is there a multicore version out
or can we edit this to do that , thanks mate for sharing.
Sure, here's the full script with multiprocessing added:
import time
import random
import gmpy2
from functools import lru_cache
import multiprocessing
modulo = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
order = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
PG = Point(Gx, Gy)
Z = Point(0, 0) # zero-point, infinite in real x,y-plane
def mul2(P, p=modulo):
c = (3 * P.x * P.x * pow(2 * P.y, -1, p)) % p
R = Point()
R.x = (c * c - 2 * P.x) % p
R.y = (c * (P.x - R.x) - P.y) % p
return R
def add(P, Q, p=modulo):
dx = Q.x - P.x
dy = Q.y - P.y
c = dy * gmpy2.invert(dx, p) % p
R = Point()
R.x = (c * c - P.x - Q.x) % p
R.y = (c * (P.x - R.x) - P.y) % p
return R
@lru_cache(maxsize=None)
def X2Y(X, p=modulo):
if p % 4 != 3:
print('prime must be 3 modulo 4')
return 0
X = (X ** 3 + 7) % p
pw = (p + 1) // 4
Y = 1
tmp = X
for w in range(256):
if (pw >> w) & 1 == 1:
Y = (Y * tmp) % p
tmp = pow(tmp, 2, p)
return Y
def compute_P_table():
P = [PG]
for k in range(255):
P.append(mul2(P[k]))
return P
P = compute_P_table()
print('P-table prepared')
def comparator(A, Ak, B, Bk):
result = set(A).intersection(set(B))
if result:
sol_kt = A.index(next(iter(result)))
sol_kw = B.index(next(iter(result)))
print('total time: %.2f sec' % (time.time() - starttime))
d = Ak[sol_kt] - Bk[sol_kw]
print('SOLVED:', d)
with open("results.txt", 'a') as file:
file.write(('%d' % (Ak[sol_kt] - Bk[sol_kw])) + "\n")
file.write("---------------\n")
return True
else:
return False
def check(P, Pindex, DP_rarity, file2save, A, Ak, B, Bk):
if P.x % DP_rarity == 0:
A.append(P.x)
Ak.append(Pindex)
with open(file2save, 'a') as file:
file.write(('%064x %d' % (P.x, Pindex)) + "\n")
return comparator(A, Ak, B, Bk)
else:
return False
def mulk(k, P=PG, p=modulo):
if k == 0:
return Z
elif k == 1:
return P
elif k % 2 == 0:
return mulk(k // 2, mul2(P, p), p)
else:
return add(P, mulk((k - 1) // 2, mul2(P, p), p))
def search(process_id, Nt, Nw, problem, kangoo_power, starttime):
DP_rarity = 1 << ((problem - 2 * kangoo_power) // 2 - 2)
hop_modulo = ((problem - 1) // 2) + kangoo_power
T, t, dt = [], [], []
W, w, dw = [], [], []
for k in range(Nt):
t.append((3 << (problem - 2)) + random.randint(1, (1 << (problem - 1))))
T.append(mulk(t[k]))
dt.append(0)
for k in range(Nw):
w.append(random.randint(1, (1 << (problem - 1))))
W.append(add(W0, mulk(w[k])))
dw.append(0)
print('tame and wild herds are prepared')
oldtime = time.time()
Hops, Hops_old = 0, 0
t0 = time.time()
oldtime = time.time()
starttime = oldtime
while True:
for k in range(Nt):
Hops += 1
pw = T[k].x % hop_modulo
dt[k] = 1 << pw
solved = check(T[k], t[k], DP_rarity, "tame.txt", T, t, W, w)
if solved:
return 'sol. time: %.2f sec' % (time.time() - starttime)
t[k] += dt[k]
T[k] = add(P[pw], T[k])
for k in range(Nw):
Hops += 1
pw = W[k].x % hop_modulo
dw[k] = 1 << pw
solved = check(W[k], w[k], DP_rarity, "wild.txt", W, w, T, t)
if solved:
return 'sol. time: %.2f sec' % (time.time() - starttime)
w[k] += dw[k]
W[k] = add(P[pw], W[k])
t1 = time.time()
if (t1 - t0) > 5:
print('%.3f h/s' % ((Hops - Hops_old) / (t1 - t0)))
t0 = t1
Hops_old = Hops
start = 2147483647
end = 4294967295
search_range = end - start + 1
problem = search_range.bit_length()
compreessed_public_key = "0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69" #Puzzle 32
kangoo_power = 3
Nt = Nw = 2 ** kangoo_power
X = int(compreessed_public_key, 16)
Y = X2Y(X % (2 ** 256))
if Y % 2 != (X >> 256) % 2:
Y = modulo - Y
X = X % (2 ** 256)
W0 = Point(X, Y)
starttime = oldtime = time.time()
Hops = 0
random.seed()
hops_list = []
N_tests = 3
def search_wrapper(process_id):
return search(process_id, Nt, Nw, problem, kangoo_power, starttime)
if __name__ == "__main__":
num_cpus = multiprocessing.cpu_count()
N_tests = num_cpus # Use the number of CPU cores as the number of tests
with multiprocessing.Pool(processes=N_tests) as pool:
results = pool.map(search_wrapper, range(N_tests))
for result in results:
print(result)
M, D = 0, 0
if len(hops_list) > 0:
M = sum(hops_list) * 1.0 / len(hops_list)
D = sum((xi - M) ** 2 for xi in hops_list) * 1.0 / len(hops_list)
print(M, '+/-', (D / (len(hops_list) - 1)) ** 0.5)
print('Average time to solve: %.2f sec' % ((time.time() - starttime) / N_tests))
In the __name__ == "__main__" block, the number of available CPU cores is determined using multiprocessing.cpu_count(), and N_tests is set to this number. This means that the script will create a separate process for each CPU core available for parallel processing.