So pampering in the Python 3 at the primary level.
On a python, you can use gpu
https://developer.nvidia.com/how-to-cuda-python but apparently have to rewrite (or write again) the bitcoin library. the fastest
https://github.com/ofek/bit . In other things we have a lot of time to learn programming languages)) It would be interesting to look at the program, searching for a puzzle, move your mouse over the screen and look for the coveted prize)).
Try it if you want such a script for ndv
https://bitcointalksearch.org/topic/faster-and-autonomous-large-bitcoin-collider-fork-3102823 by copying the ndv program files into the c:\folder1 c:\folder2 etc, and create an empty c:\cmd1.cmd c:\cmd2.cmd
For 2 cards.
import secrets
from bitcoin import *
import subprocess
import time
def fff():
nnn = str(secrets.choice("0123456789"))
return nnn
while True:
a = 800
while a <= 1000:
bbb = str(a)
kkk = int(bbb+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff())
ran = kkk
myhex = "%064x" % ran
myhex = myhex[:64]
priv = myhex
pub = privtopub(priv)
pubkey1 = encode_pubkey(privtopub(priv), "bin_compressed")
addr = pubtoaddr(pubkey1)
oy = """cd "C:\folder1" """
ey = "\nstart /min oclvanitygen.exe -D 0:0 -C -f addresses.txt -o found.txt "
f=open("C:/cmd1.cmd","w")
f.write (oy)
f.write (ey)
f.write (priv)
f.close()
subprocess.Popen([r"C:/cmd1.cmd"])
print(kkk,addr,priv)
bbb2 = str(a)
kkk = int(bbb2+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff()+fff())
ran = kkk
myhex = "%064x" % ran
myhex = myhex[:64]
priv = myhex
pub = privtopub(priv)
pubkey1 = encode_pubkey(privtopub(priv), "bin_compressed")
addr = pubtoaddr(pubkey1)
oy = """cd "C:\folder2" """
ey = "\nstart /min oclvanitygen.exe -D 1:0 -C -f addresses.txt -o found.txt "
f=open("C:/cmd2.cmd","w")
f.write (oy)
f.write (ey)
f.write (priv)
f.close()
subprocess.Popen([r"C:/cmd2.cmd"])
print(kkk,addr,priv)
time.sleep(10.0) #delay between steps
subprocess.call("taskkill /IM oclvanitygen.exe")
a = a +1
pass
Stepping with a 10 second interval between steps.
80575324376405043
80547044120475565
80650225349114907
80618406564220162
80760456417194235
80798509910061778
80853179598579019
80880643941104019
80932464878676982
80985690149518090
81055712015396080
81096866333042872
81183973601624592
81155404309801184
81260793490764205
81295972493608040
81350689096804698
81318504516644022
***
For a random, another option (for collisions more suited).
1 10000000 17 10010000 33 10100000 49 10110000 65 11000000 81 11010000 97 11100000 113 11110000 100000000 00000000 00000000 00000000 00000000 00000000 00000000 15-40 57
2 10000001 18 10010001 34 10100001 50 10110001 66 11000001 82 11010001 98 11100001 114 11110001 10011101 00011000 10110110 00111010 11000100 11111111 11011111 22-34 56 44218742292676575 < 1
3 10000010 19 10010010 35 10100010 51 10110010 67 11000010 83 11010010 99 11100010 115 11110010 11010101 01111100 00111111 00110110 11001111 11000010 0010100 24-31 < 1
4 10000011 20 10010011 36 10100011 52 10110011 68 11000011 84 11010011 100 11100011 116 11110011 10001101 10111110 11011011 01010110 10110100 01111101 000100 23-31 < 1
5 10000100 21 10010100 37 10100100 53 10110100 69 11000100 85 11010100 101 11100100 117 11110100 11000000 00111100 01000111 00100011 11110001 10010011 01100 29-24 > 0
6 10000101 22 10010101 38 10100101 54 10110101 70 11000101 86 11010101 102 11100101 118 11110101 11101111 10101110 00010110 01001100 10111001 11100011 1100 22-30 < 1
7 10000110 23 10010110 39 10100110 55 10110110 71 11000110 87 11010110 103 11100110 119 11110110 11101010 00001110 00010100 00110100 00000001 00111010 000 33-18 > 0
8 10000111 24 10010111 40 10100111 56 10110111 72 11000111 88 11010111 104 11100111 120 11110111 10001010 11110101 00001111 00001011 10100100 11010101 00 26-24 > 0
