Can anyone actually explain me everything about NIST5 Algorithm? Actually, trying to find websites about each and every algorithms but wasn't able to get much. Want perfect and accurate information about everything related to cryptography and math used behind it to make such coins.
What is Proof of Work?
What is Proof of Stake?
How it works?
How cryptography works? How these algorithms work?
Can I get all such information in under a nutshell?
Want to learn everything about such coins and invest, but don't know where to start from...
Just send me genuine replies with some links of sites where I can learn something hard and put it way into practical to learn more about cryptography.
Please don't send advices like in which coin I should invest and in which I must not...Thanks in advance...
A proof of work is a piece of data which was difficult (costly, time-consuming) to produce so as to satisfy certain requirements. It must be trivial to check whether data satisfies said requirements. Producing a proof of work can be a random process with low probability, so that a lot of trial and error is required on average before a valid proof of work is generated. Bitcoin uses the Hashcash proof of work.
One application of this idea is using hashcash as a method to preventing email spam, requiring a proof of work on the email's contents (including the To address), on every email. Legitimate emails will be able to do the work to generate the proof easily (not much work is required for a single email), but mass spam emailers will have difficulty generating the required proofs (which would require huge computational resources).
Hashcash proofs of work are used in Bitcoin for block generation. Proofs of work that are tied to the data of each block are required for the blocks to be accepted. The difficulty of this work is adjusted so as to limit the rate at which new blocks can be generated by the network to one every 10 minutes. Due to the very low probability of successful generation, this makes it unpredictable which worker computer in the network will be able to generate the next block.
For a block to be valid it must hash to a value less than the current target; this means that each block indicates that work has been done generating it. Each block contains the hash of the preceding block, thus each block has a chain of blocks that together contain a large amount of work. Changing a block (which can only be done by making a new block containing the same predecessor) requires regenerating all successors and redoing the work they contain. This protects the block chain from tampering.
The most widely used proof-of-work scheme is SHA-256, which was introduced by Bitcoin. Some other hashing algorithms that are used for proof-of-work include scrypt, Blake-256, CryptoNight,[1] HEFTY1, Quark, SHA-3, scrypt-jane, scrypt-n, and combinations.
Proof of Stake is a proposed alternative to Proof of Work. Like proof of work, proof of stake provides a mechanism for determining who signs bitcoin transactions (see "main" bitcointalk thread, and a Bounty Thread).
It was probably first proposed here by Quantum Mechanic. With Proof of Work, the probability of mining a block depends on the work done by the miner (e.g. CPU/GPU cycles spent checking hashes). With Proof of Stake, the resource that's compared is the amount of Bitcoin a miner holds - someone holding 1% of the Bitcoin can mine 1% of the "Proof of Stake blocks".
Some argue that methods based on Proof of Work alone might lead to a low network security in a cryptocurrency with block incentives that decline over time (like bitcoin) due to Tragedy of the Commons, and Proof of Stake is one way of changing the miner's incentives in favor of higher network security.