = random.choice(nnn)
    return DDD

count = 0

while True:
    
    a = int(func()+func()+func()+func()+func()+func()+func())
    if a == 970436974005023690481:
        count += 1
        print(count,"find..............................",a)
        time.sleep(60.0)
        break
    else:
        count += 1
        #print(a)
        pass

    pass

if duplicate these 10-11 parts to mix up to 10000000, sometimes it is in the region of 10000000 steps, apparently within the margin of error (not significant impact).

The question is how to divide for enumeration all the space from 000 to 999, 1000:11= 90 pieces to iterate over 30000000 steps

can it help?

Quote
What random factors affect search?


1) Classic factor 50%: on average we will find prvkey by sorting around 50% of the range.
(example, its stat print vanity-gen, where search vanity address)


2) The classical theory of probability, as the average distribution.
Divide each range into N parts.
We calculate in which part each known prvkey is located.
Parts with less prvkeys have a higher probability of finding a prvkey in the next puzzle.
In the theory of games, when the casino guarantees that all possible options will fall out approximately equal to the number of times.
+50% prob

3) The classical theory of probability, as in time.
Divide each range into N parts.
We calculate in which part each known prvkey is located.
The lowest probability will be in the part in which prvkey was found the previous time.
In game theory, this is known as the "double up game".
+50%prob

and how many steps will be required if there are 20 parts 1000:20=50 pieces to iterate etc... the more parts we take the greater the chance to capture the right parts of the desired number.
Jump to: