Pages:
Author

Topic: [ARCHIVE] Bitcoin challenge discusion - page 21. (Read 29562 times)

member
Activity: 245
Merit: 17
September 06, 2019, 03:22:14 AM
Here is the code with my changes
Code:

import time
import random
import gmpy2
import math
import sys

modulo = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
order  = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

class Point:
    def __init__(self, x=0, y=0):
        self.x = x
        self.y = y

PG = Point(Gx,Gy)
Z = Point(0,0) # zero-point, infinite in real x,y - plane

# return (g, x, y) a*x + b*y = gcd(x, y)
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, x, y = egcd(b % a, a)
        return (g, y - (b // a) * x, x)

def rev(b, n = modulo):
    while b < 0:
        b += modulo
    g, x, _ = egcd(b, n)
    if g == 1:
        return x % n
       
def mul2(P, p = modulo):
    R = Point()
#    c = 3*P.x*P.x*rev(2*P.y, p) % p
    c = 3*P.x*P.x*gmpy2.invert(2*P.y, p) % p
    R.x = (c*c-2*P.x) % p
    R.y = (c*(P.x - R.x)-P.y) % p
    return R

def add(P, Q, p = modulo):
    R = Point()
    dx = Q.x - P.x
    dy = Q.y - P.y   
    c = dy * gmpy2.invert(dx, p) % p     
    #c = dy * rev(dx, p) % p     
    R.x = (c*c - P.x - Q.x) % p
    R.y = (c*(P.x - R.x) - P.y) % p
    return R # 6 sub, 3 mul, 1 inv

def mulk(k, P = PG, p = modulo):
    if k == 0: return Z
    elif k == 1: return P
    elif (k % 2 == 0):
        return mulk(k/2, mul2(P, p), p)
    else:
        return add(P, mulk( (k-1)/2, mul2(P, p), p), p)

def X2Y(X, p = modulo):
    if p % 4 != 3:
        print ('prime must be 3 modulo 4')
        return 0
    X = (X**3+7)%p
    pw = (p + 1) // 4
    Y = 1
    for w in range(256):
        if (pw >> w) & 1 == 1:
            tmp = X
            for k in range(w):
                tmp = (tmp**2)%p
            Y *= tmp
            Y %= p
    return Y

def comparator():
    A, Ak, B, Bk = [], [], [], []
    with open('tame.txt') as f:
        for line in f:
            L = line.split()
            a = int(L[0],16)
            b = int(L[1],16)
            A.append(a)
            Ak.append(b)
    with open('wild.txt') as f:
        for line in f:
            L = line.split()
            a = int(L[0],16)
            b = int(L[1],16)
            B.append(a)
            Bk.append(b)
    result = list(set(A) & set(B))
    if len(result) > 0:
        sol_kt = A.index(result[0])
        sol_kw = B.index(result[0])
        print ('total time: %.2f sec' % (time.time()-starttime))
        d = Ak[sol_kt] - Bk[sol_kw]
        print ('SOLVED: %64X' % d + '\n')
        file = open("results.txt",'a')
        file.write(('%X'%(Ak[sol_kt] - Bk[sol_kw])) + "\n")
        file.write("---------------\n")
        file.close()
        return True
    else:
        return False

def check(P, Pindex, DP_rarity, file2save):
    if P.x % (DP_rarity) == 0:
        file = open(file2save,'a')
        file.write(('%064X %064X'%(P.x,Pindex)) + "\n")
        file.close()
        return comparator()
    else:
        return False
   
P = [PG]
for k in range(255): P.append(mul2(P[k]))   
print ('P-table prepared')   

def search(a,b):
    global solved
    s=(a+b)>>1
    d=(b-a)
    problem=int(math.log(d,2))
#    print(a,b,s,d,'\n')
    DP_rarity = 1 << ((problem -  2*kangoo_power)//2 - 2)
    hop_modulo = ((problem-1)// 2) + kangoo_power
    T, t, dt = [], [], []
    W, w, dw = [], [], []
    for k in range(Nt):
        qtf= s
        qtr= random.randint(1,d)
 #       print('tame\n',qtf,qtr)
        qt=qtf+qtr
        t.append(qt) 
        T.append(mulk(t[k]))
        dt.append(0)
    for k in range(Nw):
        qw=(random.randint(1, d))
  #      print('wild\n',qw)
        w.append(qw)
        W.append(add(W0,mulk(w[k])))
        dw.append(0)
    print ('tame and wild herds are prepared')
    oldtime = time.time()
    starttime = oldtime
    Hops, Hops_old = 0, 0
    t0 = time.time()
    oldtime = time.time()
    starttime = oldtime
    while (1):
        for k in range(Nt):
            Hops += 1
            pw = T[k].x % hop_modulo
            dt[k] = 1 << pw
            solved = check(T[k], t[k], DP_rarity, "tame.txt")
            if solved: break
            t[k] += dt[k]
            T[k] = add(P[pw], T[k])
        if solved: break           
        for k in range(Nw):
            Hops += 1
            pw = W[k].x % hop_modulo
            dw[k] = 1 << pw
            solved = check(W[k], w[k], DP_rarity, "wild.txt")
            if solved: break
            w[k] += dw[k]
            W[k] = add(P[pw], W[k])
        if solved: break
        t1 = time.time()
        if (t1-t0) > 5:
            print ('%.3f h/s'%((Hops-Hops_old)/(t1-t0)))
            t0 = t1
            Hops_old = Hops
    hops_list.append(Hops)       
    print ('Hops:', Hops)       
    return 'sol. time: %.2f sec' % (time.time()-starttime)   

s=sys.argv[1]
sa = sys.argv[2]
sb = sys.argv[3]
sk = sys.argv[4]
a = int(sa, 16)
b = int(sb, 16)
kangoo_power = int(sk, 10)
Nt = Nw = 2**kangoo_power
X = int(s, 16)
Y = X2Y(X % (2**256))
if Y % 2 != (X >> 256) % 2: Y = modulo - Y
X = X % (2**256)
W0 = Point(X,Y)
starttime = oldtime = time.time()
Hops = 0
random.seed()

hops_list = []

solved = False
open("tame.txt",'w').close()
open("wild.txt",'w').close()
search(a,b)

Example (case 32)

python kang.py 0387dc70db1806cd9a9a76637412ec11dd998be666584849b3185f7f9313c8fd28 80000000 FFFFFFFF 3

(the last number 3 is the kangooro_power)

P-table prepared
tame and wild herds are prepared
total time: 0.21 sec
SOLVED:                                                         7D4FE747

('Hops:', 23072)
legendary
Activity: 2268
Merit: 1092
September 06, 2019, 02:16:16 AM
... but, I cannot see the variable search_range used anywhere else in the code. I'm not a Python programmer so I may be missing something obvious, or perhaps it really is a calculation where the result is never used.
I think you are wrong. This defined name "search_range" is not used by any function or in any calculation, so you may just comment it and nothing is going to happened.

That actually means I'm correct, because I stated that even though the calculation seems to be related to generating a privkey range, the result is unused.

To go back to PrivatePerson's question, this version lets you specify the bits and pubkey on the commandline. I tried some different pubkeys with larger bit sizes and it still finds them: https://bitcointalksearch.org/topic/m.52318676

$ ./pollard_kangaroo_new.py -h
[################################################]
[# ECDSA Pollard-kangaroo PrivKey Recovery Tool #]
[#          based on code by 57fe 2019          #]
[#                  singlecore                  #]
[################################################]
[usage] ./pollard_kangaroo_new.py [bits] [pubkey]
        ./pollard_kangaroo_new.py 32
        ./pollard_kangaroo_new.py 32 0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69


Edit: I thought the commandline parameter [bits] was used to generate a mask to match the puzzle transaction (eg 16 = lower 16 bits random, upper 240 bits set to 0), but since it still finds keys with the lower 32 bits used when [bits] is set to 31, 30, even 16, it must be for something else. I'm going to fade into the background again until I understand this better.
jr. member
Activity: 59
Merit: 3
September 06, 2019, 01:12:32 AM
57fe script and Telariust searches for a private key only in the indicated bit range? I changed the name of the 16 bit key to 51 and nothing was found in a few hours.

There is this line in two versions of the code which seem to suggest the start of the privkey range is derived from the number of bits (the variable "problem" contains the number of bits) :

Code:
search_range = 2**(problem-1)

So if problem=32, search_range will be 2^31 = 2147483648 decimal or 0x80000000

... but, I cannot see the variable search_range used anywhere else in the code. I'm not a Python programmer so I may be missing something obvious, or perhaps it really is a calculation where the result is never used.
I think you are wrong. This defined name "search_range" is not used by any function or in any calculation, so you may just comment it and nothing is going to happened.
legendary
Activity: 2268
Merit: 1092
September 06, 2019, 12:06:32 AM
57fe script and Telariust searches for a private key only in the indicated bit range? I changed the name of the 16 bit key to 51 and nothing was found in a few hours.

There is this line in two versions of the code which seem to suggest the start of the privkey range is derived from the number of bits (the variable "problem" contains the number of bits) :

Code:
search_range = 2**(problem-1)

So if problem=32, search_range will be 2^31 = 2147483648 decimal or 0x80000000

... but, I cannot see the variable search_range used anywhere else in the code. I'm not a Python programmer so I may be missing something obvious, or perhaps it really is a calculation where the result is never used.
member
Activity: 174
Merit: 12
September 05, 2019, 11:56:37 PM
57fe script and Telariust searches for a private key only in the indicated bit range? I changed the name of the 16 bit key to 51 and nothing was found in a few hours.
legendary
Activity: 2268
Merit: 1092
September 05, 2019, 10:50:23 PM
He is an example that shows that 57feRe code works well. Nice tool for fast recovery of partial private key loss when public key is known using one core CPU.