9 10001000 25 10011000 41 10101000 57 10111000 73 11001000 89 11011000 105 11101000 121 11111000 10111010 00001011 10110101 10000000 10101111 10100110 1 24-25 < 1
10 10001001 26 10011001 42 10101001 58 10111001 74 11001001 90 11011001 106 11101001 122 11111001 10101101 11100110 11010111 11001110 00111011 10011011 17-31 < 1
11 10001010 27 10011010 43 10101010 59 10111010 75 11001010 91 11011010 107 11101010 123 11111010 11011001 10101100 00100001 01101010 01111001 0111010 23-24 < 1
12 10001011 28 10011011 44 10101011 60 10111011 76 11001011 92 11011011 108 11101011 124 11111011 10111011 00000110 00001110 00100011 01010101 000100 2 7-19 > 0
13 10001100 29 10011100 45 10101100 61 10111100 77 11001100 93 11011100 109 11101100 125 11111100 10010001 01111110 01010000 10100001 11100000 00101 26 -19 > 0
14 10001101 30 10011101 46 10101101 62 10111101 78 11001101 94 11011101 110 11101101 126 11111101 11100000 00101011 00110101 10100011 01011000 1111 22- 22 =
15 10001110 31 10011110 47 10101110 63 10111110 79 11001110 95 11011110 111 11101110 127 11111110 11010111 10100111 01100100 11111000 10110010 001 19-2 4 < 1
16 10001111 32 10011111 48 10101111 64 10111111 80 11001111 96 11011111112 11101111 128 11111111 10101000 10001000 01110001 01100011 01100011 11 23-19 > 0
10101001 11000011 01001101 01100110 00101101 1 20-21 < 1
1 00000000 17 00010000 33 00100000 49 00110000 65 01000000 81 01010000 97 01100000 113 01110000 11101001 10101110 01001001 00110011 11010110 18-22 40 1003651412950 < 1
2 00000001 18 00010001 34 00100001 50 00110001 66 01000001 82 01010001 98 01100001 114 01110001 10010110 10111111 00000110 00000111 1101001 19-20 < 1
3 00000010 19 00010010 35 00100010 51 00110010 67 01000010 83 01010010 99 01100010 115 01110010 10001000 11100000 10111110 10110011 010000 2 1-17 > 0
4 00000011 20 00010011 36 00100011 52 00110011 68 01000011 84 01010011 100 01100011 116 01110011 10111010 10111011 10101011 01010100 10011 14 -22 < 1
5 00000100 21 00010100 37 00100100 53 00110100 69 01000100 85 01010100 101 01100100 117 01110100 10011101 11101000 00100000 10100111 1100 19- 17 > 0
6 00000101 22 00010101 38 00100101 54 00110101 70 01000101 86 01010101 102 01100101 118 01110101 10010101 11011010 01000010 00101110 000 20-1 5 > 0
7 00000110 23 00010110 39 00100110 55 00110110 71 01000110 87 01010110 103 01100110 119 01110110 11010010 10011001 01100100 01000111 01 18-16 > 0
8 00000111 24 00010111 40 00100111 56 00110111 72 01000111 88 01010111 104 01100111 120 01110111 11010100 10110110 01010100 01101100 0 17-16 > 0
9 00001000 25 00011000 41 00101000 57 00111000 73 01001000 89 01011000 105 01101000 121 01111000 10111000 01100010 10100110 00101110 17-15 > 0
10 00001001 26 00011001 42 00101001 58 00111001 74 01001001 90 01011001 106 01101001 122 01111001 11111010 10011111 11001110 1000111 10-21 < 1
11 00001010 27 00011010 43 00101010 59 00111010 75 01001010 91 01011010 107 01101010 123 01111010 11110110 01010011 00110101 100100 1 4-16 < 1
12 00001011 28 00011011 44 00101011 60 00111011 76 01001011 92 01011011 108 01101011 124 01111011 10111111 00010010 10101000 11110 13 -16 < 1
13 00001100 29 00011100 45 00101100 61 00111100 77 01001100 93 01011100 109 01101100 125 01111100 11011001 00010110 11001110 1000 14- 14 =
14 00001101 30 00011101 46 00101101 62 00111101 78 01001101 94 01011101 110 01101101 126 01111101 11010101 10000111 00001110 101 13-1 4 < 1
15 00001110 31 00011110 47 00101110 63 00111110 79 01001110 95 01011110 111 01101110 127 01111110 11010000 00001100 10011011 10 15-11 > 0
16 00001111 32 00011111 48 00101111 64 00111111 80 01001111 96 01011111 112 01101111 128 01111111 11111101 00101111 01110010 1 8-17 < 1
11011100 00101010 00000100 15-9 > 0
10101010 11011100 1010010 11-12 < 1
10110111 10010000 001111 1 0-12 < 1
11011101 00101001 10100 10 -11 < 1
11010010 11000101 0101 10- 10 =
10101110 10010011 111 7-12 < 1
11000010 00000011 01 12-6 > 0
10111011 00100111 1 6-11 < 1
11001001 00110110 8-8 =
11010001 1110011 6-9 < 1
10100100 110000 9 -5 > 0
10100011 00000 9- 4 > 0
10100111 1011 4-8 < 1
10010000 011 7-4 > 0
10000000 10 8-2 > 0
11101001 1 3-6 < 1
11100000 5-3 > 0
1001100 4-3 > 0
110001 3 -3 =
10101 2- 3 < 1
1000 3-1 > 0
111 3
11 2
1 1
gen these numbers
import random
from bit import *
from PyRandLib import *
rand = FastRand63()
random.seed(rand())
c1 = str (random.choice("1"))
b28 = "00000000000000000000000000000001111111111111111111111111"
b29 = "00000000000000000000000000000000111111111111111111111111"
b30 = "00000000000000000000000000000000011111111111111111111111"
b31 = "00000000000000000000000000000000001111111111111111111111"
b32 = "00000000000000000000000000000000000111111111111111111111"
b33 = "00000000000000000000000000000000000011111111111111111111"
b34 = "00000000000000000000000000000000000001111111111111111111"
b35 = "00000000000000000000000000000000000000111111111111111111"
b36 = "00000000000000000000000000000000000000011111111111111111"
b37 = "00000000000000000000000000000000000000001111111111111111"
b38 = "00000000000000000000000000000000000000000111111111111111"
b39 = "00000000000000000000000000000000000000000011111111111111"
b40 = "00000000000000000000000000000000000000000001111111111111"
b41 = "00000000000000000000000000000000000000000000111111111111"
b42 = "00000000000000000000000000000000000000000000011111111111"
#c2 = "00000000000000000000000000000000000000000000000000000001"
spisok =[b30]
while True:
aa = 1
while aa <= 1:
for element in (spisok):
s = element
d = ''.join(random.sample(s,len(s)))
bina = (c1+d)
b = int(c1+d,2)
key = Key.from_int(b)
addr = key.address
if addr == "15c9mPGLku1HuW9LRtBf4jcHVpBUt8txKz":
print ("found!!!",b,addr)
s1 = str(b)
s2 = addr
f=open(u"C:/a.txt","a")
f.write(s1)
f.write(s2)
f.close()
pass
else:
print (s,bina,b,addr)
aa = aa +1
pass
PyRandLib
https://github.com/schmouk/CRandLib without it del
from PyRandLib import *
rand = FastRand63()
random.seed(rand())
or
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())
***
angle "rate".
00000000000000000000001111111111111111111111111111111111
0000000000000000000000001111111111111111111111111111111
000000000000000000000001111111111111111111111111111111
00000000000000000000000000000111111111111111111111111
0000000000000000000000111111111111111111111111111111
000000000000000000000000000000000111111111111111111
00000000000000000000000000111111111111111111111111
0000000000000000000000001111111111111111111111111
000000000000000001111111111111111111111111111111
00000000000000000000000111111111111111111111111
0000000000000000000000000001111111111111111111
000000000000000000000000001111111111111111111
00000000000000000000001111111111111111111111
0000000000000000000111111111111111111111111
000000000000000000000001111111111111111111
00000000000000000000111111111111111111111
0000000000000000001111111111111111111111
000000000000000000011111111111111111111
00000000000000000000011111111111111111
0000000000000011111111111111111111111
000000000000000000011111111111111111
00000000000000000000111111111111111
0000000000000000001111111111111111
000000000000000001111111111111111
00000000000000000111111111111111
0000000000111111111111111111111
000000000000001111111111111111
00000000000001111111111111111
0000000000000011111111111111
000000000000011111111111111
00000000000000011111111111
0000000011111111111111111
000000000000000111111111
00000000000111111111111
0000000000111111111111
000000000011111111111
00000000001111111111
0000000111111111111
000000000000111111
00000011111111111
0000000011111111
000000111111111
00000000011111
0000000001111
000011111111
00000001111
0000000011
000111111
00000111
0000111
000111
00111
0001
111
11
1