Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 269. (Read 243473 times)

sr. member
Activity: 443
Merit: 350
I was using Bitcoincrack to randomly Bruteforce addresses that share the same 7 letters of 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN.
after bitcoincrack generated today 1000 addresses that share the same first 7 address characters ~ and indeed, i saw an addresses that ends with the last 3 characters "XQN" that the original puzzle 64 address have.
~
What are the odds that i find the last 3 characters address
Each character has 58 possibilities, so if you have 1000 addresses, the chance of finding the same 3 characters at the end is about 0.5%. However, you need to find 24 more characters, and those aren't magically going to match once you find the last 3.

He actually found 9 characters (10 characters including the 1st "1"):

16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN - #64 puzzle
16jY7qLHKTofWA2DYS9ZaWyvZ5qnjfSXQN - found by Alpaste

But looks nice to have a vanity address with 10 characters and the same bit size.
legendary
Activity: 3654
Merit: 3003
Enjoy 500% bonus + 70 FS
Thanks i will follow the new one ;-)
member
Activity: 174
Merit: 12
willi9974
Have you read what is written above your post?
You are apparently not too smart for this puzzle because in your topic you include a link to an old topic when there is a new, relevant one.
First, learn to read, then think about the puzzle.
legendary
Activity: 3654
Merit: 3003
Enjoy 500% bonus + 70 FS
have at the moment time to try my luck.
what is the best way to start the searching for puzzle 64 and what for a script or program should i use for that?
a pc with 3 3070er GPU are here...

can anyone help to start?

Best regards
Willi

Update:
For the german Community i openenddiskussion a new german topic
—> https://bitcointalksearch.org/topic/suche-nach-dem-bitcoin-puzzle-64-fur-kostenlose-und-legale-bitcoins-5379045
member
Activity: 174
Merit: 12
Why bring up this old topic if there is a new, urgent one?
https://bitcointalk.org/index.php?topic=5218972.380
legendary
Activity: 1988
Merit: 1077
Honey badger just does not care
Hello guys, i've been trying to randomly bruteforce puzzle #64 for WEEKS in a row.
...
after my friends came, we checked the address again and it was NOT the address i was looking for. it was so embarrassment, and i'm now broken and sad as hell.
What are the odds that i find the last 3 characters address, that i'm looking for in the range 64? ITS pretty much low, that's why i thought i found the 0.64 BTC. but unfortunately not. I should be the unluckiest guy ever...

Everyone is brute forcing #64 since more than a two years now. You were very, very, optimistic that you will be the one with the stroke of unbelivable luck. Look at it this way: You uwere really lucky to understand after only few weeks how small chances are that this will happen and you can now move to more interesting things.
legendary
Activity: 3290
Merit: 16489
Thick-Skinned Gang Leader and Golden Feather 2021
I was using Bitcoincrack to randomly Bruteforce addresses that share the same 7 letters of 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN.
after bitcoincrack generated today 1000 addresses that share the same first 7 address characters ~ and indeed, i saw an addresses that ends with the last 3 characters "XQN" that the original puzzle 64 address have.
~
What are the odds that i find the last 3 characters address
Each character has 58 possibilities, so if you have 1000 addresses, the chance of finding the same 3 characters at the end is about 0.5%. However, you need to find 24 more characters, and those aren't magically going to match once you find the last 3.
jr. member
Activity: 37
Merit: 1
Hello guys, i've been trying to randomly bruteforce puzzle #64 for WEEKS in a row. I was using Bitcoincrack to randomly Bruteforce addresses that share the same 7 letters of 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN.
after bitcoincrack generated today 1000 addresses that share the same first 7 address characters, i have always looked for the last 3 characters of the generated addresses to go through the addresses quickly and see if #64 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN is on the list.
and indeed, i saw an addresses that ends with the last 3 characters "XQN" that the original puzzle 64 address have. And the moment i saw XQN, i freaking screamed I WON 30K EUROS and smashed couple of glass bottles and went quickly to say and to celebrate with my friends.
after my friends came, we checked the address again and it was NOT the address i was looking for. it was so embarrassment, and i'm now broken and sad as hell.
What are the odds that i find the last 3 characters address, that i'm looking for in the range 64? ITS pretty much low, that's why i thought i found the 0.64 BTC. but unfortunately not. I should be the unluckiest guy ever...
Here is the Address, i thought i got the 0.64 bitcoin from it.
isn't that sad situation?
Pub Addr: 16jY7qLHKTofWA2DYS9ZaWyvZ5qnjfSXQN
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZ3tw8CPZjZciVwEz8EV
Priv (HEX): 0x000000000000000000000000000000000000000000000000DAA7B7BDF277A7B7
member
Activity: 174
Merit: 12
Hello everyone, have you checked the open puzzles for the presence of coins in other networks? There is a token on the 115th puzzle on the BSC network, can it be taken away?

xenon? its scamcoin.
newbie
Activity: 9
Merit: 0
Hello everyone, have you checked the open puzzles for the presence of coins in other networks? There is a token on the 115th puzzle on the BSC network, can it be taken away?
newbie
Activity: 12
Merit: 0
noobs question and Just wondering , if you find the private key from one of those private keys puzzle , you just input the pv key to core wallet , or another wallet , or there is another step we should do l?

That's it, you just import the private key in WIF to core wallet and the BTC are yours.

Cheers.

thank you for your kind reply
cheers
hero member
Activity: 583
Merit: 502
noobs question and Just wondering , if you find the private key from one of those private keys puzzle , you just input the pv key to core wallet , or another wallet , or there is another step we should do l?

That's it, you just import the private key in WIF to core wallet and the BTC are yours.

Cheers.
newbie
Activity: 12
Merit: 0
noobs question and Just wondering , if you find the private key from one of those private keys puzzle , you just input the pv key to core wallet , or another wallet , or there is another step we should do l?
jr. member
Activity: 184
Merit: 3
there should be a lot in the folder

dc.py
fb.py
gb.py
hb.py
...
run.cmd

***

algorithm from here Answer #4: https://www.py4u.net/discuss/207582 because this one is slower https://combi.readthedocs.io/en/stable/intro.html

can also think about secondary sampling from the same seed

sample from 100 or 1000 can be done from a larger seed (like the idea of ​​a search itself) but you need an interesting method of screening out for example something like Newton's method (tangents)

***

and what is the ratio of large and small samples with the same number of possible collisions

for example, give 1000 samples of 60 (first samples, from 100 len by 60 len) for 5000 collisions = 25 different scripts (Aa,Bb,Cc,Dd,Ff...)

find count 986 5000 1000/60

i.e. under such conditions received 986 almost ~ 1000 i.e. almost every line of length 60 will have a chance to catch the desired particles again

what is the probability that choosing 1000 (len 30) for each of them (1000(60)*1000(30)) we will get the required number of chances...

if the odds and ratios persist 100*100 or 1000*1000, then there is no point in generating large files...

***

n general, it turns out like this, with 100000 collisions = 500 programs per 10000 (100(60)*100(30)), about 100 matches

collisions  set 100000 by 30 (0-10000 (100(60)*100(30)))

732   8952
1013  4718
4263  8990
5201  7208
5317  9447
5972  4138
6382  7743
8228  8802
8228  54  
8658  6593
11821 8061
11967 3368
18635 4430
20217 6170
20350 515  
20350 66  
20967 8981
20967 6    
21288 7486
21394 4745
24937 2703
26697 1169
26697 927  
26996 969  
27148 6372
27825 5242
27825 7    
27825 38  
31470 1855
32004 131  
33528 992  
40377 673  
44316 9828
44316 37  
45054 1781
45888 4105
46886 1113
48734 2496
49315 2783
49996 6705
51139 2123
53067 8820
53290 707  
54892 4615
55618 7325
57674 7129
65621 5935
66616 6513
67003 5289
67396 9643
67838 464  
68546 9056
68595 5199
71135 284  
71811 2444
77119 7743
78545 2782
80004 8813
80747 9743
81952 3990
82426 7174
86652 8665
86830 2063
86830 7    
87984 3067
88071 3674
88320 3625
89330 4132
89627 1327
92831 1589
93421 2548
93988 4662
94081 3599
96114 7171
96821 701  
98326 1249
98516 3997
99428 519  

some in the first 10, there are 6 7, slightly up to 100, 37 38 54...

in other words, with 500000 or 1000000 collisions = 3000-5000 prog-scripts there should be about 1000 good sets for the sample... 1000 from 10000

but can also reduce the primary samples 10*10 = 100 and hammer in steps, but you have to hammer every step at least 500 times with all 3000-5000 programs...

it is necessary to knock out the necessary 11-15 out of 30 and rearrange from 20000000 to 50000000 permutations.

we are looking for an unknown number or unknown collisions, just instead of 1 number, we have 200-300 for 1 program

below is the 500000 collision test script and sampling 10*10 = 100

Quote
import random
import time

Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']

RRR3 = []

for X in range(500000): # hypothetical collisions, 1 prog 200-300 collisions
    random.seed()
    i = 1
    while i <= 1:
            
        RRR2 = []
                    
        for RR in range(11):        
            DDD = random.choice(Nn)
            RRR2.append(DDD)    

        i=i+1
        RRR3.append(RRR2)
        RRR2=[]

print(RRR3,len(RRR3))

RRR4 = []

for XX in range(10): # sample 60
    random.seed()
    i = 1
    while i <= 1:
            
        RRR7 = []
                    
        for RR2 in range(60):        
            DDD1 = random.choice(Nn)
            RRR7.append(DDD1)    

        i=i+1
        RRR4.append(RRR7)
        RRR7=[]

print(RRR4,len(RRR4))

print("")
print("from 60 start")
print("")

count3 = 0
count4 = 0

for elem in RRR3:
    count3 += 1
    count = 0
    count2 = 0

    #print(count3,"elem count","from 60")

    for elem2 in RRR4:

        i = 1
        while i <= 1:
            
            RRR = elem2
            
            count += 1
            
            i=i+1
            
            Nn1 = elem #['30', '56', '83', '77', '31', '20', '64', '20', '30', '28', '49']

            fff1 = len(Nn1)
            
            for ee in Nn1:
                if ee in RRR:
                    count2 += 1

            if count2 == fff1:
                print("")
                count4 += 1
                print(count3,count,"hurra...",Nn1,RRR)
                
                print("")
                count=0
                
                break
            
            RRR = []
            count2=0

print("")
print("find count",count4)

print("")
print("from 30 start")
print("")

RRR44 = []

for elem1 in RRR4:

    i = 1
    while i <= 10:    