PUBKEY      03B5406C79568685D9ECFC547DFF8CD373A6417ED259007215AAF52442C808EA7A
PVKRANGE 6972ACF5B21F4C39E5E521CEAAB9506FADEDBD65C766B8DDAFA2B00000000000   6972ACF5B21F4C39E5E521CEAAB9506FADEDBD65C766B8DDAFA2C00000000000

I presume you've modified the source to specify arbitrary pubkey, plus private key ranges? I don't understand the math, and Python is kind of a read-only language for me, so I can't really go much further than the original example code.  Grin Any plans to release your changes?
member
Activity: 245
Merit: 17
September 05, 2019, 07:02:06 PM
Another example

PUBLIC KEY  023157A9DDBEB3FBE80500BDB1C236AFF231544948DFC7C67BA4801D1CA05DECA4
PRIVATE KEY RANGE
B577461C865C17619B0EE83673E7DB4C7FFFD4A5545B8C58B100000000000000
B577461C865C17619B0EE83673E7DB4C7FFFD4A5545B8C58B200000000000000

total time: 646.40 sec
SOLVED: B577461C865C17619B0EE83673E7DB4C7FFFD4A5545B8C58B102318A916E6C98

this range counts some 72057594037927936 keys, with bitcrack and a 100MKey/s GPU , you need 22 years to scan the whole range.
member
Activity: 245
Merit: 17
September 05, 2019, 05:26:50 PM
He is an example that shows that 57feRe code works well. Nice tool for fast recovery of partial private key loss when public key is known using one core CPU.

PUBKEY      03B5406C79568685D9ECFC547DFF8CD373A6417ED259007215AAF52442C808EA7A
PVKRANGE 6972ACF5B21F4C39E5E521CEAAB9506FADEDBD65C766B8DDAFA2B00000000000   6972ACF5B21F4C39E5E521CEAAB9506FADEDBD65C766B8DDAFA2C00000000000

P-table prepared
tame and wild herds are prepared
165167.102 h/s
165239.354 h/s
165142.364 h/s
164965.314 h/s
164286.715 h/s
164979.066 h/s
total time: 33.44 sec
SOLVED: 6972acf5b21f4c39e5e521ceaab9506fadedbd65c766b8ddafa2bc631fe53f81

('Hops:', 5510227)

With Bitcrack and a 100Mkey/s gpu , you need 4096 secondes.
member
Activity: 245
Merit: 17
September 05, 2019, 07:45:11 AM
Kangaroo System, test friends.
Can you share your scan time and speed?
and How many bits?

I'm

48 bit - 110k / s -  87 sec
51 bit - 110k / s -  200 sec

60 bit - 100k/s - 3900 sec

can your share modified script for search range... ? PM me

I did nothing fancy, just followed this http://fe57.org/forum/thread.php?board=4&thema=1#1
in particular:
Code:

20.08.19 19:37                                                     Administrator
57feRe:                                                            Pollard's kangaroo with Python 2.7



                niidt:
                At what point does your code start searching?
                With the first key 00000000000000000000000000000000000000000000000000000000000000000000000000000001?
                And for example, you can not specify a range?


Search range is defined in line 125 of the code by tamed kangaroos placement. Tamed herd placed randomly from (a+b)/2 to (a+b)/2+(b-a),
where (a,b) is 'a priory' range for private key to solve. Such selection provides best overlapping of tame and wild herds.
Kangaroo from wild herd has only relative displacement from known EC-point P (line 129). Therefore their offset from P varies from 0 to (b-a)
in the Puzzle.
member
Activity: 348
Merit: 34
September 05, 2019, 04:46:20 AM
Kangaroo System, test friends.
Can you share your scan time and speed?
and How many bits?

I'm

48 bit - 110k / s -  87 sec
51 bit - 110k / s -  200 sec

60 bit - 100k/s - 3900 sec

can your share modified script for search range... ? PM me
member
Activity: 245
Merit: 17
September 05, 2019, 02:26:14 AM
Kangaroo System, test friends.
Can you share your scan time and speed?
and How many bits?

I'm

48 bit - 110k / s -  87 sec
51 bit - 110k / s -  200 sec

60 bit - 100k/s - 3900 sec
full member
Activity: 282
Merit: 114
September 04, 2019, 12:17:58 PM
member
Activity: 245
Merit: 17
September 03, 2019, 08:08:27 PM
jr. member
Activity: 91
Merit: 3
September 03, 2019, 10:25:43 AM
newbie
Activity: 18
Merit: 1
September 03, 2019, 09:18:20 AM
Kangaroo System, test friends.
Can you share your scan time and speed?
and How many bits?

