@organofcorti - I don't think "4 blocks in 127 minutes" is the correct way to look at the event, because what we can see here is actually an interval of (127 minutes - epsilon) with only
3 blocks.
To simplify and clarify, let's look instead of the sequence of X1, X2, ... of time intervals between successive blocks. What we see here is a subsequence of intervals for which X1+X2+X3+X4 > 12.7 (I'm rescaling to have mean 1 for each interval). The probability for this with a specified subsequence is 0.13295%.
Now we ask what is the chance of this happening in 4 years. It's easier and not much different to ask instead about the chance of this happening in a sequence of 210,000 intervals.
If we denote Yi = X_{i}+X_{i+1}+X_{i+2}+X_{i+3} and u=12.7, the chance of this not happening is
Prob [For all 0 <= i < 200996 Yi < u] =
Product (i from 0 to 200996) of Prob [Yi < u | for all 0 <= j < i Yj < u]
Y_k and Y_m are independent for |k-m|>3. Approximating the first few terms (not needed but slightly simpler) this is equal to
Product (i from 0 to 200996) of Prob [Yi < u | Y_{i-1} < u, Y_{i-2} < u, Y_{i-3} < u]
All multiplicands are equal, and their value is
1 + (u^2 (6 + 2 E^u (-3 + u) + u (4 + u)))/(6 (-2 - 2 E^(2 u) - u (4 + u) + E^u (4 + u (4 + (-1 + u) u))))
(Slightly higher than the unconditional probability)
For u=12.7 this is
0.999202021115881015
So we're looking at
0.999202021115881015 ^ 200997 ~ 2 * 10^(-70)
Probability of this not happening. The probability of happening is roughly
0.99999999999999999999999999999999999999999999999999999999999999999999979340994
89681.
Edit: I'd be interested in hearing from anyone who can show me how to answer this question without having to assume the time is broken up into 16554 blocks of 127 minutes. I couldn't see how to do it.
I'm not sure I understand your question. The inter-event time for the Poisson process has
http://en.wikipedia.org/wiki/Exponential_distribution . Are you talking about something else?
Yes, he talked about the probability of an event like this ever happening in a 4-year span.