        RRR6 = []

        for RR3 in range(30):                 # sample 30      
            DDD3 = random.choice(elem1)
            RRR6.append(DDD3)

        i=i+1        
        RRR44.append(RRR6)
        RRR6=[]

print(RRR44,len(RRR44))

count3 = 0
count4 = 0

for elem in RRR3:
    count3 += 1
    count = 0
    count2 = 0

    #print(count3,"elem count","from 30")

    for elem2 in RRR44:

        i = 1
        while i <= 1:
            
            RRR = elem2
            
            count += 1
            
            i=i+1
            
            Nn1 = elem #['30', '56', '83', '77', '31', '20', '64', '20', '30', '28', '49']

            fff1 = len(Nn1)
            
            for ee in Nn1:
                if ee in RRR:
                    count2 += 1

            if count2 == fff1:
                print("")
                count4 += 1
                print(count3,count,"hurra...",Nn1,RRR)
                
                print("")
                count=0
                
                break
            
            RRR = []
            count2=0        

print("")
print("find count",count4)
print("All end...")


approximate sample from 30 to 15 here for 1 set of 30 in which it has already dropped we will have several options thanks to collisions

Quote
import random
import time

Nnn1 = ['80', '47', '86', '31', '65', '83', '30', '77', '32', '28', '56', '66', '00', '66', '17', '00', '62', '88', '62', '75', '28', '64', '88', '56', '75', '28', '20', '57', '64', '57']

RRR = []

count = 0

ii = 1
while ii <= 1000:
    
    i = 1
    while i <= 1:
        RRR = []
        count += 1
        
        for RR in range(15): # sample
            DDD = random.choice(Nnn1)
            RRR.append(DDD)    

        i=i+1
        

        Nn1 =['30']
        Nn2 =['56']
        Nn3 =['83']
        Nn4 =['77']
        Nn5 =['31']
        Nn6 =['20']
        Nn7 =['64']
        Nn8 =['20']
        Nn9 =['30']
        Nn10 =['28']
        
        for elem1 in Nn1:
            if elem1 in RRR:
                
                for elem2 in Nn2:
                    if elem2 in RRR:
                        
                        for elem3 in Nn3:
                            if elem3 in RRR:
                        
                                for elem4 in Nn4:
                                    if elem4 in RRR:
                        
                                        for elem5 in Nn5:
                                            if elem5 in RRR:
                        
                                                for elem6 in Nn6:
                                                    if elem6 in RRR:
                        
                                                        for elem7 in Nn7:
                                                            if elem7 in RRR:
                        
                                                                for elem8 in Nn8:
                                                                    if elem8 in RRR:
                        
                                                                        for elem9 in Nn9:
                                                                            if elem9 in RRR:
                        
                                                                                for elem10 in Nn10:
                                                                                    if elem10 in RRR:

                                                                                        print(count,"huuuuuuuuuurraaaaaaaaaa...",RRR,"   ",Nn1,Nn2,Nn3,Nn4,Nn5,Nn6,Nn7,Nn8,Nn9,Nn10)
                                                                                        count=0
                                                                                        break
        #print(RRR)                                            
        RRR = []
    
    #print(RRR)
    ii=ii+1

the idea is simple if your processor is strong and can run several thousand scripts at the same time

then it is necessary for each of 100 to 30 samples to hammer several times from 100 to 500 times for each of 100

if all 3000-5000 programs run through 50000000 shuffles in a few minutes, hours, then you can run everything in the available time (besides, other puzzles can pop up, we check everything from 64 to 160 at once).

so you can probably catch something in weeks (?)
jr. member
Activity: 184
Merit: 3
then the last option is to look for luck. who have 64-core processors.

different 2 symbols for seed give different results

pz 20 example...

step 1100006 seed 000000111011001011000011111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 1532829 seed 000001001101100011010111111001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 1129134 seed AAAAAAaaaAaaaaAAaaAaaAaAAaaaAA bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...

step 494992 seed BBBBBBbBBBBbBbbbBbbbbbBbBbbBbb bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 548744 seed BBBBBBbBBbBbbbBBbbBBbbbbbbBBbb bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 896722 seed BBBBBBbbBbBBbBbbBbbbBbbBbbBBbb bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 1325957 seed SSSSSsSSSSsSssssSsSSsssssSsssS bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 5492813 seed RRRRrrRRrRrRRrrRrrrRRRrRRrrrrr bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 6988942 seed RRRRrrrRrrrrRRrrrRRrrRRRrRRRrr bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 7290958 seed RRRRrrrrRrrRRRrrrRRRrrRrrRRrrR bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 7721483 seed RRRRrrrrrrrrrRrrRrrRRrRRRRrRRR bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 8730248 seed RRRrRRrRRrrrrRrRrrrRrRrRrRRRrr bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 1811954 seed OOOOOoOoOooooOoOOOooooooooOOOO bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 1873426 seed VVVVVvVvvVVvvvVvvVvVvVVvVvvvvV bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 430546 seed WWWWWWWwwwwWwWwWWwwWwWwwWWwwww bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 3821040 seed XXXXxXXxxXXxXxxxXxxxXXxxxXXxXx bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 2652540 seed JJJJJjjjJJJjJjjjjjJjjjJJJJjjjJ bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 2777464 seed JJJJJjjjJjJJjjjjJjJJjjjjJJJJjj bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...
step 765336 seed FFFFFFfFfffFfffffFffFFFFffFffF bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 2367636 seed FFFFFffFfFFfffFFFffFffffffFfFF bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
...

it turns out for different 2 seed symbols we have 200-300 collisions

22 sym len
6892620648693261354600   76!/38!/38!
1000000000000000000000 =
5892620648693261354600 / 2^64 319,4396054473088187643 collision

that is, there are already 1000-1500 collisions on 5 different 2-sign seeds

200 Aa
200 Bb
200 Cc
200 Dd
200 Ff

5 1000 collisions

10 2000 collisions

15 3000 collisions

20 4000 collisions

25 5000 collisions

30 6000 collisions

35 7000 collisions

40 8000 collisions

45 9000 collisions

50 10000 collisions

100 20000 collisions

500 100000 collisions

now we test the sample, we do not know the required number of 1 puzzle or 200-300 num collisions, pz 20 num len (10 by 2), cillision 22 num len (11 by 2)

if we create random samples (from 100 to 2 numbers) for example 1000 samples of 60 pairs out of 100

Quote
import random
import time

Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']

RRR = []
RRR3 = []

for X in range(200): # 2 seed symbols we have 200-300 collisions, 1000 5000 10000...
    random.seed()
    i = 1
    while i <= 1:
            
        RRR2 = []
                    
        for RR in range(11):        
            DDD = random.choice(Nn)
            RRR2.append(DDD)    

        i=i+1
        RRR3.append(RRR2)
        RRR2=[]

print(RRR3,len(RRR3))


#count = 0
#count2 = 0
count3 = 0
count4 = 0

for elem in RRR3:
    count3 += 1
    count = 0
    count2 = 0
    print(count3,"elem count")

    ii = 1
    while ii <= 1000: # 1000 by 60 from 100
        
        random.seed(ii)
        
        i = 1
        while i <= 1:
            
            RRR = []
            
            count += 1
            
            for RR in range(60): # 50:50
                DDD = random.choice(Nn)
                RRR.append(DDD)    

            i=i+1
            
            Nn1 =elem #['30', '56', '83', '77', '31', '20', '64', '20', '30', '28', '49']

            fff1 = len(Nn1)
            
            for ee in Nn1:
                if ee in RRR:
                    count2 += 1

            if count2 == fff1:
                print("")
                count4 += 1
                print(count3,count,"huuuuuuuuuurraaaaaaaaaa...",Nn1,RRR)
                
                print("")
                count=0
                
                break
            
                                              
            RRR = []
            count2=0

        ii=ii+1
print("")
print("find count",count4)

further and this 1000 to 60, we again choose 1000 for each one already for 30

out of 30 it is much easier to choose 11 or 15 successfully

but as collisions increase (and this is 200-300 = 1 working program)

we can reduce the sample to 100

and here we have a ratio 1000*1000/11 or 15  100*100/11 or 15

for example, for the first sample, 100 by 60 for 10000 collision, find count 228 10000 100/60

100 by 60 for 100000 collision find count 2143 100000 100/60

2143 this means that such a number out of has a chance of being sampled at 30, 100(60)*100(30)...

it seems that the chances are good so that in 100(60)*100(30) = 10000 to 30 there are many opportunities to catch the desired set

we will have 10000 rows with a sample of 30 for a sample of 11 or 15 for 100000 collisions

how many collisions can be obtained from these signs !"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~

4371 individual programs i.e. 4371*200 = 874200 collisions

100(60)*100(30) = 10000 / 4371*200 = 874200 collisions

if the 64 core processor does not die to run them all, it may only take about ~50 million step concurrent programs to run

11! 39916800
15! 1307674368000
17! 355687428096000
20! 2432902008176640000

I have encountered 2 problems so far, 1 is a random row selection string from file, although you can run step by step and 2 the algorithm is recursive for seed permutations.

but you can even try to run

1) write a sample of 30 to a file

Quote
import random
import time


for MMM in range(1):

    Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
         '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
         '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
         '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
         '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
         '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
         '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
         '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
         '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
         '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']

    RRR1 = []
    RRR2 = []
    i = 1
    while i <= 100:
        random.seed(i)
        for x1 in range(60):                     # 100 by 60 from 100
            DDD = random.choice(Nn)
            RRR1.append(DDD)

        RRR2.append(RRR1)
        RRR1=[]
        i=i+1

    #for elem in RRR2:
        #print(elem)

    RR1 = []
    RR2 = []

    for elem in RRR2:
        i2 = 1
        while i2 <= 100:
            random.seed(i2)
            for x1 in range(30):                 # 100 by 30 from 60
                DDD = random.choice(elem)
                RR1.append(DDD)

            RR2.append(RR1)
            #print(RR1)
            RR1=[]
            i2=i2+1

    #print("")

    GGG=[]

    for elem1 in RR2:
        d = ''.join(elem1)
        GGG.append(d)
        #print(d)

    with open("tresher.txt", "a") as file:
        for line in GGG:
            file.write(line + '\n')

2) permutations for seed by 2

Quote
import random
from itertools import *

def reverse_string1(s):
    return s[::-1]

def brute_force(alphabet, min_len, max_len):
    joiner = ''.join
    for cur_len in range(min_len, max_len + 1):
        yield from map(joiner, product(alphabet, repeat=cur_len))

#alphabet = '!"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~'

alphabet = "abcdefghijklmnopqrstuvwxyz"

mo = []

b = brute_force(alphabet, 2, 2)
for v in b:
    if v[0] != v[1]:
        if v not in mo:
            l = reverse_string1(v)
            mo.append(l)

print(mo,len(mo))