I'm

48 bit - 110k / s -  87 sec
51 bit - 110k / s -  200 sec
Code:
[################################################]
[# ECDSA Pollard-kangaroo PrivKey Recovery Tool #]
[#          based on code by 57fe 2019          #]
[#                  singlecore                  #]
[################################################]
[date] Tue Sep  3 17:52:34 2019
[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
[PRNGseed] 439144377
[bits] 2^50
[i] pubkey#50 loaded from default table
[prvkey#50] 0x00000000000000000000000000000000000000000000000000022bd43c2e9354
[pubkey#50] 03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6
[format] compressed
[Xcoordinate] f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6
[Ycoordinate] eb3dfcc04c320b55c529291478550be6072977c0c86603fb2e4f5283631064fb
[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
[+] P-table ready
[~~~~~~~~~~~~~~~~~~~~~~~[1]~~~~~~~~~~~~~~~~~~~~~~]
[+] T+W ready
[~] 144975.9 j/s
[prvkeyX] 00000000000000000000000000000000000000000000000000022bd43c2e9354
[prvkey0] 00000000000000000000000000000000000000000000000000022bd43c2e9354
[double-check] success!
[jump] 82359278
[time] 570.5 sec



what i don't understand is , if 2^50 bit address can be found in 570 second.
then why, we can't find 2^105 bits of puzzle address in 1140 second? or bit more? but why it takes so much time than it should simply do...
member
Activity: 174
Merit: 12
September 03, 2019, 09:04:37 AM
Kangaroo System, test friends.
Can you share your scan time and speed?
and How many bits?

I'm

48 bit - 110k / s -  87 sec
51 bit - 110k / s -  200 sec
Code:
[################################################]
[# ECDSA Pollard-kangaroo PrivKey Recovery Tool #]
[#          based on code by 57fe 2019          #]
[#                  singlecore                  #]
[################################################]
[date] Tue Sep  3 17:52:34 2019
[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
[PRNGseed] 439144377
[bits] 2^50
[i] pubkey#50 loaded from default table
[prvkey#50] 0x00000000000000000000000000000000000000000000000000022bd43c2e9354
[pubkey#50] 03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6
[format] compressed
[Xcoordinate] f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6
[Ycoordinate] eb3dfcc04c320b55c529291478550be6072977c0c86603fb2e4f5283631064fb
[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
[+] P-table ready
[~~~~~~~~~~~~~~~~~~~~~~~[1]~~~~~~~~~~~~~~~~~~~~~~]
[+] T+W ready
[~] 144975.9 j/s
[prvkeyX] 00000000000000000000000000000000000000000000000000022bd43c2e9354
[prvkey0] 00000000000000000000000000000000000000000000000000022bd43c2e9354
[double-check] success!
[jump] 82359278
[time] 570.5 sec


what does 3 column mean? And why do 33 and 105 matter False?

Code:
pubkeys = {
  16: ('029d8c5d35231d75eb87fd2c5f05f65281ed9573dc41853288c62ee94eb2590b7a', 0xc936)
, 24: ('036ea839d22847ee1dce3bfc5b11f6cf785b0682db58c35b63d1342eb221c3490c', 0xdc2a04)
, 32: ('0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69', 0xb862a62e)
, 33: ('02ed949eaca31df5e8be9bf46adc1dfae1734b8900dcc303606831372955c728da', False) #0x01abcd1234
, 40: ('03a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4', 0xe9ae4933d6)
, 45: ('026ecabd2d22fdb737be21975ce9a694e108eb94f3649c586cc7461c8abf5da71a', 0x122fca143c05)
, 50: ('03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6', 0x022bd43c2e9354)
, 65: ('0230210c23b1a047bc9bdbb13448e67deddc108946de6de639bcc75d47c0216b1b', 0x01a838b13505b26867)
,105: ('03bcf7ce887ffca5e62c9cabbdb7ffa71dc183c52c04ff4ee5ee82e0c55c39d77b', False)
member
Activity: 348
Merit: 34
September 02, 2019, 01:03:59 PM
Code:
#!/usr/bin/python

# by 57fe (fe57.org/forum/thread.php?board=4&thema=1#1)

#######################
# print() compatibility python 2/3
from __future__ import print_function
#######################
# settings

pow2pubkey = 32 # bits/order/pow2/exp key

pow2kangaroo = 3 # discriminator

Ntimeit = 10 # times for avg runtime

prngseed = 0 # 0,any
flag_debug = 0 # 0,1,2,3

#######################
# low order pubkeys

pubkeys = {
 16: ('029d8c5d35231d75eb87fd2c5f05f65281ed9573dc41853288c62ee94eb2590b7a', 0xc936)
, 24: ('036ea839d22847ee1dce3bfc5b11f6cf785b0682db58c35b63d1342eb221c3490c', 0xdc2a04)
, 32: ('0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69', 0xb862a62e)
, 33: ('02ed949eaca31df5e8be9bf46adc1dfae1734b8900dcc303606831372955c728da', False) #0x01abcd1234
, 40: ('03a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4', 0xe9ae4933d6)
, 45: ('026ecabd2d22fdb737be21975ce9a694e108eb94f3649c586cc7461c8abf5da71a', 0x122fca143c05)
, 50: ('03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6', 0x022bd43c2e9354)
, 65: ('0230210c23b1a047bc9bdbb13448e67deddc108946de6de639bcc75d47c0216b1b', 0x01a838b13505b26867)
,105: ('03bcf7ce887ffca5e62c9cabbdb7ffa71dc183c52c04ff4ee5ee82e0c55c39d77b', False)
}

#######################
# import

import os
import sys
import time
import random

try:
# https://www.lfd.uci.edu/~gohlke/pythonlibs/
import gmpy2
except:
flag_gmpy2 = False
print("[warn] gmpy2 not found. raw python is slow!")
else:
flag_gmpy2 = True

try:
from coincurve import PrivateKey, PublicKey
from coincurve.utils import int_to_bytes, hex_to_bytes, bytes_to_int, bytes_to_hex, int_to_bytes_padded
except:
flag_coincurve = False
#print("[warn] coincurve not found. random pubkey not available!")
else:
flag_coincurve = True


if 0:
from multiprocessing import Pool
from multiprocessing import cpu_count
from multiprocessing import freeze_support

#######################
# python 2,3

#import sys
#import time
if sys.version_info[0] == 2:
from time import clock
else:
from time import perf_counter
from time import process_time
clock = time.perf_counter
xrange=range
raw_input=input

#######################
# secp256k1

#modulo = 2**256-2**32-2**9-2**8-2**7-2**6-2**4-1
modulo = 115792089237316195423570985008687907853269984665640564039457584007908834671663
order = 115792089237316195423570985008687907852837564279074904382605163141518161494337
#modulo = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
#order = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424
#Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
#Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y


Gp = Point(Gx,Gy)
Zp = Point(0,0) # zero-point, infinite in real x,y - plane

#######################
# functions

# return (g, x, y) a*x + b*y = gcd(x, y)
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, x, y = egcd(b % a, a)
return (g, y - (b // a) * x, x)


def rev(b, n=modulo):
while b < 0:
b += n
g, x, _ = egcd(b, n)
if g == 1:
return x % n


def mul2(P, p=modulo):
R = Point()
if flag_gmpy2:
c = 3 * P.x * P.x * gmpy2.invert(2*P.y, p) % p
else:
c = 3 * P.x * P.x * rev(2*P.y, p) % p
R.x = (c*c - 2*P.x) % p
R.y = (c*(P.x - R.x) - P.y) % p
return R


# 1I, 3M
def add(P, Q, p=modulo):
R = Point()
dx = Q.x - P.x
dy = Q.y - P.y
if flag_gmpy2: # 1I, 1M
c = dy * gmpy2.invert(dx, p) % p
else:
c = dy * rev(dx, p) % p
R.x = (c*c - P.x - Q.x) % p # 1M
R.y = (c*(P.x - R.x) - P.y) % p # 1M
return R


def mulk(k, P=Gp, p=modulo):
if k == 0: return Zp
elif k == 1: return P
elif (k % 2 == 0):
return mulk(k/2, mul2(P, p), p)
else:
return add(P, mulk( (k-1)/2, mul2(P, p), p), p)


def newX2Y(X, y_parity):
p = modulo

Y = 3
tmp = 1
while Y:
if Y & 1:
tmp = tmp*X % p
Y >>= 1
X = X*X % p

X = (tmp+7) % p

Y = (p+1)//4
tmp = 1
while Y:
if Y & 1:
tmp = tmp*X % p
Y >>= 1
X = X*X % p

Y = tmp

if Y%2 != y_parity:
Y = -Y % p

return Y


def KANGAROO():

DP_rarity = 1 << ((pow2pubkey -  2*pow2kangaroo)//2 - 2)
if flag_debug > 0:
print("[DP_rarity] 1<<((pow2pub - 2*pow2k) -2) = 1<<((%s-2*%s)//2 -2) = %s" % (pow2pubkey,pow2kangaroo,DP_rarity))

jump_modulo = ((pow2pubkey-1) // 2) + pow2kangaroo
if flag_debug > 0:
print("[jump_modulo] (pow2pub-1)//2 + pow2k = (%s-1)//2 + %s = %s" % (pow2pubkey,pow2kangaroo,jump_modulo))

T, t, dt = [], [], []
W, w, dw = [], [], []

if flag_debug > 0:
print( '[t] 3<<(pow2pub-2) + rng(1,(1<<(pow2pub-1))) = 3<<(%s-2) + rng(1,(1<<(%s-1))) = %s + %s' %
( pow2pubkey, pow2pubkey
,3<<(pow2pubkey-2), random.randint(1, (1<<(pow2pubkey-1)))
)
)

for k in range(Nt):
t.append((3 << (pow2pubkey - 2)) + random.randint(1, (1 << (pow2pubkey - 1))))#-(1 << (pow2pubkey - 2)) )
T.append(mulk(t[k]))
dt.append(0)
for k in range(Nw):
w.append(random.randint(1, (1 << (pow2pubkey - 1))))
W.append(add(W0,mulk(w[k])))
dw.append(0)

print('[+] T+W ready')

n_jump = last_jump = 0
prvkey = False;
A, Ak, B, Bk = [], [], [], []
t0 = t1 = t2 = time.time()

while (1):

if flag_debug > 2: print('[new_loop] %s jumps'%n_jump)

for k in range(Nt):
if flag_debug > 2: print('[k/Nt] %s/%s'%(k+1,Nt))
n_jump += 1
pw = T[k].x % jump_modulo
pw = int(pw)
dt[k] = 1 << pw

if T[k].x % (DP_rarity) == 0:
A.append(T[k].x)
Ak.append(t[k])
if flag_debug > 1:
print('[tame] A=%s, B=%s'%(len(A),len(B)))
if flag_debug > 0:
save2file('tame.txt', 'a', '%064x %s\n'%(T[k].x,t[k]) )
result = list(set(A) & set(B))
if len(result) > 0:
sol_kt = A.index(result[0])
sol_kw = B.index(result[0])
prvkey = Ak[sol_kt] - Bk[sol_kw]

if prvkey: break
t[k] += dt[k]
T[k] = add(P[pw], T[k])
if prvkey: break
for k in range(Nw):
if flag_debug > 2: print('[k/Nw] %s/%s'%(k+1,Nw))
n_jump += 1
pw = W[k].x % jump_modulo
pw = int(pw)
dw[k] = 1 << pw

if W[k].x % (DP_rarity) == 0:
B.append(W[k].x)
Bk.append(w[k])
if flag_debug > 1:
print('[wild] A=%s, B=%s'%(len(A),len(B)))
if flag_debug > 0:
save2file('wild.txt', 'a', '%064x %s\n'%(W[k].x,w[k]) )
result = list(set(A) & set(B))
if len(result) > 0:
sol_kt = A.index(result[0])
sol_kw = B.index(result[0])
prvkey = Ak[sol_kt] - Bk[sol_kw]

if prvkey: break
w[k] += dw[k]
W[k] = add(P[pw], W[k])
if prvkey: break
t2 = time.time()
if (t2-t1) > 1:
if sys.version_info[0] == 2:
print('\r[~] %.1f j/s'%((n_jump-last_jump)/(t2-t1)), end='')
sys.stdout.flush()
else:
print('\r[~] %.1f j/s'%((n_jump-last_jump)/(t2-t1)), end='', flush=True )
t1 = t2
last_jump = n_jump

return prvkey, n_jump, (time.time()-t0)



def save2file(path, mode, data):
fp = open(path, mode)
if type(data) in (list,tuple,dict):
fp.writelines(data)
else:
#elif type(data) in (str,int):
fp.write(data)
fp.close()


def usage():
print('[usage] %s [bits] [pubkey]'%(sys.argv[0]))
print('        %s 32'%(sys.argv[0]))
print('        %s 32 %s'%(sys.argv[0],pubkeys[32][0]))
exit(-1)

#######################
#main

if __name__ == '__main__':

#print('[os] %s' % os.name)
if os.name == 'nt':
#freeze_support()
pass

print("[################################################]")
print("[# ECDSA Pollard-kangaroo PrivKey Recovery Tool #]")
print("[#          based on code by 57fe 2019          #]")
print("[#                  singlecore                  #]");
#print("[#                  multicore                   #]");
print("[################################################]")

if len(sys.argv) > 1 and str(sys.argv[1]) in ('--help','-h','/?') :
usage()

print('[date] {}'.format(time.ctime()))
print("[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]")

if prngseed in (0,'0',False,'False','false',''):
prngseed = random.randint(1,2**32)
random.seed(prngseed)
print('[PRNGseed] %s' % prngseed)

if len(sys.argv) > 1 :
try:
pow2pubkey=int(sys.argv[1])
except:
usage()
if pow2pubkey < 1 or pow2pubkey > 256 :
print("[error] bits must be in range 1..256!")
usage()
print('[bits] 2^%s %s' % (pow2pubkey, '(warn: too big!)' if pow2pubkey>50 else ''))

if len(sys.argv) > 2 :
prvkey0 = False
pubkey0 = str(sys.argv[2])
print('[i] pubkey#%s loaded from argv2' % pow2pubkey)
elif flag_coincurve:
prvkey0 = random.randint(1,2**pow2pubkey)
pubkey0 = bytes_to_hex(PublicKey.from_secret(int_to_bytes_padded(prvkey0)).format(1))
#pubkey0 = bytes_to_hex(PublicKey.from_secret(int_to_bytes_padded(prvkey0)).format(0))
print('[i] pubkey#%s randomly generated' % pow2pubkey)
else:
pubkey0, prvkey0 = pubkeys[pow2pubkey]
print('[i] pubkey#%s loaded from default table' % pow2pubkey)
else:
print('[bits] 2^%s %s' % (pow2pubkey, '(warn: too big!)' if pow2pubkey>50 else ''))
pubkey0, prvkey0 = pubkeys[pow2pubkey]
print('[i] pubkey#%s loaded from default table' % pow2pubkey)

if prvkey0 not in (0,'0',False,'False','false',''):
print('[prvkey#%s] 0x%064x' % (pow2pubkey,prvkey0))
print('[pubkey#%s] %s' % (pow2pubkey,pubkey0))

#calc Y if pubkey is compress
if len(pubkey0)==130:
X = int(pubkey0[2:66], 16)
Y = int(pubkey0[66:],16)
print("[format] uncompressed")
elif len(pubkey0)==66:
X = int(pubkey0[2:66], 16)
Y = newX2Y(X,int(pubkey0[:2])-2)
print("[format] compressed")
else:
print("[error] pubkey len(66/130) invalid!")
usage()

print("[Xcoordinate] %064x" % X)
print("[Ycoordinate] %064x" % Y)

W0 = Point(X,Y)

print("[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]")
starttime = time.time()

P = [Gp]
for k in range(255): P.append(mul2(P[k]))
print('[+] P-table ready')

Nt = Nw = 2**pow2kangaroo
if flag_debug > 0:
print("[range(L..U)] 1..2^%s(0x%x)" % (pow2pubkey, 2**pow2pubkey))
print("[w=U-L] 0x%x ; w/2=0x%x" % (2**pow2pubkey, 2**(pow2pubkey-1)))
print("[pow2k] 2^%s: Nt=%s, Nw=%s" % (pow2kangaroo,Nt,Nw))

jumps_list = []
runtime_list = []

#timeit
for i in range(Ntimeit):
print("[~~~~~~~~~~~~~~~~~~~~~~~[%s]~~~~~~~~~~~~~~~~~~~~~~]"%(i+1))
if flag_debug > 0:
save2file('tame.txt', 'w', '')
save2file('wild.txt', 'w', '')
prvkey, n_jump, runtime = KANGAROO()
jumps_list.append(n_jump)
runtime_list.append(runtime)

print('')
print('[prvkeyX] %064x' % (prvkey) )
save2file('results.txt', 'a', ('%064x\n'%prvkey, '---------------\n'))

if prvkey0 not in (0,'0',False,'False','false',''):
print('[prvkey0] %064x' % (prvkey0))
if prvkey == prvkey0:
print('[double-check] success!')
else:
print('[double-check] failed!')

print('[jump] %s' % n_jump)
print('[time] %.1f sec' % runtime)


print("[################################################]")

if Ntimeit > 1:
M = sum(jumps_list)*1.0 / len(jumps_list)
print('[(avg)jump] %.0f' % (M) )
#D = sum((xi - M) ** 2 for xi in jumps_list)*1.0 / len(jumps_list)
#print('[(avg)jum2] %.1f +/- %.1f' % (M, (D/(len(jumps_list)-1))**0.5) )
print('[(avg)time] %.1f sec' % (sum(runtime for runtime in runtime_list)/Ntimeit) )
#print('[(avg)tim2] %.1f sec' % ((time.time()-starttime)/Ntimeit) )
else:
pass

print("[################################################]")
print('[date] {}'.format(time.ctime()))
#print('[exit] exit')
#print('');raw_input('Press ENTER to continue...');print('')
exit(0)


Addon needed

remove pubkeys = xxxxxx
add example
** with open("pubkeys.txt", "r") as m:
        add = m.read().split()
        for ad in add:  ***
multi pubkeys at once check inside bit range

this script check only 1 pubkey in bit range
sr. member
Activity: 443
Merit: 350
September 01, 2019, 07:16:46 PM
Here is nice comparison of the most popular models:

Code:
Product Name        Cores   TMUs  ROPs
GeForce RTX 2080 Ti 4352 272 88
Radeon RX 5700 XT 2560 160 64
Radeon Vega 8         512  32 8
Radeon RX 580         2304 144 32
Radeon RX 570         2048 128 32
GeForce RTX 2060 1920 120 48
GeForce RTX 2070 SUPER 2560 160 64
GeForce RTX 2070 2304 144 64
GeForce GTX 1660 Ti 1536 96 48
GeForce GTX 1050 Ti 768 48 32
GeForce GTX 1080 Ti 3584 224 88
GeForce GTX 1650 896 56 32
GeForce RTX 2080 2944 184 64
GeForce GTX 750 Ti 640 40 16
GeForce GTX 1060 6 GB 1280 80 48
Radeon RX 5700         2304 144 64
GeForce GTX 1660 1408 88 48
GeForce GTX 1080 2560 160 64
GeForce RTX 2060 SUPER 2176 136 64
GeForce GTX 1070 1920 120 64
GeForce GTX 970         1664 104 56
Radeon RX Vega 11 704 44 8
GeForce RTX 2080 SUPER 3072 192 64
HD Graphics 4000 128 16 2
GeForce 210         16 8 4
Radeon R5 Graphics 128 8 4
GeForce GTX 960  1024 64 32
Radeon RX Vega 56 3584 224 64
Radeon VII         3840 240 64
GeForce GTX 1050 640 40 32
Radeon RX 590         2304 144 32
Radeon RX 480         2304 144 32
Radeon HD 5450         80 8 4
Radeon RX 470         2048 128 32
GeForce GTX 980 Ti 2816 176 96
Radeon RX Vega 64 4096 256 64
Radeon RX 560         1024 64 16
GeForce GT 1030         384 24 16
HD Graphics 4600 160 20 2
GeForce GTX 1070 Ti 2432 152 64
Quadro 4000         256 32 32
Radeon RX 550         512 32 16
Radeon R9 280X    2048 128 32
Xbox One X GPU         2560 160 32
Radeon R4 Graphics 128 8 4
Radeon HD 6450         160 8 4
Radeon HD 5770         800 40 16
GeForce GTX 980         2048 128 64
GeForce GTX 1650 Ti 1024 64 32
GeForce GTX 660         960 80 24

original full table is here: https://www.techpowerup.com/gpu-specs/
jr. member
Activity: 100
Merit: 5
September 01, 2019, 03:15:23 PM
Thanks for making this table, i've just tested one of my kids' GTX 770 2GB card and its capable of doing 120MKey/sec

How could you manage this? Are you really sure in 120 Mkey/sec with GTX 770? This card GTX 770 cost not so much, and in comparison with GTX 1080ti you can need 3 cards GTX 770 and for the the same (or more) Key/sec rate. But the cost will be 2 times less.

I was expecting that GTX 770 to be in that area, as i have a GTX 680 running in my own PC, that scores 109-110 MKey/sec.
The parameters i use for my own setup was slightly altered, but mainly they are the same as for my own setup.




Actually i think especially in regards to the cuda version of bitcrack, the number of cuda cores for the specific card is really important, and there is actually a bunch of older cards with some great numbers here, for ex. the GTX 680 have 1536 cuda cores, which also happends to be the number of cuda cores for the GTX 770.

For comparison other cards cuda cores:
RTX 2080 TI - 4352
GTX 1080 TI - 3583
RTX 2080 Super - 3072
RTX 2080 Gaming - 2944
GTX 780 TI - 2880
GTX 980 TI - 2816
GTX 2070 TI - 2560
GTX 1080 - 2560
RTX 2070 Gaming - 2304
GTX 780 - 2304
RTX 2060 Super - 2176
GTX 980 - 2048
RTX 2060 - 1920
GTX 1070 - 1920
GTX 1060 1708
GTX 1660 TI - 1536
GTX 770 - 1536
GTX 680 - 1536
GTX 1660 Dual OC - 1408
GTX 670 - 1344
GTX 1660 Armor - 1280
GTX 1060 - 1152
GTX 760 - 1152
GTX 1650 - 896
GTX 1050 TI - 768
GTX 1050 - 640
GTX 580 - 512

Due to this challenge i have actually been on the lookout for a cheap and used GTX 780 TI - but not succeeded in finding anyone in my price target yet, im exitied to see how much this card can deliver  Grin
jr. member
Activity: 38
Merit: 18
September 01, 2019, 01:38:49 PM
compare
Code:
>cuBitCrack -c -d 0  1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB
[2019-09-01.21:24:56] [Info] Compression: compressed
...
[2019-09-01.21:24:56] [Info] Initializing GeForce GTX 1070
[2019-09-01.21:24:56] [Info] Generating 262,144 starting points (10.0MB)
...
GeForce GTX 1070 232/8192MB | 1 target 73.28 MKey/s (403,701,760 total) [00:00:10]
and
Code:
>cuBitCrack -c -d 0 -b 15 -t 512 -p 1024 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB
[2019-09-01.21:24:56] [Info] Compression: compressed
...
[2019-09-01.21:23:20] [Info] Initializing GeForce GTX 1070
[2019-09-01.21:23:21] [Info] Generating 7,864,320 starting points (300.0MB)
...
GeForce GTX 1070 928/8192MB | 1 target 241.32 MKey/s (1,753,743,360 total) [00:00:10]
see?

need new column - optimal argv
i know
# GTX1060  = -b 9 -t 512 -p 1024
# GTX1070  = -b 15 -t 512 -p 1024
# GTX1080Ti= -b 28 -t 512 -p 1024

and 2cols of hashrate - with default and with optimal argv

..and its good content for add to 1post
Pages:
Jump to: