Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 270. (Read 229433 times)

sr. member
Activity: 443
Merit: 350
-snip-
970 436 974 005 023 690 481 970436974005023690481 19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR pz 69 or 70 theoretically can recline but sometimes they are repeated 199 976 667 976 342 049

on the other hand, so mix that increasing the "portion" equally finds...
-snip-

What does this mean? I really do not understand you...
newbie
Activity: 33
Merit: 0
Ok sounds interesting and will it save the key to a text file if it finds one? Also any plans to implement GPU support?
jr. member
Activity: 184
Merit: 3
So if I run this program it might find solutions to these puzzles?
this is a draft, a demonstration variant. Moreover, it can be used with various settings. The larger the screening space, the greater the chances of a successful random bonding (2^512-2^1024 pos 0-50, 2^5000-2^50000 pos 0-1500, etc...) but speed slows down (code optimization needed).

In the end, it looks like just taking the entire set of 000-999 to filter out, part of the options and just increases the number of parts in the set, higher 2^... more "111" x3,x5,x7..., "000" x3,x5,x7..., "123"x3,x5,x7...  the same thing, take part of the set 000-999 and increase their number for random...  Grin

Quote
1
3
7
8
21
49
76
224
467
514
115 5
268 3
521 6
105 44
268 67
515 10
958 23
198 669
357 535
863 317
181 176 4
300 750 3
559 880 2
144 286 76
331 855 09
545 388 62
111 949 941
227 634 408
400 708 894
103 316 208 4
210 238 855 1
309 347 281 4
713 743 791 2
141 330 721 57
201 128 717 92
423 877 699 80
100 251 560 595
146 971 536 592
323 724 968 937
100 365 141 295 0
145 825 220 514 7
289 537 455 246 3
740 981 104 782 5
154 047 617 570 71
199 964 630 865 97
514 086 703 486 12
119 666 659 114 170
191 206 974 700 443
409 118 905 032 525
611 140 496 167 764
205 876 951 515 387 6
421 649 563 960 070 0
676 368 397 147 812 4
997 445 524 449 670 7
300 453 904 918 694 60
442 187 422 926 765 75
138 245 758 910 846 492
199 976 667 976 342 049
525 070 384 258 266 191
113 504 135 021 949 638 2
142 578 754 261 865 498 2
390 837 254 250 782 206 2
899 322 994 952 446 976 8
305 683 773 120 642 028 55
970 436 974 005 023 690 481
225 383 232 409 898 238 233 67
110 552 003 058 923 448 793 945 6
210 903 157 664 115 061 444 269 20
868 012 190 417 726 402 719 548 863
255 258 319 566 441 136 170 137 482 12
868 221 233 689 326 498 340 379 183 142
290 832 301 449 180 457 067 885 291 924 35
[/size]

970 436 974 005 023 690 481 970436974005023690481 19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR pz 69 or 70 theoretically can recline but sometimes they are repeated 199 976 667 976 342 049

on the other hand, so mix that increasing the "portion" equally finds...

exmpl...

Quote
import random

Nn =['123', '099', '444', '996', '001', '911', '422']
nnn = Nn*1 # *1 *10000000
#print (nnn)

def func():
    DDD = random.choice(nnn)
    return DDD

while True:
   
    a = int(func()+func()+func()+func()+func()+func()+func())
    if a == 123099444996001911422:
        print("find..............................",a)
        break
    else:
        #print(a)
        pass

    pass
newbie
Activity: 33
Merit: 0
So if I run this program it might find solutions to these puzzles?
jr. member
Activity: 184
Merit: 3
Can you please explain what your python code does Andzhig?
The latter, discards the set of selected 000-999 their positions 0,1,2,3... in degrees 2^... so that from what remains, combine numbers.  Grin But the main idea is running with fixed positions on 2^... (and where the curve road will lead).

 
for example for a number 103675801821054921544 (2^512-2^50000) position 1 and 1500