3) 2 templates for writing, read line by line or randomly, they need to be called blablabla.txt

line by line

Quote
from os import system
system("title "+__file__)
import random
from bit import Key
#from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())
import gmpy2
import time

def sym1():
    a1 = "0"

    return a1

def sym2():
    a2 = "1"

    return a2

def find_permutation(lst,K,numberbit1,numberbit0):
    l = lst
    N = numberbit0
    M = numberbit1

    if N == len(l):
        return sym2() * N
    
    if M == len(l):
        return sym2() * M

    result = ''    
    for i in range (0, len(lst)-1):
        K0 = gmpy2.comb(len(l)-1, M)
        if (K < K0):
            result += sym1()
            l.remove (sym1())
        else:
            result += sym2()
            l.remove (sym2())
            M -=1
            K = K - K0
    result += l[0]

    return result

a1=sym1()*38
a2=sym2()*38

import time

list2 = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF",
        "1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU","1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR","12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4",
        "1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF","1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE",
        "15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb","1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8","15qsCm78whspNQFydGJQk5rexzxTQopnHZ",
        "13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC","14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2","1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D",
        "1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK","1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq","16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf",
        "19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt","1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74","1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5",
        "17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad","1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL","15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b",
        "18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8","1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX","1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL",
        "1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n","1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX","1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf",
        "1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu","18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB","15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc",
        "1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao","1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL","12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg",
        "1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3","18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos","1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4",
        "1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv","1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV","1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z",
        "1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6","1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7","17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT",
        "1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh","1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx","1CdufMQL892A69KXgv6UNBD17ywWqYpKut",
        "1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N","1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5","1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz",
        "1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4","1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj","1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz",
        "1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua","16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy","1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R",
        "17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD","13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3","16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v",
        "1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq","15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA","1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT",
        "1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt","1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo","1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo",
        "15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD","13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1","1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux",
        "19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg","1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P","18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL",
        "1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV","1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2","1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy",
        "13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV","1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN","18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg",
        "1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN","1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ","1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE",
        "14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9","19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG","14u4nA5sugaswb6SZgn5av2vuChdMnD9E5",
        "174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy", "1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv"]


print("")
print("permut 11 15 17 (factorial)")
print("")
print("11! 39916800")
print("15! 1307674368000")
print("17! 355687428096000")
print("20! 2432902008176640000")

while True:
    #count2 = 0
    h2 = open("tresher.txt", "r")
    for elemm2 in h2:
        #count2 += 1
        
        Nn = ([elemm2[i:i + 2] for i in range(0, len(elemm2), 2)])[:-1]
        print("")
        K = print(elemm2, " from file")
        print("")
        RRR1 = []

        for RR in range(15):
            DDD = random.choice(Nn)
            RRR1.append(DDD)

        print(Nn)
        print("screening out...")
        print(RRR1)
            #print(RRR2)
            #time.sleep(3.0)
        print("loop start...")
        count = 0
   

        i=1
        while i <= 1000: # step for 11 15 17

                #random.seed(i) #  
                
            dD = ''.join(random.sample(RRR1,len(RRR1)))

            dDD = dD[0:22]
              
            count += 1
              
            bbb = int(dDD)
            #print(dD)
            if bbb <= 6892620648693261354600-1:

      #time.sleep(0.02) #cpu slowdown for many copies
                a3 = list(a1+a2)

                K = bbb
                numberbit1 = len(a1)
                numberbit0 = len(a2)

                aa = find_permutation(a3,K,numberbit1,numberbit0)

                ppp = aa
                    #print(bin(i),d2,i,int(d2,2),ppp)

                random.seed(ppp)
                
                Nn2 = "0","1" #"0","1"
                
                RRR = []
                
                for RR in range(160): # pz bit range
                    DDD = random.choice(Nn2)
                    RRR.append(DDD)

                d = ''.join(RRR)
                            
                print(count,bbb,ppp,"",d)
                            
                ii = 64
                while ii <= 160:

           #time.sleep(0.02) #cpu slowdown for many copies
                                
                    dd = (d)[0:ii]
                                
                    b = int(dd,2)
                    if b >= 9223372036854775807:
                        key = Key.from_int(b)
                        addr = key.address
                        if addr in list2:
                            print ("found!!!",b,addr)
                            s1 = str(b)
                            s2 = addr
                            f=open("a.txt","a")
                            f.write(s1)
                            f.write(s2)      
                            f.close()
                            pass
                        else:
                            pass
                                #print(i,ppp,addr) #print(X,r1,b,addr)
                    ii=ii+1          
            i=i+1

        count = 0
            #RRR2=[]
        print("loop end...")
        time.sleep(2.0)

    h2.close()            

    pass

random

Quote
from os import system
system("title "+__file__)
import random
from bit import Key
#from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())
import gmpy2
import time

def sym1():
    a1 = "0"

    return a1

def sym2():
    a2 = "1"

    return a2


#def tiime():
    
#    cz = time.sleep(0.02)
    
#    return cz

def fromfile():

    hu=0
    hu1=random.randrange(1,10000,1)

    h2 = open("tresher.txt", "r")
    for elemm2 in h2:
        hu +=1
        if hu == hu1:
            #ggg = elemm2
            #print(ggg)
            break

    h2.close()
      
    return elemm2


def find_permutation(lst,K,numberbit1,numberbit0):
    l = lst
    N = numberbit0
    M = numberbit1

    if N == len(l):
        return sym2() * N
    
    if M == len(l):
        return sym2() * M

    result = ''    
    for i in range (0, len(lst)-1):
        K0 = gmpy2.comb(len(l)-1, M)
        if (K < K0):
            result += sym1()
            l.remove (sym1())
        else:
            result += sym2()
            l.remove (sym2())
            M -=1
            K = K - K0
    result += l[0]

    return result

a1=sym1()*38
a2=sym2()*38

import time

list2 = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF",
        "1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU","1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR","12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4",
        "1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF","1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE",
        "15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb","1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8","15qsCm78whspNQFydGJQk5rexzxTQopnHZ",
        "13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC","14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2","1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D",
        "1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK","1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq","16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf",
        "19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt","1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74","1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5",
        "17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad","1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL","15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b",
        "18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8","1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX","1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL",
        "1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n","1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX","1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf",
        "1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu","18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB","15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc",
        "1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao","1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL","12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg",
        "1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3","18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos","1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4",
        "1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv","1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV","1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z",
        "1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6","1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7","17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT",
        "1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh","1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx","1CdufMQL892A69KXgv6UNBD17ywWqYpKut",
        "1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N","1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5","1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz",
        "1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4","1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj","1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz",
        "1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua","16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy","1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R",
        "17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD","13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3","16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v",
        "1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq","15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA","1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT",
        "1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt","1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo","1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo",
        "15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD","13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1","1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux",
        "19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg","1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P","18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL",
        "1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV","1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2","1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy",
        "13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV","1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN","18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg",
        "1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN","1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ","1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE",
        "14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9","19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG","14u4nA5sugaswb6SZgn5av2vuChdMnD9E5",
        "174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy", "1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv"]

print("")
print("permut 11 15 17 (factorial)")
print("")
print("11! 39916800")
print("15! 1307674368000")
print("17! 355687428096000")
print("20! 2432902008176640000")

while True:
    #count2 = 0
    #h2 = open("tresher.txt", "r")
    #for elemm2 in h2:
        #count2 += 1


    elemm2 = fromfile()
        
    Nn = ([elemm2[i:i + 2] for i in range(0, len(elemm2), 2)])[:-1]
    print("")
    K = print(elemm2, " from file")
    print("")
    RRR1 = []

    for RR in range(15):
        DDD = random.choice(Nn)
        RRR1.append(DDD)

    print(Nn)
    print("screening out...")
    print(RRR1)
            #print(RRR2)
            #time.sleep(3.0)
    print("loop start...")
    count = 0
   

    i=1
    while i <= 50000000: # permut step factorial 11 15 17
   
               #random.seed(i) # seed init?
                
        dD = ''.join(random.sample(RRR1,len(RRR1)))

        dDD = dD[0:22]
              
        count += 1
              
        bbb = int(dDD)
            #print(dD)

        if bbb <= 6892620648693261354600-1:

            a3 = list(a1+a2)
            K = bbb
            numberbit1 = len(a1)
            numberbit0 = len(a2)

            aa = find_permutation(a3,K,numberbit1,numberbit0)

            ppp = aa
                    #print(bin(i),d2,i,int(d2,2),ppp)

            random.seed(ppp)
                
            Nn2 = "0","1" #"0","1"
                
            RRR = []
                
            for RR in range(160): # pz bit range
                DDD = random.choice(Nn2)
                RRR.append(DDD)

            d = ''.join(RRR)
                            
            print(count,bbb,ppp,"",d)
                            
            ii = 64
            while ii <= 160:
      
                dd = (d)[0:ii]
                                
                b = int(dd,2)
                if b >= 9223372036854775807:
                    key = Key.from_int(b)
                    addr = key.address
                    if addr in list2:
                        print ("found!!!",b,addr)
                        s1 = str(b)
                        s2 = addr
                        f=open("a.txt","a")
                        f.write(s1)
                        f.write(s2)      
                        f.close()
                        pass
                    else:
                        pass
                                #print(i,ppp,addr) #print(X,r1,b,addr)
                ii=ii+1
        i=i+1

    count = 0
            #RRR2=[]
    print("loop end...")
    time.sleep(2.0)
            
    break

4) write many different seed scripts, python dont use "re"

Quote
import time

GGG = ['ba', 'ca', 'da', 'ea', 'fa', 'ga', 'ha', 'ia', 'ja', 'ka', 'la', 'ma', 'na', 'oa', 'pa', 'qa', 'ra', 'sa', 'ta', 'ua', 'va', 'wa', 'xa', 'ya', 'za', 'Aa', 'Ba', 'Ca', 'Da',
       'Ea', 'Fa', 'Za', 'cb', 'db', 'eb', 'fb', 'gb', 'hb', 'ib', 'jb', 'kb', 'lb', 'mb', 'nb', 'ob', 'pb', 'qb', 'rb', 'sb', 'tb', 'ub', 'vb', 'wb', 'xb', 'yb', 'zb', 'Ab', 'Bb',
       'Cb', 'Db', 'Eb', 'Fb', 'Zb', 'dc', 'ec', 'fc', 'gc', 'hc', 'ic', 'jc', 'kc', 'lc', 'mc', 'nc', 'oc', 'pc', 'qc', 'rc', 'sc', 'tc', 'uc', 'vc', 'wc', 'xc', 'yc', 'zc', 'Ac',
       'Bc', 'Cc', 'Dc', 'Ec', 'Fc', 'Zc', 'ed', 'fd', 'gd', 'hd', 'id', 'jd', 'kd', 'ld', 'md', 'nd', 'od', 'pd', 'qd', 'rd', 'sd', 'td', 'ud', 'vd', 'wd', 'xd', 'yd', 'zd', 'Ad',
       'Bd', 'Cd', 'Dd', 'Ed', 'Fd', 'Zd', 'fe', 'ge', 'he', 'ie', 'je', 'ke', 'le', 'me', 'ne', 'oe', 'pe', 'qe', 're', 'se', 'te', 'ue', 've', 'we', 'xe', 'ye', 'ze', 'Ae', 'Be',
       'Ce', 'De', 'Ee', 'Fe', 'Ze', 'gf', 'hf', 'if', 'jf', 'kf', 'lf', 'mf', 'nf', 'of', 'pf', 'qf', 'rf', 'sf', 'tf', 'uf', 'vf', 'wf', 'xf', 'yf', 'zf', 'Af', 'Bf', 'Cf', 'Df',
       'Ef', 'Ff', 'Zf', 'hg', 'ig', 'jg', 'kg', 'lg', 'mg', 'ng', 'og', 'pg', 'qg', 'rg', 'sg', 'tg', 'ug', 'vg', 'wg', 'xg', 'yg', 'zg', 'Ag', 'Bg', 'Cg', 'Dg', 'Eg', 'Fg', 'Zg',
       'ih', 'jh', 'kh', 'lh', 'mh', 'nh', 'oh', 'ph', 'qh', 'rh', 'sh', 'th', 'uh', 'vh', 'wh', 'xh', 'yh', 'zh', 'Ah', 'Bh', 'Ch', 'Dh', 'Eh', 'Fh', 'Zh', 'ji', 'ki', 'li', 'mi',
       'ni', 'oi', 'pi', 'qi', 'ri', 'si', 'ti', 'ui', 'vi', 'wi', 'xi', 'yi', 'zi', 'Ai', 'Bi', 'Ci', 'Di', 'Ei', 'Fi', 'Zi', 'kj', 'lj', 'mj', 'nj', 'oj', 'pj', 'qj', 'rj', 'sj',
       'tj', 'uj', 'vj', 'wj', 'xj', 'yj', 'zj', 'Aj', 'Bj', 'Cj', 'Dj', 'Ej', 'Fj', 'Zj', 'lk', 'mk', 'nk', 'ok', 'pk', 'qk', 'rk', 'sk', 'tk', 'uk', 'vk', 'wk', 'xk', 'yk', 'zk',
       'Ak', 'Bk', 'Ck', 'Dk', 'Ek', 'Fk', 'Zk', 'ml', 'nl', 'ol', 'pl', 'ql', 'rl', 'sl', 'tl', 'ul', 'vl', 'wl', 'xl', 'yl', 'zl', 'Al', 'Bl', 'Cl', 'Dl', 'El', 'Fl', 'Zl', 'nm',
       'om', 'pm', 'qm', 'rm', 'sm', 'tm', 'um', 'vm', 'wm', 'xm', 'ym', 'zm', 'Am', 'Bm', 'Cm', 'Dm', 'Em', 'Fm', 'Zm', 'on', 'pn', 'qn', 'rn', 'sn', 'tn', 'un', 'vn', 'wn', 'xn',
       'yn', 'zn', 'An', 'Bn', 'Cn', 'Dn', 'En', 'Fn', 'Zn', 'po', 'qo', 'ro', 'so', 'to', 'uo', 'vo', 'wo', 'xo', 'yo', 'zo', 'Ao', 'Bo', 'Co', 'Do', 'Eo', 'Fo', 'Zo', 'qp', 'rp',
       'sp', 'tp', 'up', 'vp', 'wp', 'xp', 'yp', 'zp', 'Ap', 'Bp', 'Cp', 'Dp', 'Ep', 'Fp', 'Zp', 'rq', 'sq', 'tq', 'uq', 'vq', 'wq', 'xq', 'yq', 'zq', 'Aq', 'Bq', 'Cq', 'Dq', 'Eq',
       'Fq', 'Zq', 'sr', 'tr', 'ur', 'vr', 'wr', 'xr', 'yr', 'zr', 'Ar', 'Br', 'Cr', 'Dr', 'Er', 'Fr', 'Zr', 'ts', 'us', 'vs', 'ws', 'xs', 'ys', 'zs', 'As', 'Bs', 'Cs', 'Ds', 'Es',
       'Fs', 'Zs', 'ut', 'vt', 'wt', 'xt', 'yt', 'zt', 'At', 'Bt', 'Ct', 'Dt', 'Et', 'Ft', 'Zt', 'vu', 'wu', 'xu', 'yu', 'zu', 'Au', 'Bu', 'Cu', 'Du', 'Eu', 'Fu', 'Zu', 'wv', 'xv',
       'yv', 'zv', 'Av', 'Bv', 'Cv', 'Dv', 'Ev', 'Fv', 'Zv', 'xw', 'yw', 'zw', 'Aw', 'Bw', 'Cw', 'Dw', 'Ew', 'Fw', 'Zw', 'yx', 'zx', 'Ax', 'Bx', 'Cx', 'Dx', 'Ex', 'Fx', 'Zx', 'zy',
       'Ay', 'By', 'Cy', 'Dy', 'Ey', 'Fy', 'Zy', 'Az', 'Bz', 'Cz', 'Dz', 'Ez', 'Fz', 'Zz', 'BA', 'CA', 'DA', 'EA', 'FA', 'ZA', 'CB', 'DB', 'EB', 'FB', 'ZB', 'DC', 'EC', 'FC', 'ZC',
       'ED', 'FD', 'ZD', 'FE', 'ZE', 'ZF']

for elem in GGG[0:500]: # python dont use "re"
    #time.sleep(0.1)
    if elem != "re":
        ccc = elem
       
        f = open("blablabla.txt")
        #f.readline()
        f2= open(str(ccc+".py"), "w+")
        for l in f:
            if "    a1 = " in l:
                vvv = """ " """+str(ccc[0])+""" " """
                vvv2 = str(vvv)
                Ggg = vvv2.replace(' ', '')
                #print(Ggg)
                f2.writelines("    a1 =" + Ggg)
                continue
            if "    a2 = " in l:
                vvv = """ " """+str(ccc[1])+""" " """
                vvv2 = str(vvv)
                Ggg = vvv2.replace(' ', '')
                #print(Ggg)
                f2.writelines("    a2 =" + Ggg)
                continue
            else:
                f2.writelines(l)

             
    f.close()
    f2.close()


5) create cmd to run all scripts

Quote
import time
from os import system
system("title "+__file__)
import os

mmm = os.path.dirname(__file__)
mmm1 = str(mmm)#[:6]
print(mmm1)
FFF = []

for root, dirs, files in os.walk("."):
    print(root, dirs, files)
    for filename in files:
        if filename[2:5] == ".py":
            FFF.append(filename)
            #print(filename)


f2= open("run.cmd", "w+")

f2.writelines("@echo off"+ '\n')

vvv = """ " """+mmm1+""" " """
vvv2 = str(vvv)
Ggg = vvv2.replace(' ', '')
Ggg2 = "cd "+Ggg

f2.writelines(Ggg2+ '\n')

for F in FFF:

    f2.writelines("start /min "+str(F)+ '\n')

f2.writelines("exit"+ '\n')

f2.close()

everything should be in the 1st folder    
jr. member
Activity: 184
Merit: 3
It was misleading. I was delighted and did not notice the catch. "collisions" are simply out of range.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03C3CA0BD8A7D05A949 pz63

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A0705B5714CFEAA29032 pz70

***

but there should be collisions. for example, how many 2 ^ 64 (16 ^ 16) fit in 2 ^ 160 (16 ^ 40) ripmd160

1461501637330902918203684832716283019655932542976/18446744073709551616 = 79228162514264337593543950336 (hex from 0000000000000000-FFFFFFFFFFFFFFFF)

79228162514264337593543950336/18446744073709551616 = 4294967296 and repeating numbers.

or

18446744073709551616*18446744073709551616 = 340282366920938463463374607431768211456

1461501637330902918203684832716283019655932542976 / 340282366920938463463374607431768211456 = 4294967296

all space 2^160 can be run for 4294967296 steps by 18446744073709551616 step.

that is, there is a repetition

0000000000000000 0
FFFFFFFFFFFFFFFF 18446744073709551616

0000000000000000 18446744073709551616
FFFFFFFFFFFFFFFF 18446744073709551616 + 18446744073709551616  

0000000000000000 18446744073709551616 + 18446744073709551616
FFFFFFFFFFFFFFFF 18446744073709551616 + 18446744073709551616 + 18446744073709551616  

0000000000000000 18446744073709551616 + 18446744073709551616 + 18446744073709551616
FFFFFFFFFFFFFFFF 18446744073709551616 + 18446744073709551616 + 18446744073709551616 + 18446744073709551616  

etc  

18446744073709551616 / 4294967296 = 4294967296

in the hash they are all mixed, therefore, these random mixed numbers are rotated

1
2  (2^64)
3

2
1  (2^64)
3

3
2  (2^64)
1

etc

get a chance to find what you need 50%? and you need to somehow find the rest of the hash ripmd160 16^24...

***

or screw quasi-random distribution or gauss

2^64×2^64
340282366920938463463374607431768211456
93820969697840041204785894580506297666600
140!/70!/70

93820969697840041204785894580506297666600 / 2^64 = 5086044958554742658699 collisions

step 10000000000000000000000 + gauss (thanks to someone from the Inet)

10000000000000000000000 / 2^64 = 542,1010862427522170037 collision


Quote
from os import system
system("title "+__file__)
import random
from bit import Key
from combi import *

list2 = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF",
        "1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU","1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR","12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4",
        "1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF","1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE",
        "15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb","1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8","15qsCm78whspNQFydGJQk5rexzxTQopnHZ",
        "13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC","14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2","1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D",
        "1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK","1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq","16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf",
        "19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt","1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74","1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5",
        "17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad","1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL","15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b",
        "18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8","1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX","1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL",
        "1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n","1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX","1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf",
        "1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu","18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB","15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc",
        "1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao","1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL","12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg",
        "1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3","18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos","1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4",
        "1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv","1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV","1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z",
        "1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6","1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7","17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT",
        "1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh","1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx","1CdufMQL892A69KXgv6UNBD17ywWqYpKut",
        "1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N","1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5","1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz",
        "1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4","1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj","1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz",
        "1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua","16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy","1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R",
        "17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD","13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3","16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v",
        "1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq","15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA","1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT",
        "1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt","1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo","1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo",
        "15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD","13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1","1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux",
        "19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg","1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P","18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL",
        "1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV","1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2","1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy",
        "13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV","1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN","18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg",
        "1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN","1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ","1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE",
        "14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9","19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG","14u4nA5sugaswb6SZgn5av2vuChdMnD9E5",
        "174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy", "1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv"]


#w1= # 600 0000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000001111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111
#w2= # 600 0101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101 0101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101 0101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101 0101010101010101010101010101010101010101010101010101010101010101010101010101010 10101010101010101010101010101010101010101010101
#w3= "0000000000111111111122222222223333333333444444444455555555556666666666777777777 788888888889999999999" # 0000000000111111111122222222223333333333444444444455555555556666666666777777777 788888888889999999999

#aaa666 = ["00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000",
#       "00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000","00000000000000000000",
#       "00000000000000000000","11111111111111111111","11111111111111111111","11111111111111111111","11111111111111111111","11111111111111111111","11111111111111111111",
#       "11111111111111111111","11111111111111111111","11111111111111111111","11111111111111111111","11111111111111111111","11111111111111111111","11111111111111111111",
#       "11111111111111111111","11111111111111111111"]

a1="0"*70
a2="1"*70
a3 = a1+a2
perm_space = PermSpace(a3)

#aa = perm_space[0]
#GG = ([a3[i:i + 10] for i in range(0, len(a3), 10)])
#random.seed()
#aaa777 = ''.join(random.sample(GG,len(GG)))

i = 0
while i <= 93820969697840041204785894580506297666600-1:
    #DDD = [10238746,11234789,12334458,13489004,14844639,15093768,16663890,17877737,18990390,19234412,99873218,10093241]
    fff=i
    if 0 == 0: #for lem in DDD:
        #kkk = int(lem)
        ffff = fff#+kkk
        if ffff >= 93820969697840041204785894580506297666600-1:
            break
        else:
            pass
        aa = perm_space[ffff]
        aaa777 = "".join(aa)
    
#    random.seed()
#    s = a3
#    sv = ''.join(random.sample(s,len(s)))
    
        orderliness = 1 #0.75
        for uuu in range(1,5,1): # dispersion
            def tuplify(x, y):
                
                random.seed()
                
                return (orderliness * y + random.gauss(0,uuu), x)

            for iii in range(0,1000,1): # dispersion
                #a1="0"*50
                #a2="1"*50
                #a3 = a1+a2
                values = aaa777#"0101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101 0101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101 0101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101 0101010101010101010101010101010101010101010101010101010101010101010101010101010 10101010101010101010101010101010101010101010101"
                #print(values)
                pairs = list(map(tuplify, values, range(len(values))))
                pairs.sort()
                partially_ordered_values = [p[1] for p in pairs]
                ppp = "".join(partially_ordered_values)
                #print(ppp)

                random.seed(ppp)

                Nn = "0","1" #"0","1"
                RRR = []

                for RR in range(160): # pz bit range
                    DDD = random.choice(Nn)
                    RRR.append(DDD)

                d = ''.join(RRR)
                #print(d,len(d))
                
                print(ffff,aaa777,ppp) #print(ffff,aaa777,ppp,perm_space.index(ppp),"< combi count")
                
                ii = 64
                while ii <= 160:
                    
                    dd = (d)[0:ii]
                    
                    b = int(dd,2)
                    if b >= 9223372036854775807:
                        key = Key.from_int(b)
                        addr = key.address
                        if addr in list2:
                            print ("found!!!",b,addr)
                            s1 = str(b)
                            s2 = addr
                            f=open("a.txt","a")
                            f.write(s1)
                            f.write(s2)      
                            f.close()
                            pass
                        else:
                            pass
                            #print(i,ffff,aaa777,ppp,addr) #print(X,r1,b,addr)

                    ii=ii+1
        print("loop end...")

    i=i+10000000000000000000000    

member
Activity: 406
Merit: 47
The moment of truth or for the first time in history 11/28/2021 real collisions were found in bitcoin. Until I write the address, maybe a person decides to go to the forum himself and write in person. What the Large Bitcoin Collider did not do was 1 person did. And he wrote down his name in the new history.

What you mean real collisions? I don't know much about it.

I thought it is have collisions about Pollard's kangaroo for SECPK1 method already. What collisions you mean?
legendary
Activity: 952
Merit: 1386
if you see carefully there are some 547 satoshi incoming transactions to these addresses and after a while the funds from these addresses are moved (same to assume someone cracked the privatekey). it could be just a coincidence but if you dig down deeper these 547 satoshi are sent to lots of addresses even to some high value addresses and some of them are getting cracked, funds are moving out briefly after they receive these 547 satoshis. these are the wallets i know of, maybe there could be many. i dont know how but someone is sending these small amounts and somehow how cracking these addresses. this is my assumption. i hope experts here could uncover the mystery.

google "dust attack"
jr. member
Activity: 184
Merit: 3
Andzhig, I guess this approach is confusing due to small sample size.

If you take any random 4 numbers, you will find the dependencies between them for sure. The same could be done for 10, 30, or even 100 random numbers. So, our brain thinks that we found the dependencies between several numbers, but it could be wrong just because of the small sample size.
it works like this.

all permutations ripmd160 in hex format 40 length

from

0000000000000000000000000000000000000000

to

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

for example, puzzle 64 is somewhere there

0000000000000000000000000000000000000000
...
3ee4133d991f52fdf6a25c9834e0745ac74248a0
...
3ee4133d991f52fdf6a25c9834e0745ac74248a1
...
3ee4133d991f52fdf6a25c9834e0745ac74248a2
...
3ee4133d991f52fdf6a25c9834e0745ac74248a3
...
3ee4133d991f52fdf6a25c9834e0745ac74248a4
...
3ee4133d991f52fdf6a25c9834e0745ac74248a5
...
3ee4133d991f52fdf6a25c9834e0745ac74248a6
...
etc
...
3ee4133d991f52fdf6a25c9834e0745ac74248af
...
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

in other words into space

0000000000000000000000000000000000000000
...
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

there is only 1 such key 3ee4133d991f52fdf6a25c9834e0745ac74248a4 but it is obtained by numbers from space (dec 9223372036854775808-18446744073709551616) and the rest where then are located which end with 0 1 2 3 ... D E F

the ripmd160 key can start in hex format with only 16 characters 0 1 2 3 4 5 6 7 8 9 a b c d e f

this means 16 options

combinations of 2 characters of the key

16 * 16 = 256 i.e 16^2

this implies that if we start looking for a double match step by step

256 * 16 4096 (each step of 2 characters occurs 16 times over the entire space 4096, ok approximately)

and so that all possible combinations of brute force occur

256 * 256 = 65536

this means that the minimum gap for 2-symbol statistical analysis can be 1 and the maximum is not more 65536 (this is the start of the sample for 3 characters).

probably all sorts of chi-squares and other statistical analysts (searching for the mean-mathematical expectation) will not work here.. although who knows

that is, if we are looking for 2 characters each and step by segments along 4096

they will be the same combined small steps 256 but in order for us to collect statistics for 4096

instead of 16, you will have to save for 256 values ​​(all double combinations) the larger numbers of steps at which they fall out

so it will be clear, take any half of the 64 puzzle key

3ee4133d991f52fdf6a25c9834e0745ac74248a4

length 20 3ee4133d991f52fdf6a2 (16^20 1208925819614629174706176)

how many keys will start with these 20 characters in the whole space?

16^40 1461501637330902918203684832716283019655932542976 / 16^20 1208925819614629174706176 = 1208925819614629174706176 (2^80)

how many 2 characters will there be

3ee4133d991f52fdf6a25c9834e0745ac74248a4
 
16^40 1461501637330902918203684832716283019655932542976 / 16^2  256 = 5708990770823839524233143877797980545530986496 (2^152)

if we take 1 character out of 16 possible

1461501637330902918203684832716283019655932542976/16 91343852333181432387730302044767688728495783936 for each of 16 characters 0 1 2 3 4 5 6 7 8 9 a b c d e f

now what do we have, we have 40 independent experiments (tossing 40 coins or 40 dice)

space 9223372036854775808-18446744073709551616 conditionally time of these 40 parallel experiments and we can rewind this timeline to find the desired combination of the drop

it turns out if for 2 symbols complete cycles of all possible permutations 65536

1461501637330902918203684832716283019655932542976/65536 22300745198530623141535718272648361505980416 full cycles for each of the parallel experiments

first 2 character of 40 ripmd160 3ee4133d991f52fdf6a25c9834e0745ac74248a4
0000000000000000000000000000000000000000
22300745198530623141535718272648361505980416  cycles
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

second 2 character of 40 ripmd160 3ee4133d991f52fdf6a25c9834e0745ac74248a4
0000000000000000000000000000000000000000
22300745198530623141535718272648361505980416  cycles
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

third 2 character of 40 ripmd160 3ee4133d991f52fdf6a25c9834e0745ac74248a4
0000000000000000000000000000000000000000
22300745198530623141535718272648361505980416  cycles
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

etc...

in general, if nothing messed up, then something like that  Grin on the right is the distance between finding the desired

by 4

step 9223372036854780064 count 4257 3ee4 ('3ee401f1439e871f3b7bf15a73b9205016f62b37', '16jY392cGUQDeoLLUQDY1Z7Voi9vzAAJG9', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbdRaaVwNMEs9') 4257
step 9223372036854872143 count 96336 3ee4 ('3ee4486ffc3f440f69214109ab6fecb014ae951b', '16jYNGkRdkw7jLmd9Rtsqpgbq7wDexn99H', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbdfD99kANG93') 92079
step 9223372036854966320 count 190513 3ee4 ('3ee4e10590e5f08060df033d8e649bdfa71556f8', '16jZ5ghxKD2shjWM9vXzTbGcnRVh4fc8mV', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbdu9iYiH9sMz') 94177
step 9223372036854979739 count 203932 3ee4 ('3ee47cfd082608b52863b69fccb242194f53c8cc', '16jYcXzrVY9iwimcGYRuzRTrZg9NPAjtmY', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbdw8vpM3Ug7g') 13419
step 9223372036855207002 count 431195 3ee4 ('3ee445d81358b6ceb2f2a2592eb7a0f7107ce6a7', '16jYMZvarbTTi45uHsiitMmJchGrdZE8kU', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbeWn99ovPCzn') 227263
step 9223372036855222086 count 446279 3ee4 ('3ee42d68dbc5e3d603b5aea8bf241f4dc19ee9e3', '16jYEwHHgkqGw8R2vSiiR2yJASdjYdiu6T', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbeZ1eYbAmaoW') 15084
step 9223372036855231312 count 455505 3ee4 ('3ee4db94312d8371a7065ddacc07427f53d4a753', '16jZ4D2ULXqvC9uxTzj9UQUFU6ETuonbxy', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbeaNrpjb9hDP') 9226
step 9223372036855418954 count 643147 3ee4 ('3ee408f34da23b61aca6dab2d9b7650e95a50a1b', '16jY53M4tQob3yXt8RVTgqS5fnmPLGrGva', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbf49u4LCTz6x') 187642
step 9223372036855559079 count 783272 3ee4 ('3ee4db2c244a94c6c51b529d2eeaefca64160a0b', '16jZ46dNjaDsYWRZty1n31mWvx7vLEnjkQ', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbfQtyDa4FjWD') 140125
step 9223372036855579887 count 804080 3ee4 ('3ee493a274e850f7606a848062b0e72c65dfd26b', '16jYigVRrnaYGSNVTPpqD4P5HNE4EjLdj2', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbfTyczV8TLMR') 20808
step 9223372036855597340 count 821533 3ee4 ('3ee4b8a794345e85508d74efaa3faf7e01ee8c63', '16jYtjFgb2QjqsJxZKjhENKiPGhhfhs6mZ', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbfWZU5QKrEpS') 17453
step 9223372036855603379 count 827572 3ee4 ('3ee4d5f5b6daf23ff43de92e8a40d7b82dc3d1c4', '16jZ2ga8Gns9dQ8pdwWn2BhF8JupSZSwZz', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbfXTKKiT6KWS') 6039

9223372036855824384 9223372036856872960

step 9223372036855839628 count 15245 3ee4 ('3ee4c5ba97427a170426f6a056380348d311cc3a', '16jYxH4qRvVeykfAd5nFjEUQBVW7So37PM', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbg8RgReB4MXh') 15245
step 9223372036855874015 count 49632 3ee4 ('3ee432987de45e5ed3c3a85950227729b33d5c40', '16jYGLvJiQQeTA4c1wWMESc5e1j6G5BwTL', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbgDWv9SkTNMG') 34387
step 9223372036855877106 count 52723 3ee4 ('3ee4618b010f44a7b772efd8a61254247e45e6aa', '16jYV5xTJ12Pxi78SsJoqVWPxvQmLhjnCe', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbgDyTNesZMuH') 3091
step 9223372036855892671 count 68288 3ee4 ('3ee4ea2cd49b4f4d35c0cf1b0bbd664d40159dae', '16jZ8AoENczbSwXrYanRwrF9FiPJrFL85B', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbgGH6HkT1qYH') 15565
step 9223372036855922499 count 98116 3ee4 ('3ee4de402152f42ce05424f1a85e46971b848cdf', '16jZ4w5k85pN1BJeiT1ZFwYSzusVQ8Dntu', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbgLhBmDfmTUp') 29828
step 9223372036856034098 count 209715 3ee4 ('3ee420a5729e0d288b3f89eb70788b6eefcc5e2b', '16jYBUN2x3Xu6KEUrVfTrbrZVsEoFurr4K', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbgdDLoexJNFd') 111599
step 9223372036856176890 count 352507 3ee4 ('3ee435f3779f555e000b062cc3309d300ba3ff14', '16jYHFjrKj4opLwRMvcXdszLWYQ6jAxEdY', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbgzMK3si26bT') 142792
step 9223372036856212177 count 387794 3ee4 ('3ee410f69e7481de5a993fee52fe94a95115f683', '16jY7DV788LVBrSk7kdq3bKaoVEKr1p4Sz', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbh5aGwoXH8H9') 35287
step 9223372036856239874 count 415491 3ee4 ('3ee4bc6375cb2bbdd156074941cdeebb6ee7d2ce', '16jYuk2qsms5YemqzxBZPw5ajGhCYasHKx', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbh9g5F6Gw7ZE') 27697
step 9223372036856253722 count 429339 3ee4 ('3ee40b2255243f5a50e24c9c58517915ea8dd8eb', '16jY5dirMG2pJefRzsHq1GHNnALRekavUg', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhBiy9BJFhnK') 13848
step 9223372036856289852 count 465469 3ee4 ('3ee4c264bcf29780b7a0f3b6e1c86323cfff59ea', '16jYwNZZVkyGTXwJDVqWFo3z8Tnv2Mibxa', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhH5ApwvkbBq') 36130
step 9223372036856330181 count 505798 3ee4 ('3ee4239facbfe89a1fb39f14f7a21e945967035a', '16jYCHEXQoTViNWWWMhwFqSgMFLso3Jnc2', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhP3RVUFvdd8') 40329
step 9223372036856374507 count 550124 3ee4 ('3ee497c2bc587ac829ea0397195190abef5b16e0', '16jYjoSfCsQiAwxt6Ur113PfMHbrgYuzHn', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhVbzYahtihs') 44326
step 9223372036856419941 count 595558 3ee4 ('3ee4a63d1ab6090a42fa9e2e682ff780ca2b601a', '16jYojMTi15WfzWhv6mNPY7tcJgATo1amk', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhcL5MCi5NaJ') 45434
step 9223372036856425767 count 601384 3ee4 ('3ee4ec2308650ffac9efa5ec2ddc1369fd3bf25f', '16jZ8hgLjW4MJ3hQwYgZMjwJdqduhPxn8z', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhdC6XbHuFVJ') 5826
step 9223372036856425834 count 601451 3ee4 ('3ee4d4cf0485a91bbcea603600a3cb2b191dc14f', '16jZ2NT63GZb18wKU6hKNh47ry2wYBSKLp', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhdCfthj6oRE') 67
step 9223372036856449953 count 625570 3ee4 ('3ee4297f89c5ab5a30cec2ac795ee602242a3b3f', '16jYDsi4yNT4o9fRYAQmDnCyWj3vo12soo', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhgmkT1tgcpK') 24119
step 9223372036856490639 count 666256 3ee4 ('3ee4937306d9acc17b63fb882e36dfc342e334ec', '16jYidaGd2771Q2itov6TSYuR2yJv3X9zE', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhno4tXrsfV8') 40686
step 9223372036856513721 count 689338 3ee4 ('3ee42e1f8610c9080917c0cd94a204068050c872', '16jYF8WmNW75CVs3fyM6uXWyfRw3RFwcxi', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhrDF3wWxb5x') 23082
step 9223372036856558120 count 733737 3ee4 ('3ee45c74fe867cedb2fd9b8cfcb0725374f70076', '16jYThtpezfNYEJ9SkyimmGEXDozLwf7QH', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbhxnSTTNCVhi') 44399
step 9223372036856605325 count 780942 3ee4 ('3ee4203d680887f7358b5799f438c3dfbe0b4e54', '16jYBMxyCzMiuAxPmp3H1uUxqBPzbDDrkM', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbi5mjAcZd6Xb') 47205
step 9223372036856688316 count 863933 3ee4 ('3ee4cb07eda41f9ef43671ea94b1d2ade8308ab3', '16jYyiXnzFn7zeXbU7VNp74HUbJrKezS1m', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbiJ4GG6y7AHs') 82991
step 9223372036856764183 count 939800 3ee4 ('3ee4e9c6f3b6506805a92d97f9749c3562d13e09', '16jZ84Xt2sr42E2xBPueqaJ2RNimPmyTRE', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbiVHdoyWEgLN') 75867
step 9223372036856777525 count 953142 3ee4 ('3ee4ffea49f0d228533f70927cd7d842c5438588', '16jZE52VhwPnjhUNAiQuea8Rw2EMDJwfAa', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbiXGBjmZdcW9') 13342
step 9223372036856803293 count 978910 3ee4 ('3ee45f516b85323f47da64b3803c490f829f6feb', '16jYUUw2VGuaK75QQVvMf63fZu9sfjWavw', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbib5RT21qPej') 25768

9223372036856872960 9223372036857921536

step 9223372036856918061 count 45102 3ee4 ('3ee435344587f985f3dfe9a447225b09b9d08d9a', '16jYH3yx3h1EqhrFNfhNCgwqT2ZVUGJnHP', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbit4nZVq6NzD') 45102
step 9223372036857063933 count 190974 3ee4 ('3ee43a01968043d0ea053f8071ac42db9eafd9ce', '16jYJMaKTcMaqnEMcfNqAPuEA9EGoj5EJq', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbjFfCZDLyWdt') 145872
step 9223372036857069260 count 196301 3ee4 ('3ee4c909146b9411cf2c09120a2d8fa154bf0312', '16jYyB7r6FPfJ68eKcp7fdUZxfcQzixh73', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbjGSwFFyKxu5') 5327
step 9223372036857102786 count 229827 3ee4 ('3ee459e65354041a82c5528963e273d72a51b024', '16jYT1dwTJQASM4etMVkHmiN1UM4oRhU3h', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbjMQnDUVx8Jr') 33526
step 9223372036857110326 count 237367 3ee4 ('3ee4382dbb298a02c0c46d5788c8b43c1205680c', '16jYHrohjC2tjPY99YDiKfB2FR13DBFHK3', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbjNXWv5zFUt8') 7540
step 9223372036857432991 count 560032 3ee4 ('3ee40a6de4afc9df174ab2c03f91c4434db91267', '16jY5SdK7d9cTz3DMNBAUuQ32A1vKZfszU', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbkCHpfN912vr') 322665
step 9223372036857434857 count 561898 3ee4 ('3ee43d2e9718e1065ce4dfe94b7f861157ef3912', '16jYKDZuAe5P78bYAjeFL9ZNxa6QCfdKKR', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbkCZqsh2cqkN') 1866


by 6

step 9223372036860070794 count 5294987 3ee413 ('3ee4139950ca2905dea643734a835d5266983800', '16jY7vyRF8tjBqc5b8QEzPT62aGT7WweE2', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frbrvmDWqhVFHb') 5294987
step 9223372036866863194 count 12087387 3ee413 ('3ee413e35ff2396cd0f35fe9cd4a7fca901abb47', '16jY81XYxGS4Bcw7NbXTN2P1YZxrqhcjpd', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frcAGEkLF5jxZB') 6792400
step 9223372036887603495 count 32827688 3ee413 ('3ee413bce3244402b7ace1bed44552f68473a309', '16jY7yAHX1nBmmeobfpK95Up4Aqz9rNa1J', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frd5CQpUdENVhP') 20740301
step 9223372036918717995 count 63942188 3ee413 ('3ee41368f2bcd25a58c199849647addb39d2f31d', '16jY7szv5j7L75vGBJkbWXYjgJmGSnLXVj', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3freScGgjEj5M9N') 31114500
step 9223372036972007988 count 117232181 3ee413 ('3ee413a03d105b6429accf2f1322fddfb9d1536a', '16jY7wQ7JrAQUKswbxc1w4YurpgA9ff9Ex', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frgnckkpmH1Qn9') 53289993
step 9223372037016876672 count 162100865 3ee413 ('3ee413f755d672b955e248c3f07fc7b4cb4945fd', '16jY82kjwLC7Hy8bZy7GGeUB74rhgHxUvq', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frim8dxzec7Qao') 44868684
step 9223372037031770991 count 176995184 3ee413 ('3ee4134dac0a56431b8988347275fddae4ea1c53', '16jY7rKdoRXQ6rRUapMSvCSG1qMoRUknwH', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frjR9SAqzZo9ER') 14894319
step 9223372037036791970 count 182016163 3ee413 ('3ee4136e78578857bc1c636689c137af321d6df1', '16jY7tLcKxHQ5PVoxZ2wcS3jvFascz92oD', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frjdxgojvY9JAc') 5020979
step 9223372037052209248 count 197433441 3ee413 ('3ee41388c5d99901c507462170a419d97b48f591', '16jY7uxRFiTRJKHRg5p7TkUJcn4SfEismm', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frkKJtyu6LBdvU') 15417278
step 9223372037071704787 count 216928980 3ee413 ('3ee413288d9894877b5b87fa1ec5792e3137c5ae', '16jY7p3FUDDZVFWj6C7xyciRnvvnhoedWK', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frmB4otvV7Q9Vk') 19495539
step 9223372037082585716 count 227809909 3ee413 ('3ee4139a2d4769ce009037abe4cc774e09cec718', '16jY7w2VQdE5V37iPehRkfGtSZcq2Z24Dz', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frmeqWKmivAUYi') 10880929
step 9223372037085839130 count 231063323 3ee413 ('3ee4138f2291ca65e6b270ea951f3c452e1a3401', '16jY7vM7KZs8UdQc3rERLgkyenCdfWjVAT', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frmo97AvUm9mnj') 3253414
step 9223372037109661797 count 254885990 3ee413 ('3ee413eadb3c132820c88b2f9a056839d63af94f', '16jY81zEaWYhutxrYruJ5H7TN5P13tqssS', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frnqwZXJxBRzxt') 23822667

9223372037123211264 9223372037391646720

step 9223372037123362487 count 151224 3ee413 ('3ee41340871ee005bfe502245b542e20adb0071a', '16jY7qWkpWPsZtUYmSFEUcaJRdVAHXTmGM', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3froSufan8jHA7m') 151224
step 9223372037133083111 count 9871848 3ee413 ('3ee4132378def6db61d03bc1fad36f6a80a8a17a', '16jY7oj8SCo87NuW7ucSEmFPC6KAmmoPXK', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frosibydEXqVQe') 9720624
step 9223372037149154239 count 25942976 3ee413 ('3ee413a8a6e172b007cdbf73809f7acacab113ec', '16jY7wv7fzwkWyu2AH8bBaJ5o78zzwNDgr', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frpajbuz8DtSWN') 16071128
step 9223372037159732955 count 36521692 3ee413 ('3ee4135b0e10cf4808cdff781adaa8e832032640', '16jY7s9NA7yytbWBwxkhQ5nGAcQ2XPRfFQ', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frq3jZdazuSjiG') 10578716
step 9223372037181335700 count 58124437 3ee413 ('3ee4137590c1b4a85320e66d67af769758a04d92', '16jY7tmv4N2mpSjTiWgni2i722VZ77EKKa', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frqzsQPeu2FoNU') 21602745
step 9223372037184158484 count 60947221 3ee413 ('3ee413dbbe6bdb86a6bd43ea364dd26680a91a8b', '16jY814LS2hdgGNZzaQcmu9rCqALEaaWXC', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frr85Fye942AYE') 2822784
step 9223372037206185330 count 82974067 3ee413 ('3ee41384712494ba310fe9e454af19bb0a93e3b7', '16jY7ugyNrasq4GBpWX9sWNJQYB5LSWzC8', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frs6Hswd1msW5j') 22026846
step 9223372037209804431 count 86593168 3ee413 ('3ee4135ffd953252a69c252c8e57bdd1e00f257d', '16jY7sSy8LQKMg3qg2J8v8GpcLHJCnWNRi', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frsFXcUDYtbwSQ') 3619101
step 9223372037210884925 count 87673662 3ee413 ('3ee413eb46e26bbfe674e76e1a1f2cdb768d7995', '16jY821jZeJiR4DJeZANpS1iTrBMCUxDxE', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frsJHZGfwRw7YN') 1080494
step 9223372037225629660 count 102418397 3ee413 ('3ee4131921ebbc86e6cc96291873032d889ec63e', '16jY7o6FbnALsZUk6Y8aT6etwAujKGZzvm', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frswvDC4KZPWa2') 14744735
step 9223372037227399855 count 104188592 3ee413 ('3ee413215c938ce5ec378f0c57c48afe0381b275', '16jY7obbrfU85Zea2H8mdrCvSTc3NTizhH', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frt2SFZU6tFa8p') 1770195
step 9223372037229220480 count 106009217 3ee413 ('3ee41392d3c474e48cacdc4f12b1179c22d7e02f', '16jY7vaH5Nr5Rz5VV5Mn4bWdqKco3SXHwG', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frt75kuYUFnxf9') 1820625
step 9223372037261004114 count 137792851 3ee413 ('3ee413615c9ad4d7806400bddd86b70ed6b50298', '16jY7sXrmPomtSApV3tBYHq7y4bNGqhjtU', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fruWCfkz1B6PUB') 31783634
step 9223372037264602683 count 141391420 3ee413 ('3ee41324c37666478d8d3df973cc20987664fd1a', '16jY7oojZmKse3WsEjGBq3isUqFFiGJVq8', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frufPN1F6gXETd') 3598569
step 9223372037274269021 count 151057758 3ee413 ('3ee413182a12ed0fa6784d061063deb625d72f87', '16jY7o2oL9ETJ7s6jnEoT2LGe2Ea2MhxUQ', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frv64GKFFMbcvg') 9666338
step 9223372037308198692 count 184987429 3ee413 ('3ee4136ebbea8371f9d97846a9ba29da91eeaec8', '16jY7tMYvttwfvvumAFWtQyJbpZwGxVxRR', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frwaerQSDQ9Ju9') 33929671
step 9223372037339496108 count 216284845 3ee413 ('3ee41349b0704e47002f41c6facb645406ec9579', '16jY7r5RvbNzBHnPq33kP9oWsyBbBe395t', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frxxXnjWiL3f6N') 31297416
step 9223372037348906059 count 225694796 3ee413 ('3ee413c7fb1f35cc0d922e7f13dca22307546f04', '16jY7yqrL2JYh5NsCZcDRnG7TtBZCPJQMS', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fryNYjnHAERUjY') 9409951
step 9223372037375177780 count 251966517 3ee413 ('3ee413a24ee3ee7b9308407fb74a15092851987d', '16jY7wXVRneAJVGK6PeXQT4c3ogJu74uCa', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frzXbiz2gSu9tm') 26271721
step 9223372037381197046 count 257985783 3ee413 ('3ee41379aa2d2bfaee993b4a69e99b15f39c0205', '16jY7u2Y2etLH2Hz5WZgbGvvq8ei7vSM7A', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3frznxkchKGA2jR') 6019266

9223372037391646720 9223372037660082176

step 9223372037392271817 count 625098 3ee413 ('3ee41362711b3a34f8b41e0b7585ac86d5d9c5cb', '16jY7sbiBxr2reECZdpSjkX6awDVeYzhVc', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fs1HE9KCMtLKCv') 625098
step 9223372037412706782 count 21060063 3ee413 ('3ee4131e5a19abdaaa8cadd8446cd045b8f50e48', '16jY7oQsHQ1FeXSNqvpUKRTMBUVa1v6n7X', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fs2BP7rw3T69aW') 20434965
step 9223372037414045444 count 22398725 3ee413 ('3ee41347a2437302c16fae5056b1c6e1b53acd21', '16jY7qx6kmr7nbRUjqvc2zj4L63FXpDNAD', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fs2EoHDWYBn1WF') 1338662
step 9223372037428025256 count 36378537 3ee413 ('3ee4138902811c94d6faebf5e85fe35250c409ad', '16jY7uyGGMRcq4WnWYcwyWU8V8isXZpkun', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fs2rUhjapqM9h6') 13979812
step 9223372037432204086 count 40557367 3ee413 ('3ee41365d963262dcee2c16a613bc742311563bd', '16jY7sos2S9FQzgG6FNbFn7BbQT1aFb9KH', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fs339HvsfP6Kim') 4178830
step 9223372037454561642 count 62914923 3ee413 ('3ee413f76f076e10e79ad9098bf9014bf9695bc9', '16jY82m6HxEqc2XgRD8pUbZg7TTQj8U6SA', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fs42CsGmrErwkK') 22357556
step 9223372037489344010 count 97697291 3ee413 ('3ee4133c5aad1786d1f39f901d1a8637cd81a394', '16jY7qFsUbwYencRHfnpsLhrjwFvaBx4Jv', 'KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYvLz3fs5YygNAVwxa6r') 34782368


well, returning to collisions (they work on the same principle)

155117520 30!/15!/15!
155117520/2^20 147,9315948486328125 collision, pz20 863317
1048576 2^20

step 1100006 seed 000000111011001011000011111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 1532829 seed 000001001101100011010111111001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 3057416 seed 000001111011011100110000110101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 3377366 seed 000010000111110110101100101011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 4883284 seed 000010111000010101111010011110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 6215864 seed 000011011100101011000001111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 7278835 seed 000011110101111011010011100000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 13358221 seed 000110100001011111100111001100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 15244257 seed 000111001110001110100110011001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 16213688 seed 000111100100011001101010011011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 18099879 seed 001000011101110101010101000111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 18762243 seed 001000110010100100001111111011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 20871509 seed 001001101010010111110000110110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 23071996 seed 001010100011001011011011010011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 26961189 seed 001011111101000010001011010011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 26971336 seed 001011111101010000100101101010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 27218776 seed 001100000111011101101100110010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 28383269 seed 001100100101111010110101001100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 28675678 seed 001100101100101100111010010011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 28744087 seed 001100101110000111001010101011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 30778835 seed 001101011101001010010010110101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 31839022 seed 001101110101001100100110100101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 32561312 seed 001110001000111000011110011011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 33557684 seed 001110011110110100100110010010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 34368032 seed 001110110001100001001110111010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 38741650 seed 010000101111101011000111001001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 38820746 seed 010000110010100100111111100011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 39398453 seed 010000111111110100000011010101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 39607029 seed 010001001000000101101111111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 39708006 seed 010001001011011111001110000011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 40028071 seed 010001010100000111111010011110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 40439634 seed 010001011101101010101101100001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 40510587 seed 010001011111001000101001101101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 40791557 seed 010001100110111110000011101100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 44608289 seed 010011000110010101101111000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 46280468 seed 010011101011110100001101000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 46749955 seed 010011110110011000010110000111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 46792397 seed 010011110111011011000100010010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 48368169 seed 010100100011111101010101011000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 49122280 seed 010100110101011010011011010010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 50177321 seed 010101001110100011101100001011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 50576038 seed 010101010111100000001111111000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 51189591 seed 010101100101100110110010100110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 53509633 seed 010110011100100001110001011101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 54882674 seed 010110111100000101100100111100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 58174437 seed 011000010101011111000110101100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 58813109 seed 011000100101010101011101011010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 59694165 seed 011000111001001010011010010111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 60089930 seed 011001000011010101110100111001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 61825890 seed 011001101010101001100111001001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 63893071 seed 011010011100001100010111000111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 64215156 seed 011010100011110110101100001100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 64493197 seed 011010101001111000010100011101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 64941835 seed 011010110011111011000001011000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 64964238 seed 011010110100011011110001001010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 65916237 seed 011011001011010101011000001101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 66012228 seed 011011001101011010001100001101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 66925284 seed 011011100011100011010100111000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 67780259 seed 011011111010001000101100101001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 70156056 seed 011100110100010010000011011111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 70181891 seed 011100110100110001101000011110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 70670982 seed 011101000001110100001011010111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 72313879 seed 011101101000000110110011001110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 72323741 seed 011101101000010011010000101111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 73159416 seed 011110000001101010101101010110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 74296890 seed 011110011011000001011110100100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 74750148 seed 011110100110011000010100011110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 75056519 seed 011110101110001000011010110001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 75274571 seed 011110110100001000001110101011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 77158506 seed 011111101011101000010000100011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 77296422 seed 011111110001010010100011000011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 77741810 seed 100000001011110001111110011100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 77986628 seed 100000010101011111100110011010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 79242234 seed 100000111001111110101011000001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 79348636 seed 100000111100011000110111101001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 80711250 seed 100001100001111100011001010111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 82793147 seed 100010010111101100000111101100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 84309970 seed 100010111011001011010011000101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 86669326 seed 100011110010001011000110001111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 88542748 seed 100100100101100111111100000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 90742671 seed 100101011000101111101001000011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 91084332 seed 100101100000101111001110101010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 91244674 seed 100101100100010110111011101000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 91585622 seed 100101101011100011010001011010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 92418391 seed 100110000000001111110011101101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 93144101 seed 100110010010001100011011111010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 94113944 seed 100110100111110000011011010001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 95075592 seed 100110111110000101110010000011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 95353254 seed 100111000101011011000110101001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 95400634 seed 100111000110011001101111010000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 95453948 seed 100111000111011110110100000001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 95652871 seed 100111001011110010111001001000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 96650943 seed 100111100011110001010001011100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 97087166 seed 100111101110011010001011100000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 98801466 seed 101000100001110011010110111001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 99036688 seed 101000100111100111010010100101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 99088101 seed 101000101001000100111111111000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 99954219 seed 101000111100001101001101111000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 103561501 seed 101010010010100100111110001101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 103698368 seed 101010010101011101011001110000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 105549278 seed 101011000000111011010101100110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 105761062 seed 101011000101100100101110011100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 106489713 seed 101011010101100101110011000001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 109193275 seed 101100011011101110010000011100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 110048834 seed 101100101111000110010100110010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 110582918 seed 101100111011011100101101000000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 112668344 seed 101101101101110101000100010001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 114255000 seed 101110010111001101110110000000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 116921964 seed 101111100001010010100111110000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 117006980 seed 101111100011010001010011000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 117868027 seed 110000000111110010111101001001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 117920933 seed 110000001001110101110110010110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 118591969 seed 110000011011001001101000111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 118866559 seed 110000100001111100010110101101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 119313131 seed 110000101100110001101001110110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 119452641 seed 110000101111100111000100010110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 119915872 seed 110000111010000111101010001011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 120576163 seed 110001001010110101100000101111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 123229375 seed 110010001001101100101101111000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 125201601 seed 110010110101101110000001010011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 125247571 seed 110010110110110001101000010011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 125302119 seed 110010111000010110000111011100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 130285712 seed 110100110011001101011101001000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 131056143 seed 110101000110010101011110100100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 131116177 seed 110101000111100011001001100101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 133481152 seed 110110000100110111011001000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 134167546 seed 110110010100000010111001101101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 134275046 seed 110110010110010011110010000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 135394878 seed 110110110010100011100101101000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 135914109 seed 110111000011000001011001010111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 136719363 seed 110111011000000111110100100010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 137620533 seed 110111111000000011100010101100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 137852191 seed 111000000011110110101111001000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 137884461 seed 111000000100110111011001101010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 138008646 seed 111000000111100110101011001001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 138195551 seed 111000001100000000001111111111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 139639240 seed 111000101100010101110100100011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 141683942 seed 111001011100011000101111010000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 142725688 seed 111001110111100010000110101000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 146071951 seed 111011001111100010000101100010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 146674357 seed 111011100010001001100111010100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 148684714 seed 111100011101100101010001110000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 150523524 seed 111101001111001110110000100000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 150565504 seed 111101010000101000110100111001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 150744653 seed 111101010100111011000000010101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 150921957 seed 111101011010011011000100100010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 151158506 seed 111101100010101101000001001101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 152433571 seed 111110001101100001000000111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum


148 collision

there is such an effect that every number 2^20 1048576 (including puzzle 863317) selects 148 numbers at random

i.e.
1 > 148 num from 155117520 30!/15!/15!
2 > 148 num from 155117520 30!/15!/15!
3 > 148 num from 155117520 30!/15!/15!
...
500 > 148 num from 155117520 30!/15!/15!
...
1000 > 148 num from 155117520 30!/15!/15!
...
11111 > 148 num from 155117520 30!/15!/15!
...
123456789 > 148 num from 155117520 30!/15!/15!

from 1 to 155117520 / 148 = 1048091,351351351351351 = 1048576 2^20

it can be pondered indefinitely. if collisions occurred in the first iteration, and the rest of the numbers did not give collisions, but during the next iterations, other numbers will give collisions, and those that fell out in the first will no longer give collisions, until the cycle starts anew, but it will be with all the numbers already mixed, provided that we divide the space into steps-range (in principle, you can even count all possible start num for cycles that will begin by simply raising the length of the full cycle to itself, cycle^cycle (probably: D they constantly mix).

and if we take only collisions of the length we need (and the length grows simply by counting the number of permutations) in the example above

from
step 13358221 seed 000110100001011111100111001100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
to
step 99954219 seed 101000111100001101001101111000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum

what we can distinguish is the first 2 digits of them they follow

13358221
15244257
16213688
18099879
18762243
20871509
23071996
26961189
26971336
27218776
28383269
28675678
28744087
30778835
31839022
32561312
33557684
34368032
38741650
38820746
39398453
...
95453948
95652871
96650943
97087166
98801466
99036688
99088101
99954219

we can initially assume that with 99% (?) probability the first digits in the interval 10 to 50 or from 50 to 90... and with what probability the next 2 will be 10 to 50 end next (what does it even depend on)?

these 3 pairs have less than 50
15244257
16213688

but the main interest is if we select a seed of this length and select all possible combinations of 8 digits in a fixed step

i.e seed even endless but steps from 1 to 99999999 we will have to drop out various combinations for our 863317 (that is, the process will be repeated from 1 to 155117520 / 148 = 1048091,351351351351351 = 1048576 2^20)

and you can calculate how many all possible combinations will fall out, 99999999 > 2^26 or 155117520 30!/15!/15! ~2^27 (these are our steps from the endless seed)

2^26*2^26 = 4503599627370496 or 2^27*2^27 18014398509481984 something long steps turn out  Grin  Cry

but taking any number at random we have to catch the desired collision (one flew over the cuckoo's nest across the seed)

and we return to statistics, if other numbers have already dropped out, then when they give out a collision

we run along the endless seed but count the steps again (the seed itself continues to incrementally increase the count of its permutations)

the same thing happens with space 2^160 and 2^256

2^160*2^160 = 2135987035920910082395021706169552114602704522356652769947041607822219725780640 550022962086936576 (ohh my god)

2^256×2^256 = 1340780792994259709957402499820584612747936582059239337772356144372176403007354 6976801874298166903427690031858186486050853753882811946569946433649006084096

2^64×2^64 340282366920938463463374607431768211456 if we take any number 22 characters long (373 collision), we have to run through this space so that it gives a collision? although we take any 22 lenght number at random and start adding it to our step (0+number 22 characters long,pass 0 + 2^69-73, 0 + number 22 characters long, again pass 2^69-73, etc)? 340282366920938463463374607431768211456/2^66 = 4611686018427387904 steps , 19 lenght))  Shocked Grin the probability of success grows in proportion to the number of experiments, that is, programs launched with different numbers? which number will collide faster from 1000000000000000000000 to 9999999999999999999999? to think of something more interesting...  although here 22 characters 1000000000000000000000 ~ 69,76048999263460930528, 9999999999999999999999 ~ 73,08241808752197165315, there are even fewer of steps 340282366920938463463374607431768211456/2^69 = 576460752303423488, 340282366920938463463374607431768211456/2^73 = 36028797018963968, did we make a discovery?  Roll Eyes what is more profitable and faster to take numbers starting from 50-99, more precisely 99-50 for the run?  36028797018963968 ~ 2^55 vs 2^64 ?  Shocked

(76!/38!/38!)/2^64 373,6497140715840404646 collision
6892620648693261354600 22 num len
18446744073709551616   20 2^64
**____________________ 20
****__________________ 18
******________________ 16
********______________ 14
**********____________ 12
************__________ 10
**************________ 8
****************______ 6


50×50×50                      125000
50×50×50×50                   6250000
50×50×50×50×50                312500000
50×50×50×50×50×50             15625000000
50×50×50×50×50×50×50          781250000000
50×50×50×50×50×50×50×50       39062500000000
50×50×50×50×50×50×50×50×50    1953125000000000
50×50×50×50×50×50×50×50×50×50 97656250000000000

if we were looking for 6 digits, at the beginning, a little 7 digits were poured and 8 digits went

then from 6892620648693261354600 should fall out a little 21 lengths and pour out a lot of 22 lengths

Let me remind you that if we constantly choose a new step from the infinite seed, then our numbers will constantly start from 10 to 99

make a step 2^66 from endless seed we get a set of 22 long collision numbers etc.

sr. member
Activity: 443
Merit: 350
Andzhig, I guess this approach is confusing due to small sample size.

If you take any random 4 numbers, you will find the dependencies between them for sure. The same could be done for 10, 30, or even 100 random numbers. So, our brain thinks that we found the dependencies between several numbers, but it could be wrong just because of the small sample size.
Jump to: