This might allow to send unmanned spacecrafts farther than ever, but still won't solve the problem that you face when trying to accelerate living organisms.
If you put a person inside a ship that gains speed he'll be pushed in the opposite direction the way you are pushed into your chair when you take off in a plane but the forces will be much greater basically smearing you on the walls. It was also explained in Star Trek, where they had double fields one that was outside the ship and one inside it with a different gravity to create artificial environment.
[...]
Moving out from LEO, Mr. March, from NASA EagleWorks, noted that a spacecraft equipped with EM drive technology could surpass the performance expectations of the WarpStar-I concept vehicle.
If such a similar vehicle were equipped with an EM Drive, it could enable travel from the surface of Earth to the surface of the moon within four hours.
Such a vehicle would be capable of carrying two to six passengers and luggage and would be able to return to Earth in the same four-hour interval using one load of hydrogen and oxygen for fuel cell-derived electrical power, assuming a 500 to 1,000 Newton/kW efficiency EM Drive system.
While the current maximum reported efficiency is close to only 1 Newton/kW (Prof. Yang’s experiments in China), Mr. March noted that such an increase in efficiency is most likely achievable within the next 50 years provided that current EM Drive propulsion conjectures are close to accurate.
Far more ambitious applications for the EM Drive were presented by Dr. White and include crewed missions to Mars as well as to the outer planets.
Specifically, these two proposed missions (to Mars and the outer planets) would use a 2 MegaWatt Nuclear Electric Propulsion spacecraft equipped with an EM Drive with a thrust/powerInput of 0.4 Newton/kW.
With this design, a mission to Mars would result in a 70-day transit from Earth to the red planet, a 90-day stay at Mars, and then another 70-day return transit to Earth.
[...]
However, EM drive applications are not limited to Mars or outer solar system targets.
Applications of this technology in deep space missions have already received conceptual outlines.
In particular, the Alpha Centauri system, the closest star system to our solar system at just 4.3 lights year’s distance, received specific mention as a potential mission destination.
Mr. Joosten and Dr. White stated that “a one-way, non-decelerating trip to Alpha Centauri under a constant one milli-g acceleration” from an EM drive would result in an arrival speed of 9.4 percent the speed of light and result in a total transit time from Earth to Alpha Centauri of just 92 years.
However, if the intentions of such a mission were to perform in-situ observations and experiments in the Alpha Centauri system, then deceleration would be needed.
This added component would result in a 130-year transit time from Earth to Alpha Centauri – which is still a significant improvement over the multi-thousand year timetable such a mission would take using current chemical propulsion technology.
The speeds discussed in the Alpha Centauri mission proposal are sufficiently low that relativity effects are negligible.
http://www.nasaspaceflight.com/2015/04/evaluating-nasas-futuristic-em-drive/