pos 1

['103', '675', '801', '821', '054', '921', '544']
103
2 ^ 1056 1
2 ^ 3122 1
2 ^ 3856 1
2 ^ 5848 1
2 ^ 6819 1
2 ^ 9213 1
2 ^ 9543 1
2 ^ 10547 1
2 ^ 11219 1
2 ^ 11370 1
2 ^ 11544 1
2 ^ 11929 1
2 ^ 12538 1
2 ^ 13372 1
2 ^ 16547 1
2 ^ 16623 1
2 ^ 17908 1
2 ^ 18080 1
2 ^ 18992 1
2 ^ 19505 1
2 ^ 20898 1
2 ^ 20975 1
2 ^ 21288 1
2 ^ 21727 1
2 ^ 22994 1
2 ^ 24890 1
2 ^ 25765 1
2 ^ 26158 1
2 ^ 27695 1
2 ^ 27824 1
2 ^ 29694 1
2 ^ 29853 1
2 ^ 30014 1
2 ^ 30308 1
2 ^ 31019 1
2 ^ 31639 1
2 ^ 32266 1
2 ^ 32498 1
2 ^ 34824 1
2 ^ 36936 1
2 ^ 37127 1
2 ^ 38404 1
2 ^ 39754 1
2 ^ 40476 1
2 ^ 40966 1
2 ^ 41339 1
2 ^ 42515 1
2 ^ 43397 1
2 ^ 43887 1
2 ^ 44564 1
2 ^ 45230 1
2 ^ 46954 1
2 ^ 47059 1
2 ^ 48353 1
****************************************************************
675
2 ^ 1298 1
2 ^ 1433 1
2 ^ 1943 1
2 ^ 2265 1
2 ^ 3498 1
2 ^ 4791 1
2 ^ 5381 1
2 ^ 7503 1
2 ^ 8957 1
2 ^ 9748 1
2 ^ 10186 1
2 ^ 11495 1
2 ^ 11658 1
2 ^ 14149 1
2 ^ 14423 1
2 ^ 16191 1
2 ^ 16678 1
2 ^ 17708 1
2 ^ 19665 1
2 ^ 20095 1
2 ^ 20220 1
2 ^ 20682 1
2 ^ 22411 1
2 ^ 23307 1
2 ^ 27062 1
2 ^ 27106 1
2 ^ 27908 1
2 ^ 28217 1
2 ^ 28231 1
2 ^ 29237 1
2 ^ 29479 1
2 ^ 30834 1
2 ^ 31681 1
2 ^ 32950 1
2 ^ 33330 1
2 ^ 35494 1
2 ^ 36598 1
2 ^ 37349 1
2 ^ 39924 1
2 ^ 41772 1
2 ^ 42586 1
2 ^ 44001 1
2 ^ 46188 1
2 ^ 47409 1
2 ^ 48850 1
2 ^ 49418 1
****************************************************************
801
2 ^ 800 1
2 ^ 929 1
2 ^ 1047 1
2 ^ 3102 1
2 ^ 3132 1
2 ^ 4045 1
2 ^ 6829 1
2 ^ 10582 1
2 ^ 11525 1
2 ^ 19962 1
2 ^ 21018 1
2 ^ 21969 1
2 ^ 22653 1
2 ^ 22664 1
2 ^ 23369 1
2 ^ 23716 1
2 ^ 23901 1
2 ^ 24205 1
2 ^ 25947 1
2 ^ 27660 1
2 ^ 31147 1
2 ^ 31235 1
2 ^ 31537 1
2 ^ 34342 1
2 ^ 34670 1
2 ^ 36460 1
2 ^ 37993 1
2 ^ 41024 1
2 ^ 42187 1
2 ^ 43001 1
2 ^ 43352 1
2 ^ 46771 1
2 ^ 47559 1
2 ^ 47873 1
2 ^ 48717 1
2 ^ 48995 1
2 ^ 49601 1
****************************************************************
821
2 ^ 674 1
2 ^ 1245 1
2 ^ 2095 1
2 ^ 2359 1
2 ^ 3618 1
2 ^ 4647 1
2 ^ 4755 1
2 ^ 4849 1
2 ^ 5828 1
2 ^ 5907 1
2 ^ 6202 1
2 ^ 7429 1
2 ^ 8579 1
2 ^ 8852 1
2 ^ 9103 1
2 ^ 9511 1
2 ^ 9895 1
2 ^ 11362 1
2 ^ 11602 1
2 ^ 11838 1
2 ^ 13346 1
2 ^ 14359 1
2 ^ 14401 1
2 ^ 15911 1
2 ^ 16346 1
2 ^ 17180 1
2 ^ 17239 1
2 ^ 18649 1
2 ^ 21625 1
2 ^ 29171 1
2 ^ 29972 1
2 ^ 31522 1
2 ^ 32391 1
2 ^ 37709 1
2 ^ 38175 1
2 ^ 38259 1
2 ^ 38642 1
2 ^ 39311 1
2 ^ 40406 1
2 ^ 41119 1
2 ^ 41283 1
2 ^ 41419 1
2 ^ 43062 1
2 ^ 44209 1
2 ^ 44993 1
2 ^ 45222 1
2 ^ 46239 1
2 ^ 46761 1
2 ^ 47271 1
2 ^ 48799 1
2 ^ 49028 1
****************************************************************
054
2 ^ 901 1
2 ^ 1366 1
2 ^ 1958 1
2 ^ 2357 1
2 ^ 2391 1
2 ^ 2779 1
2 ^ 3596 1
2 ^ 5826 1
2 ^ 6660 1
2 ^ 8170 1
2 ^ 9622 1
2 ^ 11360 1
2 ^ 12056 1
2 ^ 14357 1
2 ^ 16264 1
2 ^ 17759 1
2 ^ 19591 1
2 ^ 19716 1
2 ^ 20042 1
2 ^ 22863 1
2 ^ 26493 1
2 ^ 26589 1
2 ^ 27919 1
2 ^ 29670 1
2 ^ 30004 1
2 ^ 31478 1
2 ^ 31520 1
2 ^ 32786 1
2 ^ 33109 1
2 ^ 34883 1
2 ^ 34930 1
2 ^ 35054 1
2 ^ 36295 1
2 ^ 37707 1
2 ^ 37755 1
2 ^ 39156 1
2 ^ 45145 1
2 ^ 45220 1
2 ^ 45906 1
2 ^ 46107 1
2 ^ 46759 1
2 ^ 46985 1
****************************************************************
921
2 ^ 732 1
2 ^ 1077 1
2 ^ 2008 1
2 ^ 3260 1
2 ^ 6841 1
2 ^ 7740 1
2 ^ 7795 1
2 ^ 8380 1
2 ^ 11248 1
2 ^ 11891 1
2 ^ 12797 1
2 ^ 13994 1
2 ^ 14217 1
2 ^ 14451 1
2 ^ 15271 1
2 ^ 15343 1
2 ^ 17316 1
2 ^ 18276 1
2 ^ 18307 1
2 ^ 20201 1
2 ^ 20691 1
2 ^ 20940 1
2 ^ 21533 1
2 ^ 24187 1
2 ^ 25661 1
2 ^ 27157 1
2 ^ 27599 1
2 ^ 27807 1
2 ^ 28584 1
2 ^ 28913 1
2 ^ 29982 1
2 ^ 31202 1
2 ^ 33199 1
2 ^ 33287 1
2 ^ 34089 1
2 ^ 35275 1
2 ^ 35424 1
2 ^ 36896 1
2 ^ 37581 1
2 ^ 38369 1
2 ^ 38545 1
2 ^ 41394 1
2 ^ 44607 1
2 ^ 45357 1
2 ^ 46051 1
2 ^ 46066 1
2 ^ 46548 1
2 ^ 49137 1
****************************************************************
544
2 ^ 6427 1
2 ^ 6609 1
2 ^ 8616 1
2 ^ 10611 1
2 ^ 10703 1
2 ^ 10742 1
2 ^ 11431 1
2 ^ 11814 1
2 ^ 14315 1
2 ^ 17051 1
2 ^ 17191 1
2 ^ 17347 1
2 ^ 18358 1
2 ^ 22513 1
2 ^ 23088 1
2 ^ 23939 1
2 ^ 24631 1
2 ^ 26183 1
2 ^ 28169 1
2 ^ 29776 1
2 ^ 31335 1
2 ^ 32871 1
2 ^ 33153 1
2 ^ 36739 1
2 ^ 39424 1
2 ^ 39768 1
2 ^ 42437 1
2 ^ 44254 1
2 ^ 45650 1
2 ^ 46132 1
2 ^ 46496 1
2 ^ 47817 1
2 ^ 47933 1
2 ^ 48857 1
****************************************************************

pos 1500

['103', '675', '801', '821', '054', '921', '544']
103
2 ^ 18215 1500
2 ^ 23936 1500
2 ^ 26887 1500
2 ^ 27395 1500
2 ^ 27999 1500
2 ^ 28507 1500
2 ^ 43486 1500
2 ^ 46927 1500
****************************************************************
675
2 ^ 17876 1500
2 ^ 19752 1500
2 ^ 24458 1500
2 ^ 33687 1500
2 ^ 40554 1500
2 ^ 43970 1500
2 ^ 45512 1500
2 ^ 45710 1500
2 ^ 46106 1500
2 ^ 49079 1500
****************************************************************
801
2 ^ 16791 1500
2 ^ 17506 1500
2 ^ 20463 1500
2 ^ 20973 1500
2 ^ 21189 1500
2 ^ 21700 1500
2 ^ 22571 1500
2 ^ 23677 1500
2 ^ 29384 1500
2 ^ 29590 1500
2 ^ 31042 1500
2 ^ 32287 1500
2 ^ 32855 1500
2 ^ 35113 1500
2 ^ 42643 1500
2 ^ 42827 1500
****************************************************************
821
2 ^ 27461 1500
2 ^ 27991 1500
2 ^ 35982 1500
2 ^ 43179 1500
2 ^ 49400 1500
****************************************************************
054
2 ^ 17069 1500
2 ^ 19097 1500
2 ^ 27989 1500
2 ^ 30803 1500
2 ^ 32391 1500
2 ^ 33307 1500
2 ^ 40100 1500
****************************************************************
921
2 ^ 17284 1500
2 ^ 18694 1500
2 ^ 22387 1500
2 ^ 28946 1500
2 ^ 31615 1500
2 ^ 42010 1500
2 ^ 45966 1500
****************************************************************
544
2 ^ 21507 1500
2 ^ 24716 1500
2 ^ 39277 1500
2 ^ 43321 1500
2 ^ 45252 1500
2 ^ 46052 1500
****************************************************************

take random 2^blablabla+2^blablabla+2^blablabla... run for pos 1,2,3..1500...

can beat around this, or don't go high 2^512-2^1024 and randomly sort through positions (you can discard used 000-999)... et cetera.
newbie
Activity: 33
Merit: 0
Can you please explain what your python code does Andzhig?
newbie
Activity: 12
Merit: 10
Hey guys please forgive my ignorance, I’m new to this and I was wondering if someone can clarify something that is related to solving the puzzle and the security of elliptic curves in general.

When we do an addition the secp256k1 curve’s equation (y² = x³ + 7 mod p) creates a loop that overflow and wraps max+1 to 0

My question is what is the possibility for the following:

1- A script that determines if an addition has reached the end of the curve and looped

2- An extended curve (over a larger field, or a larger mod p?) that would yield the same results for addition as secp256k1 but would loop further down the curve, so that by verifying the result, if the point is not on the secp256k1, we’d know it has looped.

My guess is that both are impossible as it would completely compromise the security of the elliptic curve, I just wanted to hear an educated answer on the matter.

Thank you
jr. member
Activity: 184
Merit: 3
I'm talking about the same thing, if discard all 2^... and their 000-999 positions, the effect is the same that you just drop from the set 000-999 and mix them randomly... pyopencl will have to try to master, although this is a terrible tedium. https://documen.tician.de/pyopencl/. for gpu, it seems like you need to split everything into fragments for the kernels (1024 bits) and collect it back to the output... that is, even just to create power of 2 is already a hemorrhoid...
full member
Activity: 431
Merit: 105
what happens when you run this file Andzhig?
i see a gazillion numbers passing by. what happens there,
jr. member
Activity: 184
Merit: 3
Quote
import random
from bit import Key
from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())

import time


list = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR"]

Nn =['000', '001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '014', '015',
     '016', '017', '018', '019', '020', '021', '022', '023', '024', '025', '026', '027', '028', '029', '030', '031',
     '032', '033', '034', '035', '036', '037', '038', '039', '040', '041', '042', '043', '044', '045', '046', '047',
     '048', '049', '050', '051', '052', '053', '054', '055', '056', '057', '058', '059', '060', '061', '062', '063',
     '064', '065', '066', '067', '068', '069', '070', '071', '072', '073', '074', '075', '076', '077', '078', '079',
     '080', '081', '082', '083', '084', '085', '086', '087', '088', '089', '090', '091', '092', '093', '094', '095',
     '096', '097', '098', '099', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111',
     '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '124', '125', '126', '127', '128',
     '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144',
     '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160',
     '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176',
     '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192',
     '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
     '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224',
     '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240',
     '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256',
     '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272',
     '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
     '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304',
     '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320',
     '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336',
     '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352',
     '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
     '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384',
     '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400',
     '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416',
     '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432',
     '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
     '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464',
     '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480',
     '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496',
     '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512',
     '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
     '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544',
     '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560',
     '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576',
     '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592',
     '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
     '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624',
     '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640',
     '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656',
     '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672',
     '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
     '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704',
     '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720',
     '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736',
     '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752',
     '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
     '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784',
     '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800',
     '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816',
     '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832',
     '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
     '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864',
     '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880',
     '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896',
     '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912',
     '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
     '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944',
     '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960',
     '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976',
     '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992',
     '993', '994', '995', '996', '997', '998', '999']

K = print(len(Nn))

RRR = []

for RR in range(700):
    DDD = random.choice(Nn)
    RRR.append(DDD)
print(RRR)
time.sleep(3.0)
       
h1 = ("147573952589676412927")
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])
print(g)

j=[]

#J=[]

for elem in RRR:
    print(elem)
    i = 512 #2^1
    while i <= 1024: # 2^10000
        a = pow(2,i)
        b = str(a)
        v = ([b[i:i + 3] for i in range(0, len(b), 3)])
        if elem in v:
            k = v.index(elem)
            #print("2 ^",i,k)
            if k >=0:
                if k <= 50:
                    G = i,k
                    j.append(G)
                   
                    print(G)
            #print(i,k,v[0:k+1]) #print(i,k,v[0:k+1])
            #ii = i
            #while ii <= i+10:
                #aa = pow(2,ii)
                #bb = str(aa)
                #vv = ([bb[i:i + 3] for i in range(0, len(bb), 3)])
                #J.append(vv[k])
                #print(vv[k])
                #ii =ii+1
       
       
                   
        i=i+1


    print(sorted(j))
    #N = list(set(J))
    #NN = sorted(N)
    #print(NN)

    print("****************************************************************")







count = 0

while True:

    DD = 0
    while DD <= 300: #random take 2^ 300

        A1 = 0
        while A1 <= 0:

            while True:

                D1 = 512 +A1
                D2 = 1024 +A1
                D3 = 1 + DD

                ii = 1
                while ii <= 50: #random take pos 50

                    a1 = random.randrange(D1,D2,D3)
                    aa1 = pow(2,a1)
                    b1 = str(aa1)
                    v1 = ([b1[i:i + 3] for i in range(0, len(b1), 3)])
                    oo1 = random.randrange(0,50,ii)
                    o1 = v1[oo1] #positions
                    F1 = a1,oo1
                   
                    if F1 not in j:
                        #j.append(F1)
                        a2 = random.randrange(D1,D2,D3)
                        aa2 = pow(2,a2)
                        b2 = str(aa2)
                        v2 = ([b2[i:i + 3] for i in range(0, len(b2), 3)])
                        oo2 = random.randrange(0,50,ii)
                        o2 = v2[oo2] #positions
                        F2 = a2,oo2
                       
                        if F2 not in j:
                            #j.append(F2)
                            a3 = random.randrange(D1,D2,D3)
                            aa3 = pow(2,a3)
                            b3 = str(aa3)
                            v3 = ([b3[i:i + 3] for i in range(0, len(b3), 3)])
                            oo3 = random.randrange(0,50,ii)
                            o3 = v3[oo3] #positions
                            F3 = a3,oo3
                           
                            if F3 not in j:
                                #j.append(F3)
                                a4 = random.randrange(D1,D2,D3)
                                aa4 = pow(2,a4)
                                b4 = str(aa4)
                                v4 = ([b4[i:i + 3] for i in range(0, len(b4), 3)])
                                oo4 = random.randrange(0,50,ii)
                                o4 = v4[oo4] #positions
                                F4 = a4,oo4
                               
                                if F4 not in j:
                                    #j.append(F4)
                                    a5 = random.randrange(D1,D2,D3)
                                    aa5 = pow(2,a5)
                                    b5 = str(aa5)
                                    v5 = ([b5[i:i + 3] for i in range(0, len(b5), 3)])
                                    oo5 = random.randrange(0,50,ii)
                                    o5 = v5[oo5] #positions
                                    F5 = a5,oo5
                                   
                                    if F5 not in j:
                                        #j.append(F5)
                                        a6 = random.randrange(D1,D2,D3)
                                        aa6 = pow(2,a6)
                                        b6 = str(aa6)
                                        v6 = ([b6[i:i + 3] for i in range(0, len(b6), 3)])
                                        oo6 = random.randrange(0,50,ii)
                                        o6 = v6[oo6] #positions
                                        F6 = a6,oo6
                                       
                                        if F6 not in j:
                                            #j.append(F6)
                                            a7 = random.randrange(D1,D2,D3)
                                            aa7 = pow(2,a7)
                                            b7 = str(aa7)
                                            v7 = ([b7[i:i + 3] for i in range(0, len(b7), 3)])
                                            oo7 = random.randrange(0,50,ii)
                                            o7 = v7[oo7] #positions
                                            F7 = a7,oo7
                                           
                                            if F7 not in j:
                                                #j.append(F7)
                                                for _ in range(1):
                                               
                                                    k1 = o1 #funk2()
                                                    k2 = o2
                                                    k3 = o3
                                                    k4 = o4
                                                    k5 = o5
                                                    k6 = o6
                                                    k7 = o7

                                                    ran = int(k1+k2+k3+k4+k5+k6+k7)
                                                    if ran >= 1: # 115792089237316195423570985008687907853269984665640564039457584007913129639936 # 115792089237316195423570985008687907852837564279074904382605163141518161494336
                                                        baba = len(str(ran))
                                                        if baba >= 0: # num length
                                                            bina = bin(ran)[2:]
                                                            ed = bina.count("0")
                                                            if ed >= 0:  # zeros
                                                                if ed <= 150: # zeros
                                                                    key1 = Key.from_int(ran)
                                                                    wif = bytes_to_wif(key1.to_bytes(), compressed=False)
                                                                    key2 = Key(wif)
                                                                    key1 == key2
                                                                    addr1 = key1.address
                                                                    addr2 = key2.address
                                                                    if addr1 in list:

                                                                        print (ran,"found!!!")

                                                                        s5 = str(ran)
                                                                        f=open(u"C:/a.txt","a")
                                                                        f.write(s5 + '\n')
                                                                        f.close()

                                                                        break

                                                                    if addr2 in list:

                                                                        print (ran,"found!!!")

                                                                        s5 = str(ran)
                                                                        f=open(u"C:/a.txt","a")
                                                                        f.write(s5 + '\n')
                                                                        f.close()

                                                                        break
                                                                                                   
                                                                    else:
                                                                                                        #pass
                                                                        count += 1
                                                                        print(count,D1,D2,D3,ran,baba,addr1,addr2," ",ed,"   ",k1,k2,k3,k4,k5,k6,k7," ",F1,F2,F3,F4,F5,F6,F7) #(ran,baba,addr1,addr2," ",ed,"   ",k1,k2,k3,k4,k5,k6,k7)
                       
                        #print("!!!loop end!!!","   ruchnik auto")
                        #count = 0
                        #time.sleep(180.0)

                                               

                    ii=ii+1

                break

            A1 = A1+1

        DD = DD +1 #random take

    pass

[/size]
jr. member
Activity: 184
Merit: 3
Some new record set? or a new record 120 bits will be...

coincided with some of the earliest, 31464123230573852164273674364426950

111   7,938812442123889923095703125      4    110   7,9462490081787109375              3     101   7,954345703125
111   3,979142837226390838623046875        4   101   3,97543811798095703125                   110   3,97543811798095703125
101   1,9883378362865187227725982666016  2  101   1,9887961782515048980712890625      110   1,987188816070556640625

10001111 01000000 01011100    10010000 01100010 11011010    10010001 10011111 00100001
10010101 01100111 11000100    10010100 11010111 00001101    10010100 11010111 00001101
10010110 11001110 11110010    10010110 11100000 11011001    10010110 10100010 00010000

41538374868278621028243970633760767 - ((((((((((((((((((x * 128) * 128)  * 128) * 128)* 128)  * 128) * 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)  - 41213856314620194301460814613184511) * 128)=31464123230573852164273674364426950

x = 7,9526580 7,10010001 01011101 00110100‬

10010001

***

some observations...

i do not run far 2^...

set 000-999 in each 2^... jumps...

for position 9

Quote
['103', '675', '801', '821', '054', '921', '544']
103
2 ^ -344 9
2 ^ 423 9
2 ^ 690 9
2 ^ 4045 9
2 ^ 4338 9
2 ^ 4367 9
2 ^ 5337 9
675
2 ^ 959 9
2 ^ 996 9
2 ^ 1090 9
2 ^ 2197 9
2 ^ 3411 9
2 ^ 6163 9
2 ^ 7532 9
2 ^ 7592 9
801
2 ^ -313 9
2 ^ 475 9
2 ^ 6780 9
2 ^ 6917 9
2 ^ 7618 9
2 ^ 7786 9
821
2 ^ 1580 9
2 ^ 1933 9
2 ^ 2717 9
2 ^ 4004 9
2 ^ 5289 9
2 ^ 5449 9
2 ^ 5887 9
2 ^ 8463 9
054
2 ^ 446 9
2 ^ 838 9
2 ^ 1931 9
2 ^ 3387 9
2 ^ 3695 9
2 ^ 7026 9
2 ^ 8740 9
921
2 ^ 136 9
2 ^ 177 9
2 ^ 2213 9
2 ^ 2511 9
2 ^ 3460 9
2 ^ 3881 9
2 ^ 3989 9
2 ^ 4461 9
2 ^ 5257 9
2 ^ 7152 9
544
2 ^ 73 9
2 ^ 3104 9
2 ^ 5688 9
2 ^ 5746 9
2 ^ 5956 9
2 ^ 6335 9
2 ^ 6708 9
2 ^ 8337 9
2 ^ 8735 9
[/size]

at - 1024 so as not to run past

Quote
import collections
import matplotlib.pyplot as plt
import time


Nn =['000', '001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '014', '015',
     '016', '017', '018', '019', '020', '021', '022', '023', '024', '025', '026', '027', '028', '029', '030', '031',
     '032', '033', '034', '035', '036', '037', '038', '039', '040', '041', '042', '043', '044', '045', '046', '047',
     '048', '049', '050', '051', '052', '053', '054', '055', '056', '057', '058', '059', '060', '061', '062', '063',
     '064', '065', '066', '067', '068', '069', '070', '071', '072', '073', '074', '075', '076', '077', '078', '079',
     '080', '081', '082', '083', '084', '085', '086', '087', '088', '089', '090', '091', '092', '093', '094', '095',
     '096', '097', '098', '099', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111',
     '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '124', '125', '126', '127', '128',
     '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144',
     '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160',
     '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176',
     '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192',
     '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
     '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224',
     '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240',
     '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256',
     '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272',
     '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
     '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304',
     '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320',
     '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336',
     '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352',
     '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
     '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384',
     '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400',
     '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416',
     '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432',
     '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
     '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464',
     '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480',
     '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496',
     '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512',
     '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
     '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544',
     '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560',
     '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576',
     '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592',
     '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
     '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624',
     '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640',
     '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656',
     '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672',
     '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
     '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704',
     '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720',
     '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736',
     '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752',
     '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
     '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784',
     '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800',
     '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816',
     '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832',
     '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
     '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864',
     '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880',
     '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896',
     '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912',
     '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
     '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944',
     '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960',
     '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976',
     '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992',
     '993', '994', '995', '996', '997', '998', '999']




h1 = ("103675801821054921544")
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])
print(g)

j=[]
#J=[]

for elem in g:
    print(elem)
    i = 512 #2^1
    while i <= 10000: # 2^10000
        a = pow(2,i)
        b = str(a)
        v = ([b[i:i + 3] for i in range(0, len(b), 3)])
        if elem in v:
            k = v.index(elem)
            #print("2 ^",i,k)
            if k >=9:
                if k <= 9:
                    j.append(k)
                    print("2 ^",i-1024,k)
            #print(i,k,v[0:k+1]) #print(i,k,v[0:k+1])
            #ii = i
            #while ii <= i+10:
                #aa = pow(2,ii)
                #bb = str(aa)
                #vv = ([bb[i:i + 3] for i in range(0, len(bb), 3)])
                #J.append(vv[k])
                #print(vv[k])
                #ii =ii+1
        
        
                    
        i=i+1


    #print(sorted(J))
    #N = list(set(J))
    #NN = sorted(N)
    #print(NN)

    print("****************************************************************")
    #h = ("107")
    

    #v1 = ([h[i:i + 3] for i in range(0, len(h), 3)])
    #print(v1)

    #for elem2 in v1:
        #if elem2 in NN:
            #print(elem2)
    
l = j
w = collections.Counter(l)
plt.bar(w.keys(), w.values())
plt.show()
time.sleep(360.0)
[/size]


substitute find

Quote
import random
from bit import Key
from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())

import time


list = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR"]


aa1 = 423
aa2 = 2197
aa3 = 475
aa4 = 8463
aa5 = 3695
aa6 = 136
aa7 = 73

pos = 9

ii = 512
while ii <= 10000:

    a1 = pow(2,aa1+ii)
    a2 = pow(2,aa2+ii)
    a3 = pow(2,aa3+ii)
    a4 = pow(2,aa4+ii)
    a5 = pow(2,aa5+ii)
    a6 = pow(2,aa6+ii)
    a7 = pow(2,aa7+ii)

    v1 = str(a1)
    V1 = ([v1[i:i + 3] for i in range(0, len(v1), 3)])
    o1 = V1[pos]
    #print(v1)
    
    v2 = str(a2)
    V2 = ([v2[i:i + 3] for i in range(0, len(v2), 3)])
    o2 = V2[pos]
    #print(v2)
    
    v3 = str(a3)
    V3 = ([v3[i:i + 3] for i in range(0, len(v3), 3)])
    o3 = V3[pos]
    #print(v3)
    
    v4 = str(a4)
    V4 = ([v4[i:i + 3] for i in range(0, len(v4), 3)])
    o4 = V4[pos]
    #print(v4)
    
    v5 = str(a5)
    V5 = ([v5[i:i + 3] for i in range(0, len(v5), 3)])
    o5 = V5[pos]
    #print(v5)
    
    v6 = str(a6)
    V6 = ([v6[i:i + 3] for i in range(0, len(v6), 3)])
    o6 = V6[pos]
    #print(v6)
    
    v7 = str(a7)
    V7 = ([v7[i:i + 3] for i in range(0, len(v7), 3)])
    o7 = V7[pos]
    #print(v7)

    #print(v1,v2,v3)
    #print(v1+v2+v3)
    #print(V1,V2,V3)

    #print(o1,o2,o3,o4,o5,o6,o7)
    #print(o1+o2+o3+o4+o5+o6+o7)
    #print("*******************")

    F = int(o1+o2+o3+o4+o5+o6+o7)
    print(F)
    if F == 103675801821054921544:
        print(F)
        print("hellow")
        break

    ii = ii +1
[/size]


if all options 000-999 with positions 0-50 penetrate and discard it still finds something, but there’s little point in it.

Quote
import collections
import matplotlib.pyplot as plt
import time
import random

Nn =['000', '001', '002', '003', '004', '005', '006', '007', '008', '009', '010', '011', '012', '013', '014', '015',
     '016', '017', '018', '019', '020', '021', '022', '023', '024', '025', '026', '027', '028', '029', '030', '031',
     '032', '033', '034', '035', '036', '037', '038', '039', '040', '041', '042', '043', '044', '045', '046', '047',
     '048', '049', '050', '051', '052', '053', '054', '055', '056', '057', '058', '059', '060', '061', '062', '063',
     '064', '065', '066', '067', '068', '069', '070', '071', '072', '073', '074', '075', '076', '077', '078', '079',
     '080', '081', '082', '083', '084', '085', '086', '087', '088', '089', '090', '091', '092', '093', '094', '095',
     '096', '097', '098', '099', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111',
     '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '124', '125', '126', '127', '128',
     '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144',
     '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160',
     '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176',
     '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192',
     '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
     '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224',
     '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240',
     '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256',
     '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272',
     '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
     '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304',
     '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320',
     '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336',
     '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352',
     '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
     '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384',
     '385', '386', '387', '388', '389', '390', '391', '392', '393', '394', '395', '396', '397', '398', '399', '400',
     '401', '402', '403', '404', '405', '406', '407', '408', '409', '410', '411', '412', '413', '414', '415', '416',
     '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', '430', '431', '432',
     '433', '434', '435', '436', '437', '438', '439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
     '449', '450', '451', '452', '453', '454', '455', '456', '457', '458', '459', '460', '461', '462', '463', '464',
     '465', '466', '467', '468', '469', '470', '471', '472', '473', '474', '475', '476', '477', '478', '479', '480',
     '481', '482', '483', '484', '485', '486', '487', '488', '489', '490', '491', '492', '493', '494', '495', '496',
     '497', '498', '499', '500', '501', '502', '503', '504', '505', '506', '507', '508', '509', '510', '511', '512',
     '513', '514', '515', '516', '517', '518', '519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
     '529', '530', '531', '532', '533', '534', '535', '536', '537', '538', '539', '540', '541', '542', '543', '544',
     '545', '546', '547', '548', '549', '550', '551', '552', '553', '554', '555', '556', '557', '558', '559', '560',
     '561', '562', '563', '564', '565', '566', '567', '568', '569', '570', '571', '572', '573', '574', '575', '576',
     '577', '578', '579', '580', '581', '582', '583', '584', '585', '586', '587', '588', '589', '590', '591', '592',
     '593', '594', '595', '596', '597', '598', '599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
     '609', '610', '611', '612', '613', '614', '615', '616', '617', '618', '619', '620', '621', '622', '623', '624',
     '625', '626', '627', '628', '629', '630', '631', '632', '633', '634', '635', '636', '637', '638', '639', '640',
     '641', '642', '643', '644', '645', '646', '647', '648', '649', '650', '651', '652', '653', '654', '655', '656',
     '657', '658', '659', '660', '661', '662', '663', '664', '665', '666', '667', '668', '669', '670', '671', '672',
     '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
     '689', '690', '691', '692', '693', '694', '695', '696', '697', '698', '699', '700', '701', '702', '703', '704',
     '705', '706', '707', '708', '709', '710', '711', '712', '713', '714', '715', '716', '717', '718', '719', '720',
     '721', '722', '723', '724', '725', '726', '727', '728', '729', '730', '731', '732', '733', '734', '735', '736',
     '737', '738', '739', '740', '741', '742', '743', '744', '745', '746', '747', '748', '749', '750', '751', '752',
     '753', '754', '755', '756', '757', '758', '759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
     '769', '770', '771', '772', '773', '774', '775', '776', '777', '778', '779', '780', '781', '782', '783', '784',
     '785', '786', '787', '788', '789', '790', '791', '792', '793', '794', '795', '796', '797', '798', '799', '800',
     '801', '802', '803', '804', '805', '806', '807', '808', '809', '810', '811', '812', '813', '814', '815', '816',
     '817', '818', '819', '820', '821', '822', '823', '824', '825', '826', '827', '828', '829', '830', '831', '832',
     '833', '834', '835', '836', '837', '838', '839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
     '849', '850', '851', '852', '853', '854', '855', '856', '857', '858', '859', '860', '861', '862', '863', '864',
     '865', '866', '867', '868', '869', '870', '871', '872', '873', '874', '875', '876', '877', '878', '879', '880',
     '881', '882', '883', '884', '885', '886', '887', '888', '889', '890', '891', '892', '893', '894', '895', '896',
     '897', '898', '899', '900', '901', '902', '903', '904', '905', '906', '907', '908', '909', '910', '911', '912',
     '913', '914', '915', '916', '917', '918', '919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
     '929', '930', '931', '932', '933', '934', '935', '936', '937', '938', '939', '940', '941', '942', '943', '944',
     '945', '946', '947', '948', '949', '950', '951', '952', '953', '954', '955', '956', '957', '958', '959', '960',
     '961', '962', '963', '964', '965', '966', '967', '968', '969', '970', '971', '972', '973', '974', '975', '976',
     '977', '978', '979', '980', '981', '982', '983', '984', '985', '986', '987', '988', '989', '990', '991', '992',
     '993', '994', '995', '996', '997', '998', '999']




h1 = ("103675801821054921544")
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])
print(g)

j=[]
#J=[]

for elem in Nn:
    print(elem)
    i = 512 #2^1
    while i <= 1024: # 2^10000
        a = pow(2,i)
        b = str(a)
        v = ([b[i:i + 3] for i in range(0, len(b), 3)])
        if elem in v:
            k = v.index(elem)
            #print("2 ^",i,k)
            if k >=0:
                if k <= 50:
                    G = i,k
                    j.append(G)
                    
                    print(G)
            #print(i,k,v[0:k+1]) #print(i,k,v[0:k+1])
            #ii = i
            #while ii <= i+10:
                #aa = pow(2,ii)
                #bb = str(aa)
                #vv = ([bb[i:i + 3] for i in range(0, len(bb), 3)])
                #J.append(vv[k])
                #print(vv[k])
                #ii =ii+1
        
        
                    
        i=i+1


    print(sorted(j))
    #N = list(set(J))
    #NN = sorted(N)
    #print(NN)

    print("****************************************************************")
    #h = ("107")

print(len(j))

GGG = []

while True:
    F1 = random.randrange(512,1024)
    F2 = random.randrange(0,50)  
    GG = F1,F2
    if GG not in j:
        if GG not in GGG:
            GGG.append(GG)
            print(GG)
            pass
    
    #v1 = ([h[i:i + 3] for i in range(0, len(h), 3)])
    #print(v1)

    #for elem2 in v1:
        #if elem2 in NN:
            #print(elem2)
    
#l = j
#w = collections.Counter(l)
#plt.bar(w.keys(), w.values())
#plt.show()
time.sleep(1.0)
[/size]

If drop half of 70% from the set 000-999 the same as just dropping those 000-999 to iterate over without 2^...
jr. member
Activity: 47
Merit: 13
And finaly the #115 was found. Congratulations Zielar and Jean_Luc_Pons  Smiley We are all wondering which was the privkey  Wink
jr. member
Activity: 184
Merit: 3
Why do you need to solve these problems and waste your time if no one will pay you your prize?
Do not worry, "the denial of substantiality, the recognition of total variability leads to a complete merger of time and being, instantness and instantaneous, time, the continuum of the variability of things is opposed to temporality, which is identical to the discreteness of the elements of being, and to reality of duration, the reality of the moment, temporal, moments of time are relatively real, time is unrealistic, because it is relative." ksanika.

***

and we have, for each of 26 by 3 (78/3, 000-999) positions for each of 3x from 0 to 999 (regarding) and after each item position the whole set 000-999 (10 steps after, 2^1 - 2^1024) for each potential compound number sought 78 length.


Quote
h1 = ("115792089237316195423570985008687907853269984665640564039457584007913129639936")
g = ([h1[i:i + 3] for i in range(0, len(h1), 3)])

J=[]

for elem in g:

    i = 1 #2^1
    while i <= 1024: # 2^10000
        a = pow(2,i)
        b = str(a)
        v = ([b[i:i + 3] for i in range(0, len(b), 3)])
        if elem in v:
            k = v.index(elem)
            #print(i,k,v[0:k+1]) #print(i,k,v[0:k+1])
            ii = i
            while ii <= i+10:
                aa = pow(2,ii)
                bb = str(aa)
                vv = ([bb[i:i + 3] for i in range(0, len(bb), 3)])
                J.append(vv[k])
                #print(vv[k])
                ii =ii+1
        
        
                    
        i=i+1


    #print(sorted(J))
    N = list(set(J))
    NN = sorted(N)
    print(NN)


    h = ("107659846271730344815318648387900885759695017184773302917915054321881794192134")
    

    v1 = ([h[i:i + 3] for i in range(0, len(h), 3)])
    print(v1)


6 is the same parsley... (10000 steps after, 2^1 - 2^1024)...


Quote
g = "111111"

J=[]

i = 1 #2^1
while i <= 20000: # 2^10000
    a = pow(2,i)
    b = str(a)
    v = ([b[i:i + 6] for i in range(0, len(b), 6)])
    if g in v:
        print("2 ^",i,"positions",v.index(g))
        k = v.index(g)
        #print(i,k,v[0:k+1]) #print(i,k,v[0:k+1])
        ii = i
        while ii <= i+10000:
            aa = pow(2,ii)
            bb = str(aa)
            vv = ([bb[i:i + 6] for i in range(0, len(bb), 6)])
            J.append(vv[k])
            #print(vv[k])
            ii =ii+1
   
   
               
    i=i+1


#print(sorted(J))
N = list(set(J))
NN = sorted(N)
print(NN)


h = ("115792089237316195423570985008687907853269984665640564039457584007913129639936") #115792089237316195423570985008687907853269984665640564039457584007913129639936

v1 = ([h[i:i + 6] for i in range(0, len(h), 6)])
print(v1)

for elem in v1:
    if elem in NN:
        print(elem)
   



  
jr. member
Activity: 184
Merit: 3
it looks like there's a formula https://bitcointalksearch.org/topic/m.48644494

1298074214633706907132624082305023 - (((((((((((((((((x * 128) * 128)  * 128) * 128)* 128)  * 128) * 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)  - 1287933009831881071920650456662015) * 128) = 1090246098153987172547740458951748

x = 31,790026

41538374868278621028243970633760767 - ((((((((((((((((((x * 128) * 128)  * 128) * 128)* 128)  * 128) * 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)* 128)  - 41213856314620194301460814613184511) * 128)=

x = 7,9...

ahaha, joke...

***

looked in search of patterns or cycles, but did not find (or spatial restrictions are imposed) i.e. take positions "111" in the early 2^... look for them in the same positions in the later 2^... then it would be possible to search for this regularity, what to attach to (did anyone even explore this power of 2, there are some patterns there or randomly everything).

With just "1" found 1 match in the available range, positions 5 11 15 18 20 22 27

2^112 9378349 5192296858534827628530496329220096
2^113 5055005 10384593717069655257060992658440192
2^114 1111111 20769187434139310514121985316880384

2^2948707 2077707 1800629458604147817979030447828571556843010549847833831635681367583985125010078 362266684882379919991...
2^2948708 5055505 3601258917208295635958060895657143113686021099695667663271362735167970250020156 724533369764759839983...
2^2948709 1111111 7202517834416591271916121791314286227372042199391335326542725470335940500040313 449066739529519679966...

***

there is another option, the following numbers in the next 2^... to see i.e.

"512"


2^9   512
2^10 1024
2^11 2048
2^12 4096
2^13 8192

i.e. every number is always followed by a "specific set" or exhaustive search... in flight in a black hole...

(sampling, without following the sequence)

"020"
set
041
204
604
040
004
804

"940"
set
880
588
881
188
788

e.t.c from 000 to 999.

need to look at the finished address numbers (78 length dec, 256bit) somehow correlate with this or a mess...

***

this way does not work there the "whole set" 000-999 (10 steps next "512" positions) 2^1 - 2^10000

Quote
g = "512"

J=[]

i = 1 #2^1
while i <= 10000: # 2^10000
    a = pow(2,i)
    b = str(a)
    v = ([b[i:i + 3] for i in range(0, len(b), 3)])
    if g in v:
        k = v.index(g)
        #print(i,k,v[0:k+1]) #print(i,k,v[0:k+1])
        ii = i
        while ii <= i+10:
            aa = pow(2,ii)
            bb = str(aa)
            vv = ([bb[i:i + 3] for i in range(0, len(bb), 3)])
            J.append(vv[k])
            #print(vv[k])
            ii =ii+1
   
   
               
    i=i+1


#print(sorted(J))
N = list(set(J))
NN = sorted(N)
print(NN)
legendary
Activity: 1932
Merit: 2077
I wonder which was the private key  Wink

hex: 00000000000000000000000000000000000035c0d7234df7deb0f20cf7062444

https://github.com/JeanLucPons/Kangaroo/blob/master/DOC/keys110.jpg
jr. member
Activity: 47
Merit: 13
Bitcoin address #110 was solved. Congratulations to the solver.  Smiley

I wonder which was the private key  Wink
newbie
Activity: 149
Merit: 0
This addresses could be just random addresses created by the bot who seem to have been programmed by somebody knowledgeable about bitcoin to send to other addresses. This could have been done for recreation or for some purpose like safe keeping the coins from hacker. We will never know until one person will come in and say I have done this.

I like it when no one reads the entire branch and concludes !!!!! He made a riddle for that to check the Brute force of the Equipment of the 20th century .....
sr. member
Activity: 443
Merit: 350
This addresses could be just random addresses created by the bot who seem to have been programmed by somebody knowledgeable about bitcoin to send to other addresses. This could have been done for recreation or for some purpose like safe keeping the coins from hacker. We will never know until one person will come in and say I have done this.

Here is the message of the creator: https://bitcointalksearch.org/topic/m.18765941
jr. member
Activity: 30
Merit: 1
This addresses could be just random addresses created by the bot who seem to have been programmed by somebody knowledgeable about bitcoin to send to other addresses. This could have been done for recreation or for some purpose like safe keeping the coins from hacker. We will never know until one person will come in and say I have done this.
newbie
Activity: 149
Merit: 0
So basically stealing someone's Bitcoin? What if you had that 32 BTC and someone stole it from you, what is wrong with you guys? This is such a shitty community that you guys would call someone's own hard-earned Bitcoin a "prize" and even bounty it. You are the reason Bitcoin has such a bad wrap.

Tap on the matte canteen. Read the topic from the beginning, then come back here, remove your miserable post and beg forgiveness.

I have no idea what the phrase means, and no I won't. It's not your money nor do you deserve it.
The owner of these Bitcoins spent them to low entropy private keys on purpose in order to test the security of the Bitcoin system.  He wants everyone to try and take them.  He then issued a spend transaction from some of the addresses in order to test the security of low entropy private keys with spend transaction.   He did all of this on purpose in order to test the system.  For helping with this test people are being paid for their efforts.  This is not stealing it is people being paid for a service.

Learn to first read and understand a thread before you dump a steaming pile of your uninformed dumb ass opinion on it.

So there is proof of this? It makes sense I just don't see any proof of who owns the bitcoins and don't feel like searching through a huge thread to find a needle in a haystack. Can you actually provide something useful? All I see is random info without anything to back it up except a simple-minded insult?

The creator initially threw 32BTC to the addresses that were allocated to Him by bits growing up to 256, but later he went and said that it was stupid to go so far, and threw more BTC to addresses before the 160th. I think he tested the possibility of brute force. Or he encourages us to create or write completely new program in the search for all the keys. I would create a torrent pool with special transfers of data from a joint search))))
Jump to: