Pages:
Author

Topic: Public Perception of Science - page 2. (Read 4094 times)

hero member
Activity: 728
Merit: 500
December 22, 2012, 08:14:54 AM
#45
Every time I see a human do something stupid and they pay for it or learn from it, that and I've also seen how animals are actually getting used to cities now, even cats where I live have adapted to learn how to listen out for a car engine so the moment it starts they dart off rather than just get confused by the noise.

The natural selection -> evolution narrative does make sense at all levels doesn't it. That is why I think it is so beautiful, it may still be wrong in explaining many things we see around us though.
donator
Activity: 2058
Merit: 1007
Poor impulse control.
December 22, 2012, 08:05:49 AM
#44

... Line 297
Code:
     if(batchmode!=T){
        if(using.RStudio!=T){
        dev.new(width=600, height=500)

make it:
Code:
     if(batchmode!=T){
        if(using.RStudio!=T){
        dev.new()


[/quote]

That worked - cheers. Got some reading and learning to do now. Screw santa, I have a new project Wink
legendary
Activity: 1540
Merit: 1000
December 22, 2012, 08:04:50 AM
#43
Every time I see a human do something stupid and they pay for it or learn from it, that and I've also seen how animals are actually getting used to cities now, even cats where I live have adapted to learn how to listen out for a car engine so the moment it starts they dart off rather than just get confused by the noise.
hero member
Activity: 728
Merit: 500
December 22, 2012, 08:04:05 AM
#42
Also to bring this back on topic:

Quote
I agree with most of what you have put forward but don't understand why you are so convinced of evolution but not climate science.

To put it simply, we know fuck all about space and other planets besides are own so how can we claim to know anything about our own planet?

Edit: I suppose you could say the same for evolution actually, if we saw the same behaviour from organic beings from other planets as well, then that would make evolution even more solid, but with evolution there is a lot more evidence to support it than there is with climate science, which I don't really believe is science, not just yet anyway.

What evidence exactly convinces you? Personally I have cloned DNA and mutated it then put it back into bacteria which made them glow (loose explanation). This convinced me DNA exists and does shit. But if you do not have this experience, what is the convincing evidence?
hero member
Activity: 728
Merit: 500
December 22, 2012, 07:49:47 AM
#41
Getting this error:
Code:
Error in function (title, width, height, pointsize, family, fontsmooth,  :
  Unable to create Quartz device target, given type may not be supported.
In addition: Warning message:
In function (title, width, height, pointsize, family, fontsmooth,  :
  Requested on-screen area is too large (600.0 by 500.0 inches).

Nevermind.When I finish reading about why null hypothesis testing has become suspect lately I'll try running it on someone's windows machine.

... Line 297
Code:
     if(batchmode!=T){
        if(using.RStudio!=T){
        dev.new(width=600, height=500)

make it:
Code:
     if(batchmode!=T){
        if(using.RStudio!=T){
        dev.new()

or just run in normal R


Now I see the first error... It works on a mac, but maybe you are missing something else.
donator
Activity: 2058
Merit: 1007
Poor impulse control.
December 22, 2012, 07:39:56 AM
#40
Getting this error:
Code:
Error in function (title, width, height, pointsize, family, fontsmooth,  :
  Unable to create Quartz device target, given type may not be supported.
In addition: Warning message:
In function (title, width, height, pointsize, family, fontsmooth,  :
  Requested on-screen area is too large (600.0 by 500.0 inches).

Nevermind.When I finish reading about why null hypothesis testing has become suspect lately I'll try running it on someone's windows machine.
hero member
Activity: 728
Merit: 500
December 22, 2012, 07:25:21 AM
#39
I see no reason that should happen. You have fields?

require(fields) #Used for image.plot

I didn't have fields, but I installed it when I read the require at the top of the script. I was thinking more that I'd missed a line when I copy pasted, or copied them out of order or something. Probably not, but best to be sure.

That was easier than I thought:
http://pastebin.com/2wvnFBsy

Cheers for that!

BTW I haven't figured out what to put exactly but this was made for the wikipedia page:
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing

If you can figure it out make it clearer and put stuff there.
donator
Activity: 2058
Merit: 1007
Poor impulse control.
December 22, 2012, 07:18:59 AM
#38
I see no reason that should happen. You have fields?

require(fields) #Used for image.plot

I didn't have fields, but I installed it when I read the require at the top of the script. I was thinking more that I'd missed a line when I copy pasted, or copied them out of order or something. Probably not, but best to be sure.

That was easier than I thought:
http://pastebin.com/2wvnFBsy

Cheers for that!
hero member
Activity: 728
Merit: 500
December 22, 2012, 07:12:32 AM
#37
I see no reason that should happen. You have fields?

require(fields) #Used for image.plot


That was easier than I thought:
http://pastebin.com/2wvnFBsy
donator
Activity: 2058
Merit: 1007
Poor impulse control.
December 22, 2012, 06:26:07 AM
#36
Could you pastebin that script? I'm getting errors I'm having trouble tracing (in more than a thousand lines of code Smiley), and I might have made copy paste mistakes.
hero member
Activity: 728
Merit: 500
December 22, 2012, 05:02:07 AM
#35
I should say this was not meant for public consumption... but it will work. Batch mode will probably be confusing unless you see what the code does.
hero member
Activity: 728
Merit: 500
December 22, 2012, 04:54:06 AM
#34
The above code allows you to simulate performing t-tests on various 2-sample data sets coming from either normal or bimodal distributions. You can choose the sample size, whether to perform the tests while adding subjects either sequentially or throwing away the previous results, also perform a U test, drop outliers, test multiple outcomes and only report the significant one, and more as is explained in the settings at the top. Just run it once and then mess with the settings.

There is also batch mode where you can randomly generate settings and see which leads to certain results.
donator
Activity: 2058
Merit: 1007
Poor impulse control.
December 22, 2012, 04:44:18 AM
#33
Do you mind posting your aims and what your results suggests? It's not that I'm lazy (never!) but other readers might want some insight as to what you're doing Smiley


I've never used Rstudio, but if I can get a good idea of where you're going with this I can understand what your code does more easily.
hero member
Activity: 728
Merit: 500
December 22, 2012, 04:39:25 AM
#32
Rstudio is best to run it in, copy-paste the code in order...the settings are all at the top.
hero member
Activity: 728
Merit: 500
December 22, 2012, 04:38:24 AM
#31
Code:
###Create Summary Plots###
 
 
  if(bimodal.treatment.only==T){
   
    plot(all.results[sigs,2],all.results[sigs,4],
         xlab="Sample Size (per group)",xlim=c(0, max.samps+samp.interval),
         ylab="Measured Effect",
         ylim=c(min(c(-1,all.results[sigs,4]),na.rm=T),max(c(1,all.results[sigs,4]),na.rm=T)),
         main=c("Measured Effect Sizes of Significant Results",
                "Significance Level: P < 0.05",
                paste("True Difference=", round(effect,2), "+",
                      round(bimodal.offset,2), "for", round(100*smaller.bimodal.proportion,2), "% of Treatment Group")),
         col="Cyan")
    abline(h=effect, lwd=2)
    abline(h=bimodal.offset, lwd=1, lty=2)
   
   
  }else{
   
    plot(all.results[sigs,2],all.results[sigs,4],
         xlab="Sample Size (per group)",xlim=c(0, max.samps+samp.interval),
         ylab="Measured Effect", ylim=c(min(c(-1,all.results[sigs,4]),na.rm=T),max(c(1,all.results[sigs,4]),na.rm=T)),
         main=c("Measured Effect Sizes of Significant Results",
                "Significance Level: P < 0.05",
                paste("True Difference=", effect)),
         col="Cyan")
    abline(h=effect, lwd=2)
  }
 
    pval.max.percents=NULL
    for(s in 1:length(unique(all.results[,2]))){
size<-unique(all.results[,2])[s]
      temp<-max(100*hist(all.results[which(all.results[,2]==size),3],
                         breaks=seq(0,1,by=.005),
                         plot=F)$counts/runs)
      pval.max.percents<-rbind(pval.max.percents,temp)
    }
    ymax<-min(1.5*max(pval.max.percents),100)
   
    Sys.sleep(.1)
    plot(seq(0,.995,by=.005),
         100*hist(all.results[which(all.results[,2]==initial.samp.size),3],
                  breaks=seq(0,1,by=.005),
                  plot=F)$counts/runs,
         ylab="Percent of P-values", ylim=c(0,ymax),
         xlab="P-value", xlim=c(0,1),
         type="l", col=rainbow(length(unique(all.results[,2])))[1],
         main="Distribution of All P-values"
    )
    for(s in 2:length(unique(all.results[,2]))){
      size<-unique(all.results[,2])[s]
      lines(seq(0,.995,by=.005),
            100*hist(all.results[which(all.results[,2]==size),3],
                     breaks=seq(0,1,by=.005),
                     plot=F)$counts/runs,
            type="l",col=rainbow(length(unique(all.results[,2])))[s]
      )
     
    }
    abline(h=100/length(seq(0,.995,by=.005)))
   
    image.plot(matrix(seq(initial.samp.size,max.samps,by=samp.interval)),
               col=rainbow(length(unique(all.results[,2]))),
               smallplot=c(.6,.85,.7,.75),
               legend.only=T, horizontal=T, legend.shrink=.5, add=T,
               legend.args=list(text="Sample Size", side=3, line=.2, font=2, cex=.5, bty="o", bg="White"),
               axis.args=list(
                 at=c(initial.samp.size,max.samps),
                              labels=as.character(c(initial.samp.size,max.samps
                              )
                              )
               )
    )
 
  xsamps<-unique(all.results[,2])
 
  if(sequential==T){
    plot(xsamps,
         percent.atLeastOne.sig[1:length(xsamps)],
         ylab=expression("Pr(# Significant)">=1), ylim=c(0,max(percent.atLeastOne.sig)+10),
         xlab="Sample Size (per Group)",xlim=c(0, max.samps+samp.interval),
         type="s", col="Cyan", lwd=5,
         main=c("Probability of at Least 1 Significant Result",
                paste("Number of Simulations=",runs),
                paste("Initial Sample Size=",initial.samp.size, " Sampling Interval=",samp.interval)
         )
    )
    abline(h=seq(0,max(percent.atLeastOne.sig)+10,by=10),
           lwd=1, col=rgb(0,0,0,.5))
    abline(v=seq(0,max.samps+initial.samp.size,by=10), lwd=1, col=rgb(0,0,0,.5))
    abline(h=5,
           lwd=2, col=rgb(0,0,0,1))
   
  }else{
    plot(xsamps,
         percent.sigs[1:length(xsamps)],
         ylim=c(0,max(percent.sigs)+10), ylab="% Significant Results",
         xlim=c(0, max.samps+samp.interval), xlab="Sample Size (per Group)",
         type="l", lwd=4, col="Cyan",
         main=c("Percent of Significant Results for Different Sample Sizes",
                paste("Number of Simulations=",runs),
                paste("Initial Sample Size=",initial.samp.size, " Sampling Interval=",samp.interval)
         )
    )
    abline(h=seq(0,max(percent.sigs)+10,by=10),
           lwd=1, col=rgb(0,0,0,.5))
    abline(v=seq(0,max.samps+initial.samp.size,by=10), lwd=1, col=rgb(0,0,0,.5))
    abline(h=5, lwd=2)
  }
    Sys.sleep(.1)
    plot(seq(0,.995,by=.005),
         100*hist(all.results[which(all.results[,2]==initial.samp.size),3],
                  breaks=seq(0,1,by=.005),
                  plot=F)$counts/runs,
         ylab="Percent of P-values", ylim=c(0,ymax),
         xlab="P-value", xlim=c(0,.05),
         type="l", col=rainbow(length(unique(all.results[,2])))[1],
         main="Distribution of Significant P-values"
    )
    for(s in 2:length(unique(all.results[,2]))){
      size<-unique(all.results[,2])[s]
      lines(seq(0,.995,by=.005),
            100*hist(all.results[which(all.results[,2]==size),3],
                     breaks=seq(0,1,by=.005),
                     plot=F)$counts/runs,
            type="l",col=rainbow(length(unique(all.results[,2])))[s]
      )
     
    }
    abline(h=100/length(seq(0,.995,by=.005)))
   
    image.plot(matrix(seq(initial.samp.size,max.samps,by=samp.interval)),
               col=rainbow(length(unique(all.results[,2]))),
               smallplot=c(.6,.85,.7,.75),
               legend.only=T, horizontal=T, legend.shrink=.3, add=T,
               legend.args=list(text="Sample Size", side=3, line=.2, font=2, cex=.5),
               axis.args=list(
                 at=c(initial.samp.size,max.samps),
                 labels=as.character(c(initial.samp.size,max.samps
                 )
                 )
               )
    )
   
   
} #End Script

if(batchmode==T){
  effect.info=NULL
  for(samp.point in 1:length(sort(unique(all.results[sigs,2])))){
    sp<-sort(unique(all.results[sigs,2]))[samp.point]
    temp<-all.results[sigs,4][which(all.results[sigs,2]==sp)]
    effect.temp2<-cbind(
      max.pos<-max(temp[which(temp>0)]),
      mean.pos<-mean(temp[which(temp>0)]),
      min.pos<-min(temp[which(temp>0)]),
      max.neg<-max(temp[which(temp<0)]),
      mean.neg<-mean(temp[which(temp<0)]),
      min.neg<-min(temp[which(temp<0)])
    )
   
    effect.info<-rbind(effect.info,effect.temp2)
  }# End Batch
 
  batch.result<-cbind(b,
                      sort(unique(all.results[sigs,2])),
                      percent.sigs[1:length(xsamps)],
                      percent.atLeastOne.sig[1:length(xsamps)],
                      effect.info
  )
  colnames(batch.result)<-c("Batch", "Samp.Size", "Percent.Sig",
                            "Percent.atLeastOne.sig","max.pos","mean.pos","min.pos",
                            "max.neg","mean.neg","min.neg")
 
  batch.results<-rbind(batch.results,batch.result)
 
  sim.params<-cbind(rep(b,12),
                    rbind(
                      treatment.sd1,
                      treatment.shape1,
                      treatment.sd2,
                      treatment.shape2,
                      control.sd1,
                      control.shape1,
                      control.sd2,
                      control.shape2,
                      larger.bimodal.proportion,
                      bimodal.offset,
                      bimodal.treatment.only,
                      sequential,
                      also.perform.Utest,
                      number.of.outcomes
                    )
  )
  batch.params<-rbind(batch.params,sim.params)
}

print(paste("Batch #", b, " of", batch.size))
}

if(batchmode==T){
  one.sig=NULL
  for (i in 1:length(unique(batch.results[,2]))){
    temp1<-unique(batch.results[,2])[i]
    temp2<-batch.results[which(batch.results[,2]==temp1),]
    temp3<-cbind(temp1,
                 temp2[which(temp2[,4]==max(temp2[,4])),1],
                 temp2[which(temp2[,4]==max(temp2[,4])),4]
    )
    one.sig<-rbind(one.sig,temp3)
  }
  colnames(one.sig)<-c("Samp.Size", "Batch", "Percent.atleastOne.Significant")
  rownames(one.sig)<-1:nrow(one.sig)
 
 
  sampsize.sig=NULL
  for (i in 1:length(unique(batch.results[,2]))){
    temp1<-unique(batch.results[,2])[i]
    temp2<-batch.results[which(batch.results[,2]==temp1),]
    temp3<-cbind(temp1,
                 temp2[which(temp2[,3]==max(temp2[,3])),1],
                 temp2[which(temp2[,3]==max(temp2[,3])),3]
    )
    sampsize.sig<-rbind(sampsize.sig,temp3)
  }
  colnames(sampsize.sig)<-c("Samp.Size", "Batch", "Percent.Sig")
  rownames(sampsize.sig)<-1:nrow(sampsize.sig)
 
  one.sig
  sampsize.sig
 
  batch.params[which(batch.params[,1]==90),]
 
} # End Batches





verify=F
if(verify==T){
 
 
  #control<-c(rnormp2(larger.bimodal.proportion*10000,0,control.sd1,control.shape1),
  #rnormp2(smaller.bimodal.proportion*10000,0+bimodal.offset,control.sd2,control.shape2))
 
 
  #treatment<-c(rnormp2(larger.bimodal.proportion*10000,0+effect,treatment.sd1,treatment.shape1),
  #rnormp2(smaller.bimodal.proportion*10000,0+effect+bimodal.offset,treatment.sd2,treatment.shape2))
 
 
  #hist(control)
 
 
  require(sciplot)
 
  effect=0.1
  nsamp=1000
  drop.outliers=T
  outlier.cutoff<-2
  out=NULL
  for(i in 1:nsamp){
   
    dev.new()
    par(mfrow=c(1,2))
    #a<-c(rnorm(8,10,1),rnorm(2,12,1))
    #b<-c(rnorm(8,10,1),rnorm(2,12,1))
   
    random.sample<-bimodal.pop[runif(initial.samp.size,1,1000)]
    random.sample
    control<-c(rnormp2(length(which(random.sample==1)),0,control.sd1,control.shape1),
               rnormp2(length(which(random.sample==0)),0+bimodal.offset,control.sd2,control.shape2))
   
    random.sample<-bimodal.pop[runif(initial.samp.size,1,1000)]
    random.sample
    treatment<-c(rnormp2(length(which(random.sample==1)),0+effect,treatment.sd1,treatment.shape1),
                 rnormp2(length(which(random.sample==0)),0+effect+bimodal.offset,treatment.sd2,treatment.shape2))
   
    pval<-t.test(control,treatment)$p.value
   
    if(drop.outliers==T){
      if(pval>.05){
        control.temp<-control
        treatment.temp<-treatment
       
        high.cutoff<-mean(control.temp)+outlier.cutoff*sd(control.temp)
        low.cutoff<-mean(control.temp)-outlier.cutoff*sd(control.temp)
        high.outliers<-which(control.temp>high.cutoff)
        low.outliers<-which(control.temp       
        control.temp[high.outliers]<-NA
        control.temp[low.outliers]<-NA
       
        high.cutoff<-mean(treatment.temp)+outlier.cutoff*sd(treatment.temp)
        low.cutoff<-mean(treatment.temp)-outlier.cutoff*sd(treatment.temp)
        high.outliers<-which(treatment.temp>high.cutoff)
        low.outliers<-which(treatment.temp       
        treatment.temp[high.outliers]<-NA
        treatment.temp[low.outliers]<-NA
       
        if(
          length(treatment.temp[which(!is.na(treatment.temp))])>1 &&
            length(control.temp[which(!is.na(control.temp))])>1
        ){
          pval<-t.test(control.temp,treatment.temp)$p.value
          control<-control.temp
          treatment<-treatment.temp
        }
       
      }
    } #end drop outliers
   
    adjust=6
    a<-control+adjust
    b<-treatment+adjust
   
   
    boxplot(a,b,col=c("Blue","Red"),ylim=c(0,3*adjust))
    stripchart(a, add=T, at=1,
               ylim=c(0,3*adjust),
               vertical=T, pch=16)
    stripchart(b, add=T, at=2,
               vertical=T, pch=16)
   
    x.fact<-c(rep("a",length(a)),rep("b",length(b)))
    vals<-c(a,b)
    bargraph.CI(x.fact,vals, col=c("Blue","Red"), ylim=c(0,3*adjust),
                main=round(t.test(a,b)$p.value,3)
    )
    control
    treatment
   
   
    out<-rbind(out,t.test(a,b)$p.value)
    Sys.sleep(.5)
    dev.off()
  }
 
  length(which(out<.05))/nsamp
 
 
 
}

#one.sig
#sampsize.sig

#batch.results
#batch.params[which(batch.params[,1]==40),]

hero member
Activity: 728
Merit: 500
December 22, 2012, 04:37:47 AM
#30
Code:
   treatment<-c(rnormp2(larger.bimodal.proportion*100000,0+effect,treatment.sd1,treatment.shape1),
                 rnormp2(smaller.bimodal.proportion*100000,0+effect+bimodal.offset,treatment.sd2,treatment.shape2))
   
   
      if(batchmode!=T){
        if(using.RStudio!=T){
        dev.new(width=600, height=500)
        }
        }
   
    if(using.RStudio==T){
      live.plot.in.own.window=F
      live.plot=F
    }
    layout(matrix(c(1,2,3,4,5,6), 3, 2, byrow = TRUE))
    hist(treatment, col=rgb(0,0,1,.5), freq=F,
         breaks=seq(min(c(treatment,control))-1,max(c(treatment,control))+1,by=.1),
         xlab="Value", ylim=c(0,1.2),
         main=c("Population Distributions",
                paste("Difference in Means=", round(effect,2)),
                paste("Bimodal Proportions=", round(larger.bimodal.proportion,2), ",", round(smaller.bimodal.proportion,2),
                      " Bimodal Offset=", round(bimodal.offset,2))
         ),
         sub=paste("Bimodal Effect on Treatment Only=",bimodal.treatment.only)
    )
    hist(control, col=rgb(1,0,0,.5), freq=F,
         breaks=seq(min(c(treatment,control))-1,max(c(treatment,control))+1,by=.1),
         add=T)
    legend(x="topleft", legend=c(paste("Treatment:",
                                       "mu=", 0+effect,
                                       ", sd1=", round(treatment.sd1,2),
                                       ", p1=", round(treatment.shape1,2),
                                       ", sd2=", round(treatment.sd2,2),
                                       ", p2=", round(treatment.shape2,2)
    ),
                                 paste("Control:",
                                       "mu=",0,
                                       ", sd1=", round(control.sd1,2),
                                       ", p1=", round(control.shape1,2),
                                       ", sd2=", round(control.sd2,2),
                                       ", p2=", round(control.shape2,2))
    ),
           col=c(rgb(0,0,1,.5),rgb(1,0,0,.5)), lwd=6, bty="n")
   
    plot(initial.samp.size,1, type="l", lwd=2, col="White",
         xlim=c(initial.samp.size,(max.samps+samp.interval)), xlab="Sample Size (per group)",
         ylim=c(0,1), ylab="P-value",
         main=c("Representative P-value Traces (Significant: P < 0.05)",
                paste("Outlier Cutoff(",outlier.method,") =",round(outlier.cutoff,2),
                      ", Outlier Bias (High,Low) =", "(", round(outlier.bias.high,2), ",", round(outlier.bias.low,2), ")",
                      sep=""),
                paste("# of Outcomes=", number.of.outcomes)
         ),
         sub=paste("Sequential Sampling=", sequential, ", U-test=", also.perform.Utest)
    )
    abline(h=.05, lwd=2)
   
    ###Start Simulation###
    all.results=NULL
    pb <- txtProgressBar(min = 0, max = runs*max.samps, style = 3)
    for(r in 1:runs){
     
     
     
      ###Start Run###
      run.result=NULL
     
      experiment.results=vector("list", number.of.outcomes)
      for(t in 1:number.of.outcomes){
        if(bimodal.treatment.only==T){
          random.sample<-rep(1,initial.samp.size)
        }else{
          random.sample<-bimodal.pop[runif(initial.samp.size,1,1000)]
        }
        control<-c(rnormp2(length(which(random.sample==1)),0,control.sd1,control.shape1),
                   rnormp2(length(which(random.sample==0)),0+bimodal.offset,control.sd2,control.shape2))
       
        random.sample<-bimodal.pop[runif(initial.samp.size,1,1000)]
        treatment<-c(rnormp2(length(which(random.sample==1)),0+effect,treatment.sd1,treatment.shape1),
                     rnormp2(length(which(random.sample==0)),0+effect+bimodal.offset,treatment.sd2,treatment.shape2))
       
        experiment.result<-rbind(control,treatment)
        experiment.results[[t]]<-experiment.result
      }
     
     
     
      x=initial.samp.size
     
      while(x <(max.samps+samp.interval)){
        sample.result=NULL
        n.cutoff=min(n.cutoff,x)
       
        test.results=NULL
        for(t in 1:number.of.outcomes){
         
          control<-experiment.results[[t]][1,]
          treatment<-experiment.results[[t]][2,]
         
         
          if(also.perform.Utest==T){
            pval1<-t.test(treatment,control)$p.value
            pval2<-wilcox.test(treatment,control)$p.value
            pval<-min(pval1,pval2)
           
            #Drop Outliers
            if(drop.outliers==T){
              if(pval>.05){
                control.temp<-control
                treatment.temp<-treatment
               
                if(outlier.method=="SD"){
                high.cutoff<-mean(control.temp, na.rm=T)+outlier.cutoff*sd(control.temp, na.rm=T)
                low.cutoff<-mean(control.temp, na.rm=T)-outlier.cutoff*sd(control.temp, na.rm=T)
                high.outliers<-which(control.temp>high.cutoff)
                low.outliers<-which(control.temp               
                control.temp[high.outliers]<-NA
                control.temp[low.outliers]<-NA
               
                high.cutoff<-mean(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*sd(treatment.temp, na.rm=T)
                low.cutoff<-mean(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*sd(treatment.temp, na.rm=T)
                high.outliers<-which(treatment.temp>high.cutoff)
                low.outliers<-which(treatment.temp               
                treatment.temp[high.outliers]<-NA
                treatment.temp[low.outliers]<-NA
                }
               
                if(outlier.method=="MAD"){
                  high.cutoff<-median(control.temp, na.rm=T)+outlier.cutoff*mad(control.temp, na.rm=T)
                  low.cutoff<-median(control.temp, na.rm=T)-outlier.cutoff*mad(control.temp, na.rm=T)
                  high.outliers<-which(control.temp>high.cutoff)
                  low.outliers<-which(control.temp                 
                  control.temp[high.outliers]<-NA
                  control.temp[low.outliers]<-NA
                 
                  high.cutoff<-median(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*mad(treatment.temp, na.rm=T)
                  low.cutoff<-median(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*mad(treatment.temp, na.rm=T)
                  high.outliers<-which(treatment.temp>high.cutoff)
                  low.outliers<-which(treatment.temp                 
                  treatment.temp[high.outliers]<-NA
                  treatment.temp[low.outliers]<-NA
                 
                }
                           
               
                if(
                  length(treatment.temp[which(!is.na(treatment.temp))]) > (n.cutoff - 1) &&
                    length(control.temp[which(!is.na(control.temp))]) > (n.cutoff - 1)
                ){
                 
                  pval1<-t.test(treatment.temp,control.temp)$p.value
                  pval2<-wilcox.test(treatment.temp,control.temp)$p.value
                  pval<-min(pval1,pval2)
                 
                  control<-control.temp
                  treatment<-treatment.temp
                 
                  #Replace Outliers for Small N
                }else{
                 
                  while(
                    length(treatment.temp[which(!is.na(treatment.temp))]) < n.cutoff &&
                      length(control.temp[which(!is.na(control.temp))]) < n.cutoff
                  ){
                    if(bimodal.treatment.only==T){
                      random.sample<-rep(1,length(which(is.na(control.temp))))
                    }else{
                      random.sample<-bimodal.pop[runif(length(which(is.na(control.temp))),1,1000)]
                    }
                    control.temp[which(is.na(control.temp))]<-c(rnormp2(length(which(random.sample==1)),
                                                                        0,control.sd1,control.shape1),
                                                                rnormp2(length(which(random.sample==0)),
                                                                        0+bimodal.offset,control.sd2,control.shape2))
                   
                    random.sample<-bimodal.pop[runif(length(which(is.na(treatment.temp))),1,1000)]
                    treatment.temp[which(is.na(treatment.temp))]<-c(rnormp2(length(which(random.sample==1)),
                                                                            0+effect,treatment.sd1,treatment.shape1),
                                                                    rnormp2(length(which(random.sample==0)),
                                                                            0+effect+bimodal.offset,treatment.sd2,treatment.shape2))
                   
                    if(outlier.method=="SD"){
                      high.cutoff<-mean(control.temp, na.rm=T)+outlier.cutoff*sd(control.temp, na.rm=T)
                      low.cutoff<-mean(control.temp, na.rm=T)-outlier.cutoff*sd(control.temp, na.rm=T)
                      high.outliers<-which(control.temp>high.cutoff)
                      low.outliers<-which(control.temp                     
                      control.temp[high.outliers]<-NA
                      control.temp[low.outliers]<-NA
                     
                      high.cutoff<-mean(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*sd(treatment.temp, na.rm=T)
                      low.cutoff<-mean(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*sd(treatment.temp, na.rm=T)
                      high.outliers<-which(treatment.temp>high.cutoff)
                      low.outliers<-which(treatment.temp                     
                      treatment.temp[high.outliers]<-NA
                      treatment.temp[low.outliers]<-NA
                    }
                   
                    if(outlier.method=="MAD"){
                      high.cutoff<-median(control.temp, na.rm=T)+outlier.cutoff*mad(control.temp, na.rm=T)
                      low.cutoff<-median(control.temp, na.rm=T)-outlier.cutoff*mad(control.temp, na.rm=T)
                      high.outliers<-which(control.temp>high.cutoff)
                      low.outliers<-which(control.temp                     
                      control.temp[high.outliers]<-NA
                      control.temp[low.outliers]<-NA
                     
                      high.cutoff<-median(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*mad(treatment.temp, na.rm=T)
                      low.cutoff<-median(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*mad(treatment.temp, na.rm=T)
                      high.outliers<-which(treatment.temp>high.cutoff)
                      low.outliers<-which(treatment.temp                     
                      treatment.temp[high.outliers]<-NA
                      treatment.temp[low.outliers]<-NA
                     
                    }
                   
                  } #end while sample size too small loop
                 
                  pval1<-t.test(treatment.temp,control.temp)$p.value
                  pval2<-wilcox.test(treatment.temp,control.temp)$p.value
                  pval<-min(pval1,pval2)
                  control<-control.temp
                  treatment<-treatment.temp
                 
                } # end replace pvals
               
              } # end if pval...
            } #end drop outliers
           
            # Do if U-test==F
          }else{
            pval<-t.test(treatment,control)$p.value
           
            #Drop Outliers
            if(drop.outliers==T){
              if(pval>.05){
                control.temp<-control
                treatment.temp<-treatment
               
                if(outlier.method=="SD"){
                  high.cutoff<-mean(control.temp, na.rm=T)+outlier.cutoff*sd(control.temp, na.rm=T)
                  low.cutoff<-mean(control.temp, na.rm=T)-outlier.cutoff*sd(control.temp, na.rm=T)
                  high.outliers<-which(control.temp>high.cutoff)
                  low.outliers<-which(control.temp                 
                  control.temp[high.outliers]<-NA
                  control.temp[low.outliers]<-NA
                 
                  high.cutoff<-mean(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*sd(treatment.temp, na.rm=T)
                  low.cutoff<-mean(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*sd(treatment.temp, na.rm=T)
                  high.outliers<-which(treatment.temp>high.cutoff)
                  low.outliers<-which(treatment.temp                 
                  treatment.temp[high.outliers]<-NA
                  treatment.temp[low.outliers]<-NA
                }
               
                if(outlier.method=="MAD"){
                  high.cutoff<-median(control.temp, na.rm=T)+outlier.cutoff*mad(control.temp, na.rm=T)
                  low.cutoff<-median(control.temp, na.rm=T)-outlier.cutoff*mad(control.temp, na.rm=T)
                  high.outliers<-which(control.temp>high.cutoff)
                  low.outliers<-which(control.temp                 
                  control.temp[high.outliers]<-NA
                  control.temp[low.outliers]<-NA
                 
                  high.cutoff<-median(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*mad(treatment.temp, na.rm=T)
                  low.cutoff<-median(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*mad(treatment.temp, na.rm=T)
                  high.outliers<-which(treatment.temp>high.cutoff)
                  low.outliers<-which(treatment.temp                 
                  treatment.temp[high.outliers]<-NA
                  treatment.temp[low.outliers]<-NA
                 
                }
                if(
                  length(treatment.temp[which(!is.na(treatment.temp))]) > (n.cutoff - 1) &&
                    length(control.temp[which(!is.na(control.temp))]) > (n.cutoff - 1)
                ){
                  pval<-t.test(control.temp,treatment.temp)$p.value
                  control<-control.temp
                  treatment<-treatment.temp
               
                #Replace Outliers for Small N
              }else{
               
                while(
                  length(treatment.temp[which(!is.na(treatment.temp))]) < n.cutoff &&
                    length(control.temp[which(!is.na(control.temp))]) < n.cutoff
                ){
                  if(bimodal.treatment.only==T){
                    random.sample<-rep(1,length(which(is.na(control.temp))))
                  }else{
                    random.sample<-bimodal.pop[runif(length(which(is.na(control.temp))),1,1000)]
                  }
                  control.temp[which(is.na(control.temp))]<-c(rnormp2(length(which(random.sample==1)),
                                                                      0,control.sd1,control.shape1),
                                                              rnormp2(length(which(random.sample==0)),
                                                                      0+bimodal.offset,control.sd2,control.shape2))
                 
                  random.sample<-bimodal.pop[runif(length(which(is.na(treatment.temp))),1,1000)]
                  treatment.temp[which(is.na(treatment.temp))]<-c(rnormp2(length(which(random.sample==1)),
                                                                          0+effect,treatment.sd1,treatment.shape1),
                                                                  rnormp2(length(which(random.sample==0)),
                                                                          0+effect+bimodal.offset,treatment.sd2,treatment.shape2))
                 
                  if(outlier.method=="SD"){
                    high.cutoff<-mean(control.temp, na.rm=T)+outlier.cutoff*sd(control.temp, na.rm=T)
                    low.cutoff<-mean(control.temp, na.rm=T)-outlier.cutoff*sd(control.temp, na.rm=T)
                    high.outliers<-which(control.temp>high.cutoff)
                    low.outliers<-which(control.temp                   
                    control.temp[high.outliers]<-NA
                    control.temp[low.outliers]<-NA
                   
                    high.cutoff<-mean(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*sd(treatment.temp, na.rm=T)
                    low.cutoff<-mean(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*sd(treatment.temp, na.rm=T)
                    high.outliers<-which(treatment.temp>high.cutoff)
                    low.outliers<-which(treatment.temp                   
                    treatment.temp[high.outliers]<-NA
                    treatment.temp[low.outliers]<-NA
                  }
                 
                  if(outlier.method=="MAD"){
                    high.cutoff<-median(control.temp, na.rm=T)+outlier.cutoff*mad(control.temp, na.rm=T)
                    low.cutoff<-median(control.temp, na.rm=T)-outlier.cutoff*mad(control.temp, na.rm=T)
                    high.outliers<-which(control.temp>high.cutoff)
                    low.outliers<-which(control.temp                   
                    control.temp[high.outliers]<-NA
                    control.temp[low.outliers]<-NA
                   
                    high.cutoff<-median(treatment.temp, na.rm=T)+outlier.bias.high*outlier.cutoff*mad(treatment.temp, na.rm=T)
                    low.cutoff<-median(treatment.temp, na.rm=T)-outlier.bias.low*outlier.cutoff*mad(treatment.temp, na.rm=T)
                    high.outliers<-which(treatment.temp>high.cutoff)
                    low.outliers<-which(treatment.temp                   
                    treatment.temp[high.outliers]<-NA
                    treatment.temp[low.outliers]<-NA
                   
                  }
                 
                } #end while sample size too small loop
               
                pval<-t.test(treatment.temp,control.temp)$p.value
                control<-control.temp
                treatment<-treatment.temp
               
              } # end replace pvals
             
             
            }# end if pval>.05
          } #end drop outliers
         
         
         
        }#end If U-test==F
       
        measured.effect=mean(treatment, na.rm=T)-mean(control, na.rm=T)
       
        test.result<-cbind(pval,measured.effect)
        test.results<-rbind(test.results,test.result)
      }
     
      pval<-min(test.results[,1])
      measured.effect<-test.results[which(test.results[,1]==min(test.results[,1]))[1],2]
     
     
     
      sample.result<-cbind(sample.result,r, x,pval,measured.effect)
      run.result<-rbind(run.result,sample.result)
     
      ##Update Live Plot
      if(live.plot==T){
        lines(run.result[,2],run.result[,3], type="l", lwd=3, col=rainbow(runs)[r],
              xlim=c(initial.samp.size,max.samps+initial.samp.size),ylim=c(0,1)
        )
       
        if(live.plot.in.own.window==T && x==initial.samp.size && r==1){
          dev.new()
          plot(initial.samp.size,1, type="l", lwd=2, col="White",
               xlim=c(initial.samp.size,(max.samps+samp.interval)), xlab="Sample Size (per group)",
               ylim=c(0,1), ylab="P-value",
               main=c("Representative P-value Traces (Significant: P < 0.05)",
                      paste("Outlier Cutoff(SDs) =",round(outlier.cutoff,2),
                            ", Outlier Bias (High,Low) =", "(", round(outlier.bias.high,2), ",", round(outlier.bias.low,2), ")"),
                      paste("# of Outcomes=", number.of.outcomes)
               ),
               sub=paste("Sequential Sampling=", sequential, ", U-test=", also.perform.Utest)
          )
          abline(h=.05, lwd=2)
          lines(run.result[,2],run.result[,3], type="l", lwd=3, col=rainbow(runs)[r],
                xlim=c(initial.samp.size,max.samps+initial.samp.size),ylim=c(0,1)
          )
          dev.set(which=dev.prev())
        }
       
        if(live.plot.in.own.window==T && x*r>initial.samp.size){
          dev.set(which=dev.next())
          lines(run.result[,2],run.result[,3], type="l", lwd=3, col=rainbow(runs)[r],
                xlim=c(initial.samp.size,max.samps+initial.samp.size),ylim=c(0,1)
          )
          dev.set(which=dev.prev())
        }
        # End Update Live Plot
       
       
       
        Sys.sleep(sleep.time)
      }
     
     
      #Generate New Samples
      if(sequential==T){
       
        ##Take Sequential Samples##
       
        for(t in 1:number.of.outcomes){
         
          #Control
          if(bimodal.treatment.only==T){
            random.sample<-rep(1,samp.interval)
          }else{
            random.sample<-bimodal.pop[runif(samp.interval,1,1000)]
          }
          control<-append(experiment.results[[t]][1,],c(rnormp2(length(which(random.sample==1)),
                                                                0,control.sd1,control.shape1),
                                                        rnormp2(length(which(random.sample==0)),
                                                                0+bimodal.offset,control.sd2,control.shape2)
          ))
         
          #Treatment
          random.sample<-bimodal.pop[runif(samp.interval,1,1000)]
          treatment<-append(experiment.results[[t]][2,],c(rnormp2(length(which(random.sample==1)),
                                                                  0+effect,treatment.sd1,treatment.shape1),
                                                          rnormp2(length(which(random.sample==0)),
                                                                  0+effect+bimodal.offset,treatment.sd2,treatment.shape2)
          ))
         
          experiment.result<-rbind(control,treatment)
          experiment.results[[t]]<-experiment.result
         
        }#End Sequential
       
      }else{
       
        ##Take Independant Samples (non sequential)##
        experiment.results=vector("list", number.of.outcomes)
        for(t in 1:number.of.outcomes){
         
          #Control
          if(bimodal.treatment.only==T){
            random.sample<-rep(1,x)
          }else{
            random.sample<-bimodal.pop[runif(x,1,1000)]
          }
          control<-c(rnormp2(length(which(random.sample==1)),
                             0,control.sd1,control.shape1),
                     rnormp2(length(which(random.sample==0)),
                             0+bimodal.offset,control.sd2,control.shape2)
          )
         
          #Treatment
          random.sample<-bimodal.pop[runif(x,1,1000)]
          treatment<-c(rnormp2(length(which(random.sample==1)),
                               0+effect,treatment.sd1,treatment.shape1),
                       rnormp2(length(which(random.sample==0)),
                               0+effect+bimodal.offset,treatment.sd2,treatment.shape2)
          )
         
          experiment.result<-rbind(control,treatment)
          experiment.results[[t]]<-experiment.result
         
        } #End independant
       
      } #End sampling
     
     
      setTxtProgressBar(pb, x + max.samps*(r-1))
      x<-x+samp.interval
     
    } # End Run
    all.results<-rbind(all.results,run.result)
   
    if(live.plot==F && r==runs){
      colnum<-1
      for(k in (runs-9):runs){
        xvar<-all.results[which(all.results[,1]==k),2]
        yvar<-all.results[which(all.results[,1]==k),3]
        lines(xvar,yvar, type="l", lwd=3, col=rainbow(10)[colnum],
              xlim=c(initial.samp.size,max.samps+initial.samp.size),ylim=c(0,1)
        )
        colnum<-colnum+1
      }
    }
   
  } # End Simulation
  close(pb)
 
 
 
  ###Extract Significant Results###
  rownames(all.results)<-seq(1,nrow(all.results))
  sigs<-which(all.results[,3]<.05)
  percent.sigs<-100*hist(all.results[sigs,2], plot=F,
                         breaks=seq(initial.samp.size-1, max.samps+2*samp.interval,by=(samp.interval))
  )$counts/runs
 
  ###Extract First Significant Result for each Simulation Run###
  first.sigs=NULL
  first.sigs.filtered=NULL
  for(i in 1:runs){
    temp<-all.results[which(all.results[,1]==i),]
    if(length(temp[which(temp[,3]<.05),2])==0){
      first.sig<-Inf
    }else{
      first.sig<-min(temp[which(temp[,3]<.05),2])
    }
    first.sigs<-rbind(first.sigs,first.sig)
  }
 
  first.sigs.filtered<-first.sigs[which(first.sigs!=Inf),]
 
  percent.atLeastOne.sig<-100*cumsum(
    hist(first.sigs.filtered,
         breaks=seq(initial.samp.size-1, max.samps+2*samp.interval,by=(samp.interval)),
         plot=F
    )$counts
  )/runs
 

hero member
Activity: 728
Merit: 500
December 22, 2012, 04:36:39 AM
#29
Code:
require(fields) #Used for image.plot


###Detect RStudio (modifies plot settings:no live plot)
using.RStudio=nzchar(Sys.getenv("RSTUDIO_USER_IDENTITY"))



###General Settings###
runs<-1000 # Number of Simulations to Run
max.samps<-150 # Maximum number of Samples to test
initial.samp.size<-5 # must be at least 2
samp.interval<-5 # must be at least 1
effect<-.1   # Difference between population means

#Live Plot Settings
live.plot=F # If false, p values traces from last 10 simulations will be plotted
sleep.time<-.1 # In seconds, use to slow down live plot
live.plot.in.own.window=T # If live.plot=T, also plot p value trace in its own device



###Investigator Bias Settings###
##Sequential Hypothesis Testing
# Set true (T) to add samples to the previous sample.
# Otherwise (set to F) each sample is independant
sequential=F

##Multiple Statistical Tests
# If True, choose lowest of t-test and Mann-Whitney U-test p-values.
# Otherwise only perform t-test
also.perform.Utest=F

##Multiple Outcomes/Publication Bias, e.g. only report significant comparisons
#Set greater than 1 if multiple outcome measures will be tested.
#Probabilities and effect sizes will be for any of the tests significant at each sample size
#History of each is saved for sequential testing
number.of.outcomes= 1

##Drop Outliers
# Set to true to drop outliers as defined by outlier.cutoff
# In case of sequential, outliers are kept for next iteration
# Outlier bias are multipliers of outlier cutoff for treatment group
# Set > 1 to be less strict
# Set < 1 for more strict
drop.outliers=T
outlier.method="MAD" # Defaults to "MAD" (median absolute deviation), can also use "SD" (number of standard deviations from mean)
outlier.cutoff<-5 # Number of sample deviations from sample mean/median (upper and lower)
outlier.bias.high<-1 # Bias multiplier (see above)
outlier.bias.low<-1   # Bias multiplier (see above)
n.cutoff<-2   # Replace values after dropping if sample size is less than the cutoff, min=2, max=sample size


###Population Distributions###
#Treatment Group
treatment.sd1<-1 # Treatment Group Primary Standard Deviation
treatment.shape1<-2 # Treatment Group Primary Shape Parameter (set to 2 for normal)
treatment.sd2<-1 # Treatment Group Secondary Standard Deviation (for bimodal)
treatment.shape2<-2 # Treatment Group Secondary Shape Parameter (set to 2 for normal, for bimodal)

#Control Group
control.sd1<-1 # Control Group Primary Standard Deviation
control.shape1<-2 # Control Group Primary Shape Parameter (set to 2 for normal)
control.sd2<-1 # Control Group Secondary Standard Deviation (for bimodal)
control.shape2<-2 # Control Group Secondary Shape Parameter (set to 2 for normal, for bimodal)



###Bimodal Settings###
larger.bimodal.proportion<- .8 #Set to 1 for unimodal
bimodal.offset<-8 #Difference Between Primary and Secondary Means for bimodal Populations
bimodal.treatment.only=F # Simulate treatment effect on subset of treatment group, control will be unimodal.




### Advanced: Random Parameter Generation Settings ###
random.pop.parameters=F # Generate Population Parameters (ignores settings above)
random.bias=F # Generate Bias Parameters (ignores settings above)
equal.pop.parameters=T # Sets Treatment and Control Group Population Parameters equal
random.shape.only=T # Use sd settings above
batch.size=1 # Set >1 to run batch of random simulations





###About Shape (p) Parameter###
#Generalized normal distribution with Shape(p) Parameter#
#Modified from package "normalp" to return numeric(0) rather than errors
rnormp2<-function (n, mu = 0, sigmap = 1, p = 2, method = c("def", "chiodi"))
{
  if (!is.numeric(n) || !is.numeric(mu) || !is.numeric(sigmap) ||
    !is.numeric(p))
    return(numeric(0))
  if (p < 1)
    stop("p must be at least equal to one")
  if (sigmap <= 0)
    return(numeric(0))
  method <- match.arg(method)
  if (method == "def") {
    qg <- rgamma(n, shape = 1/p, scale = p)
    z <- qg^(1/p)
    z <- ifelse(runif(n) < 0.5, -z, z)
    x <- mu + z * sigmap
  }
  if (method == "chiodi") {
    i <- 0
    x <- c(rep(0, n))
    while (i < n) {
      u <- runif(1, -1, 1)
      v <- runif(1, -1, 1)
      z <- abs(u)^p + abs(v)^(p/(p - 1))
      if (z <= 1) {
        i <- i + 1
        x[i] <- u * (-p * log(z)/z)^(1/p)
        x[i] <- mu + x[i] * sigmap
      }
    }
  }
  x
}
# shape < 1 : invalid #
#plot(seq(-5,5,by=.01),dnormp(seq(-5,5,by=.01), mu=0, sigmap=1, p=.5))
#lines(seq(-5,5,by=.01), dnorm(seq(-5,5,by=.01), 0,1), lwd=2, col="Blue")

# 1<= shape < 2 : heavier tails, 1 is laplace dist #
#plot(seq(-5,5,by=.01),dnormp(seq(-5,5,by=.01), mu=0, sigmap=1, p=1.5))
#lines(seq(-5,5,by=.01), dnorm(seq(-5,5,by=.01), 0,1), lwd=2, col="Blue")

# shape = 2 : normal dist #
#plot(seq(-5,5,by=.01),dnormp(seq(-5,5,by=.01), mu=0, sigmap=1, p=2))
#lines(seq(-5,5,by=.01), dnorm(seq(-5,5,by=.01), 0,1), lwd=2, col="Blue")

# shape > 2 :lighter tails, inf is uniform dist #
#plot(seq(-5,5,by=.01),dnormp(seq(-5,5,by=.01), mu=0, sigmap=1, p=10))
#lines(seq(-5,5,by=.01), dnorm(seq(-5,5,by=.01), 0,1), lwd=2, col="Blue")





###Start Script###

if (batch.size > 1){
  batchmode=T
  batch.results=NULL
  batch.params=NULL
}else{
  batchmode=F
}

for(b in 1:batch.size){
 
 
  ###Randomly Set Bias###
 
  if(random.bias==T){
    ###Investigator Bias Settings###
    ##Sequential Hypothesis Testing
    seq.samp<-round(runif(1,0,1))
    if(seq.samp==1){
      sequential=T
    }else{
      sequential=F
    }
   
    ##Multiple Statistical Tests
    Utest.samp<-round(runif(1,0,1))
    if(Utest.samp==1){
      also.perform.Utest=T
    }else{
      also.perform.Utest=F
    }
   
    ##Multiple Outcomes/Publication Bias, e.g. only report significant comparisons
    number.of.outcomes= round(runif(1, 1, 3),0)
   
    ##Drop Outliers
    outlier.samp<-round(runif(1,0,1))
    if(outlier.samp==1){
      drop.outliers=T
    }else{
      drop.outliers=F
    }
    outlier.cutoff<-runif(1.5,1000)
    outlier.bias.high<-runif(1,.5,1.5)
    outlier.bias.low<-runif(1,.5,1.5)
   
   
  } #End Random Bias Settings
 
 
  ###Randomly Set Population Parameters###
  if(random.pop.parameters==T){
   
    ###Population Distributions###
    #Treatment Group
    if(random.shape.only!=T){
      treatment.sd1<-runif(1, .1, 5)
    }
    treatment.shape1<-runif(1, 1, 10)
    if(random.shape.only!=T){
      treatment.sd2<-runif(1, .1, 5)
    }
    treatment.shape2<-runif(1, 1, 10)
   
    #Control Group
    if(equal.pop.parameters==T){
      if(random.shape.only!=T){
        control.sd1<-treatment.sd1
      }
      control.shape1<-treatment.shape1
      if(random.shape.only!=T){
        control.sd2<-treatment.sd2
      }
      control.shape2<-treatment.shape2
    }else{
      if(random.shape.only!=T){
        control.sd1<-runif(1, .1, 5)
      }
      control.shape1<-runif(1, 1, 10)
      if(random.shape.only!=T){
        control.sd2<-runif(1, .1, 5)
      }
      control.shape2<-runif(1, 1, 10)
    }
   
    ###Bimodal Settings###
    larger.bimodal.proportion<- runif(1,.5,1)
    bimodal.offset<-runif(1, .1, 10)
   
    if(equal.pop.parameters==T){
      bimodal.treatment.only=F
    }else{
     
      bimod.samp<-round(runif(1,0,1))
     
      if(bimod.samp==1){
        bimodal.treatment.only=T
      }else{
        bimodal.treatment.only=F
      }
     
    }
   
  } #End Random Population Parameter Generation
 
 
  ###Start Sampling###
  if(initial.samp.size<2|| samp.interval<1){
    print("Simulation not Run: minimum sample size =2, minimum sample interval=1")
  }else{
   
   
    ###Create Population Histogram and Live Chart###
    smaller.bimodal.proportion<- (1-larger.bimodal.proportion)
    bimodal.pop<-c(rep(1,larger.bimodal.proportion*1000),
                   rep(0,smaller.bimodal.proportion*1000))
   
    if(larger.bimodal.proportion==1){
      treatment.sd2<-NA
      treatment.shape2<-NA
      control.sd2<-NA
      control.shape2<-NA
      bimodal.offset<-NA
      bimodal.treatment.only=F
    }
   
    if(drop.outliers!=T){
      outlier.cutoff<-NA
      outlier.bias.high<-NA 
      outlier.bias.low<-NA
    }
   
    if(outlier.method!="MAD" && outlier.method!="SD"){
      outlier.method="MAD"
    }
   
    if(bimodal.treatment.only==T){
      control.sd2<-NA
    }
   
    if(bimodal.treatment.only==T){
      control<-rnormp2(100000,0,control.sd1,control.shape1)
    }else{
      control<-c(rnormp2(larger.bimodal.proportion*100000,0,control.sd1,control.shape1),
                 rnormp2(smaller.bimodal.proportion*100000,0+bimodal.offset,control.sd2,control.shape2))
    }
hero member
Activity: 728
Merit: 500
December 22, 2012, 04:30:02 AM
#28
Keep in mind the t-test is the most robust to violations of assumptions.Example:




Code is too long apparently...
donator
Activity: 2058
Merit: 1007
Poor impulse control.
December 22, 2012, 04:10:36 AM
#27
You actually set me on this path by getting me into R. I started running simulations on t-tests and ended up concluding that all the anti-NHST literature was actually underestimating the extent of the problem.

Interesting. Mind posting some code, your aims and conclusions? And no, I'm not purposely trying to make this go OT, but I htink this would be a good example of an individual attempting to find the truth. It fits with the topic.
hero member
Activity: 532
Merit: 500
FIAT LIBERTAS RVAT CAELVM
December 22, 2012, 04:03:52 AM
#26
pffft Cheesy you don't need to be a scientist to question everything, how do you think Socrates got killed?

Actually, I would argue that everyone should be a scientist, regardless of profession. Science is a way of life, not just a job.
Pages:
Jump to: