Pages:
Author

Topic: == Bitcoin challenge transaction: ~1000 BTC total bounty to solvers! ==UPDATED== - page 15. (Read 56094 times)

jr. member
Activity: 51
Merit: 30
https://github.com/BTC-HUB-GROUP/PubHunt

Is anyone sure this even works?

When its running it reports bits, every bit the amount of computations double for the next required bit increase. Does this mean when its at 50bit its only scanning in the 50 bit range?

Code seems simple and maybe dare I say fun.

[10:06:53] [GPU: 1538.03 MH/s] [T: 56,831,443,468,288 (46 bit)] [F: 0] 
[23:34:41] [GPU: 1520.21 MH/s] [T: 131,355,736,276,992 (47 bit)] [F: 0] 
[25:18:46] [GPU: 1528.59 MH/s] [T: 140,840,802,451,456 (48 bit)] [F: 0] 
[35:49:31] [GPU: 1540.13 MH/s] [T: 199,668,382,302,208 (48 bit)] [F: 0] 
[57:20:31] [GPU: 1528.60 MH/s] [T: 320,320,640,647,168 (49 bit)] [F: 0] 
[70:41:51] [GPU: 1561.09 MH/s] [T: 394,940,412,592,128 (49 bit)] [F: 0] 
[82:02:23] [GPU: 1568.43 MH/s] [T: 458,789,262,196,736 (49 bit)] [F: 0] 
[96:37:41] [GPU: 1425.79 MH/s] [T: 539,854,018,445,312 (49 bit)] [F: 0] 
[105:48:12] [GPU: 1512.86 MH/s] [T: 591,400,085,225,472 (50 bit)] [F: 0] 
[118:24:29] [GPU: 1517.04 MH/s] [T: 661,610,855,137,280 (50 bit)] [F: 0] 
[144:26:15] [GPU: 1534.88 MH/s] [T: 806,676,613,562,368 (50 bit)] [F: 0] 
[168:04:28] [GPU: 1520.20 MH/s] [T: 939,011,786,932,224 (50 bit)] [F: 0] 
[168:38:10] [GPU: 1510.77 MH/s] [T: 942,101,864,906,752 (50 bit)] [F: 0] 
[191:30:27] [GPU: 1529.64 MH/s] [T: 1,070,122,592,632,832 (50 bit)] [F: 0] 
[191:33:19] [GPU: 1516.01 MH/s] [T: 1,070,385,508,384,768 (50 bit)] [F: 0] 
member
Activity: 503
Merit: 38
I don't know what I haven't tried because there are so many attempts. I don't remember everything. Years have passed in this.
I started dreaming at night about WIFs ending so....

This  script calculates the common prefixes of the first 42 characters among Bitcoin private keys in a specified range.
It then lists the private keys and prints the top 10 most similar common prefixes in reverse order (longest to shortest).
start = 67079069358943824031
end =  69594534459904217431
Start and end sets the range of private keys (start and end values) and the number of parts to divide the range into (num_parts = 9).
You can adjust these values as you see fit.

Common Prefix: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5
Part 1 67079069358943824031 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5Dno9kZYi4bZLVzbZF
Part 2 67358565481272756631 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5YXcS8wxDr233cNfFe
Part 3 67638061603601689231 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5sGRiXLMjdSWjJrHgT
Part 4 67917557725930621831 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6C1EzuimFQrzXCYipU
Part 5 68197053848259554431 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6Wk4HJ7AmCHUHd6pi7
Part 6 68476549970588487031 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6qUsZgVaGyhx259cDB
Part 7 68756046092917419631 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7ADgr4synm8RiEbUHW
Part 8 69035542215246352231 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7UxW8TGPJYYuQ9jo4j
Part 9 69315038337575284831 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7ohKQqenpKyP9CM47x

Top 10 Most Similar Prefixes (in reverse order):
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5
KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7ohKQqen


Code:
import secp256k1 as ice

def find_common_prefix(start, end, num_parts):
    part_size = (end - start) // num_parts
    common_prefixes = []

    for i in range(num_parts):
        start_dec = start + i * part_size
        end_dec = start + (i + 1) * part_size - 1

        start_hex = "%064x" % start_dec
        start_wif = ice.btc_pvk_to_wif(start_hex)  # Compressed WIF

        if not common_prefixes:
            common_prefixes.append(start_wif[:42])
        elif start_wif.startswith(common_prefixes[-1]):
            continue
        else:
            # Adjust common_prefixes to match the longest common prefix
            for j in range(42):
                if start_wif[j] != common_prefixes[-1][j]:
                    common_prefixes[-1] = common_prefixes[-1][:j]
                    break
            common_prefixes.append(start_wif[:42])

    return common_prefixes

def calculate_puzzle_parts():
    start = 67079069358943824031
    end =  69594534459904217431
    num_parts = 9

    common_prefixes = find_common_prefix(start, end, num_parts)
    print("Common Prefix:", common_prefixes[0])

    part_size = (end - start) // num_parts
    for i in range(num_parts):
        start_dec = start + i * part_size
        end_dec = start + (i + 1) * part_size - 1

        start_hex = "%064x" % start_dec
        start_wif = ice.btc_pvk_to_wif(start_hex)  # Compressed WIF

        print(f"Part {i + 1}", start_dec, start_wif)

    print("\nTop 10 Most Similar Prefixes (in reverse order):")
    sorted_prefixes = sorted(common_prefixes, key=lambda prefix: len(prefix), reverse=True)
    for i in range(len(sorted_prefixes)-1, len(sorted_prefixes)-num_parts-1, -1):
        print(sorted_prefixes[i])

calculate_puzzle_parts()
member
Activity: 503
Merit: 38
They are all in range:

Code:
67079069358943824031 to 69594534459904217431


KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3q + a5, a6, a7  and  a8.

Code:
Part 1 67079069358943824031 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5Dno9kZYi4bZLVzbZF First two characters: a5
Part 1 67358565481272756630 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5YXcS8wxDr1Y9XcQnE
Part 2 67358565481272756631 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5YXcS8wxDr233cNfFe First two characters: a5
Part 2 67638061603601689230 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5sGRiXLMjdS1r2AWB6
Part 3 67638061603601689231 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5sGRiXLMjdSWjJrHgT First two characters: a5
Part 3 67917557725930621830 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6C1EzuimFQrVdKiyeV
Part 4 67917557725930621831 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6C1EzuimFQrzXCYipU First two characters: a6
Part 4 68197053848259554430 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6Wk4HJ7AmCGyQd62DN
Part 5 68197053848259554431 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6Wk4HJ7AmCHUHd6pi7 First two characters: a6
Part 5 68476549970588487030 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6qUsZgVaGyhT8CEc6k
Part 6 68476549970588487031 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6qUsZgVaGyhx259cDB First two characters: a6
Part 6 68756046092917419630 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7ADgr4synm7vmiRzF3
Part 7 68756046092917419631 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7ADgr4synm8RiEbUHW First two characters: a7
Part 7 69035542215246352230 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7UxW8TGPJYYQYcKdjj
Part 8 69035542215246352231 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7UxW8TGPJYYuQ9jo4j First two characters: a7
Part 8 69315038337575284830 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7ohKQqenpKxtGP3TDy
Part 9 69315038337575284831 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7ohKQqenpKyP9CM47x First two characters: a7
Part 9 69594534459904217430 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa88S8hE3CL7PMzjRr9u
Part 10 69594534459904217431 KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa88S8hE3CL7PrqXtxnM First two characters: a8

It only takes about 6143,074 years to solve  this range.   Grin
newbie
Activity: 3
Merit: 0
Whoopse!

I've found some similiar wallets and hope it will helps others!


I have about half a million addresses that start with the first 8 characters. It's best if someone tries to look into the glass ball and tell me exactly what range to aim for. Grin

please share it to me lapeci2017@ g mail . com.
thanks
member
Activity: 503
Merit: 38


As the list unfolds, it weaves a tapestry of interwoven imagination, leaving the observer intrigued by the enigmatic beauty that emerges from the simple elegance of logarithmic transformations.

Like the cryptic genius behind an encrypted message, the origins and intentions of this sequence remain shrouded in mystery, inviting wonder and sparking curiosity within those who seek to comprehend its enigmatic essence. Grin
newbie
Activity: 12
Merit: 3


When we look at the differences, we can observe that they are roughly consistent, hovering around 0.4 to 0.6.  Grin



hmm, who knew that random generator would be governed by the laws of normal distribution.

https://en.wikipedia.org/wiki/Random_variable
member
Activity: 503
Merit: 38

May I ask why you guys are doing this? What do you think is the advantage?

Limited resources......

logarithmic difference (base 10) between WIFs 1-65:

log(3) - log(1) ≈ 0.47712125471966244
log(7) - log(3) ≈ 0.36797678529459443
log(8 ) - log(7) ≈ 0.05799194697768673
log(21) - log(8 ) ≈ 0.41912930774197565
log(49) - log(21) ≈ 0.36797678529459443
log(76) - log(49) ≈ 0.19061751225227766
log(224) - log(76) ≈ 0.46943442605337143
log(467) - log(224) ≈ 0.3190688622319493
log(514) - log(467) ≈ 0.04164623842916361
log(1155) - log(514) ≈ 0.3516188652328874
log(2683) - log(1155) ≈ 0.3660386884437759
log(5216) - log(2683) ≈ 0.2887169100519248
log(10544) - log(5216) ≈ 0.3056678145260709
log(26867) - log(10544) ≈ 0.40621377807107406
log(51510) - log(26867) ≈ 0.28267237455957017
log(95823) - log(51510) ≈ 0.26957821362600115
log(198669) - log(95823) ≈ 0.31666034225815626
log(357535) - log(198669) ≈ 0.25518845663206713
log(863317) - log(357535) ≈ 0.3828517305049723
log(1811764) - log(863317) ≈ 0.3219313330147192
log(3007503) - log(1811764) ≈ 0.22010444330662446
log(5598802) - log(3007503) ≈ 0.26988903984573276
log(14428676) - log(5598802) ≈ 0.41113137224813495
log(33185509) - log(14428676) ≈ 0.3617220019295993
log(54538862) - log(33185509) ≈ 0.21575758852777027
log(111949941) - log(54538862) ≈ 0.3123177972583235
log(227634408) - log(111949941) ≈ 0.3082140392839779
log(400708894) - log(227634408) ≈ 0.24559107367744676
log(1033162084) - log(400708894) ≈ 0.4113394776328735
log(2102388551) - log(1033162084) ≈ 0.30854452321700526
log(3093472814) - log(2102388551) ≈ 0.167733320870153
log(7137437912) - log(3093472814) ≈ 0.36309603966333015
log(14133072157) - log(7137437912) ≈ 0.2966942328950074
log(20112871792) - log(14133072157) ≈ 0.15323750896247362
log(42387769980) - log(20112871792) ≈ 0.3237664837075102
log(100251560595) - log(42387769980) ≈ 0.3738505729734196
log(146971536592) - log(100251560595) ≈ 0.16614209284620785
log(323724968937) - log(146971536592) ≈ 0.3429429631062055
log(1003651412950) - log(323724968937) ≈ 0.4914067024711515
log(1458252205147) - log(1003651412950) ≈ 0.16224974149667518
log(2895374552463) - log(1458252205147) ≈ 0.29787211121731233
log(7409811047825) - log(2895374552463) ≈ 0.40810238044098246
log(15404761757071) - log(7409811047825) ≈ 0.3178478526126524
log(19996463086597) - log(15404761757071) ≈ 0.11329819966627307
log(51408670348612) - log(19996463086597) ≈ 0.41008318549831724
log(119666659114170) - log(51408670348612) ≈ 0.366936795177466
log(191206974700443) - log(119666659114170) ≈ 0.20353056363880792
log(409118905032525) - log(191206974700443) ≈ 0.33034581824839665
log(611140496167764) - log(409118905032525) ≈ 0.17429151410955282
log(2058769515153876) - log(611140496167764) ≈ 0.5274666664452157
log(4216495639600700) - log(2058769515153876) ≈ 0.3113439266558567
log(6763683971478124) - log(4216495639600700) ≈ 0.20523165173925442
log(9974455244496707) - log(6763683971478124) ≈ 0.16870587869969977
log(30045390491869460) - log(9974455244496707) ≈ 0.47888866680875336
log(44218742292676575) - log(30045390491869460) ≈ 0.16782853304825565
log(138245758910846492) - log(44218742292676575) ≈ 0.49504543109679533
log(199976667976342049) - log(138245758910846492) ≈ 0.16032751092312678
log(525070384258266191) - log(199976667976342049) ≈ 0.41923819544053276
log(1135041350219496382) - log(525070384258266191) ≈ 0.3347941601156713
log(1425787542618654982) - log(1135041350219496382) ≈ 0.09904313245967539
log(3908372542507822062) - log(1425787542618654982) ≈ 0.4379411376951916
log(8993229949524469768) - log(3908372542507822062) ≈ 0.36191974453574244
log(17799667357578236628) - log(8993229949524469768) ≈ 0.2964961881251935
log(30568377312064202855) - log(17799667357578236628) ≈ 0.23486049906891004

Code:
import math

# Given list of numbers
numbers = [
    1, 3, 7, 8, 21, 49, 76, 224, 467, 514, 1155, 2683, 5216, 10544, 26867, 51510,
    95823, 198669, 357535, 863317, 1811764, 3007503, 5598802, 14428676, 33185509,
    54538862, 111949941, 227634408, 400708894, 1033162084, 2102388551, 3093472814,
    7137437912, 14133072157, 20112871792, 42387769980, 100251560595, 146971536592,
    323724968937, 1003651412950, 1458252205147, 2895374552463, 7409811047825,
    15404761757071, 19996463086597, 51408670348612, 119666659114170, 191206974700443,
    409118905032525, 611140496167764, 2058769515153876, 4216495639600700,
    6763683971478124, 9974455244496707, 30045390491869460, 44218742292676575,
    138245758910846492, 199976667976342049, 525070384258266191, 1135041350219496382,
    1425787542618654982, 3908372542507822062, 8993229949524469768,
    17799667357578236628, 30568377312064202855
]

def calculate_log_difference(lst):
    log_diff = []
    for i in range(1, len(lst)):
        diff = lst[i] / lst[i - 1]
        log_diff.append(math.log10(diff))
    return log_diff

# Calculate the logarithmic difference between consecutive elements
logarithmic_difference = calculate_log_difference(numbers)

# Print the result
for i in range(len(logarithmic_difference)):
    print(f"log({numbers[i+1]}) - log({numbers[i]}) ≈ {logarithmic_difference[i]}")
When we look at the differences, we can observe that they are roughly consistent, hovering around 0.4 to 0.6.  Grin

The differences appear to fluctuate without any apparent pattern.


jr. member
Activity: 47
Merit: 12
gmaxwell creator of 1000 BTC puzzl + Pinapple fund

May I ask why you guys are doing this? What do you think is the advantage?
jr. member
Activity: 149
Merit: 7
I use poor man's  ideas. One of them.... Grin

First, i generate list of 500.000 (more is better) WIFs in equal parts  of range....
All WIFs are with first 42 caracters.....

Code:
Import secp256k1 as ice

num_parts = int(input("Enter the number of equal parts you want: "))

def calculate_puzzle66_parts():
    start = 39199331156632797184
    end = 73786976294838206464
    step = (end - start) / num_parts

    wifs = []

    for i in range(num_parts):
        decimal_num = start + (i + 1) * step
        int_num = int(decimal_num)
        hex_value = "%064x" % int_num
        wif_compressed = ice.btc_pvk_to_wif(hex_value)
        wifs.append(wif_compressed[:42])
        print(wif_compressed[:42])

    with open("Puzzle66Wifs.txt", "w") as file:
        for wif in wifs:
            file.write(wif + "\n")

if __name__ == "__main__":
    calculate_puzzle66_parts()

Then I try to solve them like this
Code:
#!/bin/bash

# Initialize the attempt counter
attempts=0

tail -n +1 Puzzle66Wifs.txt | while read -r wif; do
    # Increment the attempt counter
    ((attempts++))

    # Create or overwrite 66.conf with END and the current WIF
    echo "END" > 66.conf
    echo "$wif" >> 66.conf
    echo "13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so" >> 66.conf
    java -jar wifSolver.jar 66.conf

    # Display the number of attempts after each try
    echo "Attempts so far: $attempts"

    # Check if any file with the desired pattern was found and break the loop if it was
    if [ -n "$(find . -maxdepth 1 -type f -name 'END_result_*.txt' -print -quit)" ]; then
        echo "WIF found! Stopping the loop."
        break
    fi
done

echo "Total attempts: $attempts"

It's been going on for months...


I'm doing almost the same but using cuda
member
Activity: 503
Merit: 38
I use poor man's  ideas. One of them.... Grin

First, i generate list of 500.000 (more is better) WIFs in equal parts  of range....
All WIFs are with first 42 caracters.....

Code:
Import secp256k1 as ice

num_parts = int(input("Enter the number of equal parts you want: "))

def calculate_puzzle66_parts():
    start = 39199331156632797184
    end = 73786976294838206464
    step = (end - start) / num_parts

    wifs = []

    for i in range(num_parts):
        decimal_num = start + (i + 1) * step
        int_num = int(decimal_num)
        hex_value = "%064x" % int_num
        wif_compressed = ice.btc_pvk_to_wif(hex_value)
        wifs.append(wif_compressed[:42])
        print(wif_compressed[:42])

    with open("Puzzle66Wifs.txt", "w") as file:
        for wif in wifs:
            file.write(wif + "\n")

if __name__ == "__main__":
    calculate_puzzle66_parts()

Then I try to solve them like this
Code:
#!/bin/bash

# Initialize the attempt counter
attempts=0

tail -n +1 Puzzle66Wifs.txt | while read -r wif; do
    # Increment the attempt counter
    ((attempts++))

    # Create or overwrite 66.conf with END and the current WIF
    echo "END" > 66.conf
    echo "$wif" >> 66.conf
    echo "13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so" >> 66.conf
    java -jar wifSolver.jar 66.conf

    # Display the number of attempts after each try
    echo "Attempts so far: $attempts"

    # Check if any file with the desired pattern was found and break the loop if it was
    if [ -n "$(find . -maxdepth 1 -type f -name 'END_result_*.txt' -print -quit)" ]; then
        echo "WIF found! Stopping the loop."
        break
    fi
done

echo "Total attempts: $attempts"

It's been going on for months...
jr. member
Activity: 149
Merit: 7
member
Activity: 503
Merit: 38
Speaking of patterns...I use this method to see if I can spot anything.

Code:
import decimal
import secp256k1 as ice

def calculate_puzzle66_parts():
    start = decimal.Decimal("36893488147419103231")
    end = decimal.Decimal("73786976294838206463")
    step = (end - start) / 16

    for i in range(16):
        decimal_num = start + (i + 1) * step - 1
        hex_value = "%064x" % int(decimal_num)
        wif_compressed = ice.btc_pvk_to_wif(hex_value)

        print(f"Part {i + 1} Start point dec:", decimal_num)
        print(f"Part {i + 1} Start point WIF:", wif_compressed)
       
        quarter_dec = start + (i + 1) * step // 4
        quarter_hex = "%064x" % int(quarter_dec)
        wif_quarter = ice.btc_pvk_to_wif(quarter_hex)

        print(f"Part {i + 1} 1/4 dec from 66:", quarter_dec)
        print(f"Part {i + 1} 1/4 WIF from 66:", wif_quarter)
       
        half_dec = start + (i + 1) * step // 2
        half_hex = "%064x" % int(half_dec)
        wif_half = ice.btc_pvk_to_wif(half_hex)

        print(f"Part {i + 1} 1/2 dec from 66:", half_dec)
        print(f"Part {i + 1} 1/2 WIF from 66:", wif_half)
       
        three_quarter_dec = start + (i + 1) * step * 3 // 4
        three_quarter_hex = "%064x" % int(three_quarter_dec)
        wif_three_quarter = ice.btc_pvk_to_wif(three_quarter_hex)

        print(f"Part {i + 1} 3/4 dec from 66:", three_quarter_dec)
        print(f"Part {i + 1} 3/4 WIF from 66:", wif_three_quarter)
       
        print(f"Part {i + 1} End point dec:", start + (i + 1) * step)
        print(f"Part {i + 1} End point WIF:", ice.btc_pvk_to_wif("%064x" % int(start + (i + 1) * step)), "\n")

if __name__ == "__main__":
    calculate_puzzle66_parts()

Part 1 Start point dec: 39199331156632797182
Part 1 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZWzeyikXcEhFs6rMa1V
Part 1 1/4 dec from 66: 37469948899722526719
Part 1 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZUziJujmDznaXnGPQSV
Part 1 1/2 dec from 66: 38046409652025950207
Part 1 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZVfMsBQggk69993Lj3p
Part 1 3/4 dec from 66: 38622870404329373695
Part 1 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZWL1RT5c9VPhkZ8H9oW
Part 1 End point dec: 39199331156632797183
Part 1 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZWzeyikXcEhGMwnHdn7

Part 2 Start point dec: 41505174165846491134
Part 2 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZZfFCoSDTDuWJc1i5sr
Part 2 1/4 dec from 66: 38046409652025950207
Part 2 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZVfMsBQggk69993Lj3p
Part 2 1/2 dec from 66: 39199331156632797183
Part 2 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZWzeyikXcEhGMwnHdn7
Part 2 3/4 dec from 66: 40352252661239644159
Part 2 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZYKx6G6NXjJPak7TotN
Part 2 End point dec: 41505174165846491135
Part 2 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZZfFCoSDTDuWoVrghLp

Part 3 Start point dec: 43811017175060185086
Part 3 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZcKqRt7uJD7kk9AvAt8
Part 3 1/4 dec from 66: 38622870404329373695
Part 3 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZWL1RT5c9VPhkZ8H9oW
Part 3 1/2 dec from 66: 40352252661239644159
Part 3 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZYKx6G6NXjJPak7TotN
Part 3 3/4 dec from 66: 42081634918149914623
Part 3 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZaKtm578uyD5QqCf8om
Part 3 End point dec: 43811017175060185087
Part 3 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZcKqRt7uJD7mF4zwEkF

Part 4 Start point dec: 46116860184273879038
Part 4 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZezRexob9CL1BfTmF23
Part 4 1/4 dec from 66: 39199331156632797183
Part 4 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZWzeyikXcEhGMwnHdn7
Part 4 1/2 dec from 66: 41505174165846491135
Part 4 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZZfFCoSDTDuWoVrghLp
Part 4 3/4 dec from 66: 43811017175060185087
Part 4 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZcKqRt7uJD7mF4zwEkF
Part 4 End point dec: 46116860184273879039
Part 4 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZezRexob9CL1gZKDxzH

Part 5 Start point dec: 48422703193487572990
Part 5 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZhf1t3VGzBYFdHuq1cQ
Part 5 1/4 dec from 66: 39775791908936220671
Part 5 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZXfJXzRT4yzpyMhSS32
Part 5 1/2 dec from 66: 42658095670453338111
Part 5 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZazYKLn4NiWe2KmF7j8
Part 5 3/4 dec from 66: 45540399431970455551
Part 5 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZeKn6h8fgT2T5BG1zyQ
Part 5 End point dec: 48422703193487572991
Part 5 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZhf1t3VGzBYG87a7NRw

Part 6 Start point dec: 50728546202701266942
Part 6 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZkKc78AxqAkW4otaiui
Part 6 1/4 dec from 66: 40352252661239644159
Part 6 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZYKx6G6NXjJPak7TotN
Part 6 1/2 dec from 66: 43811017175060185087
Part 6 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZcKqRt7uJD7mF4zwEkF
Part 6 3/4 dec from 66: 47269781688880726015
Part 6 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZgKimW9S4gw8uNS9xwk
Part 6 End point dec: 50728546202701266943
Part 6 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZkKc78AxqAkWZdisLwg

Part 7 Start point dec: 53034389211914960894
Part 7 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZnzCLCreg9xkWGorWC6
Part 7 1/4 dec from 66: 40928713413543067647
Part 7 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZYzbeXmHzUbxC59ow7z
Part 7 1/2 dec from 66: 44963938679667032063
Part 7 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZdf8YRTkDhitTp71pAW
Part 7 3/4 dec from 66: 48999163945790996479
Part 7 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZiKfSKACSvqpjW95JbD
Part 7 End point dec: 53034389211914960895
Part 7 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZnzCLCreg9xm1FxSeJp

Part 8 Start point dec: 55340232221128654846
Part 8 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZqenZHYLX9AzwtzyNbB
Part 8 1/4 dec from 66: 41505174165846491135
Part 8 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZZfFCoSDTDuWoVrghLp
Part 8 1/2 dec from 66: 46116860184273879039
Part 8 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZezRexob9CL1gZKDxzH
Part 8 3/4 dec from 66: 50728546202701266943
Part 8 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZkKc78AxqAkWZdisLwg
Part 8 End point dec: 55340232221128654847
Part 8 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZqenZHYLX9B1Sh6RD2t

Part 9 Start point dec: 57646075230342348798
Part 9 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZtKNnNE2N8PFPMTB21Z
Part 9 1/4 dec from 66: 42081634918149914623
Part 9 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZaKtm578uyD5QqCf8om
Part 9 1/2 dec from 66: 47269781688880726015
Part 9 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZgKimW9S4gw8uNS9xwk
Part 9 3/4 dec from 66: 52457928459611537407
Part 9 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZnKYmwBjDQfCPra6THT
Part 9 End point dec: 57646075230342348799
Part 9 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZtKNnNE2N8PFtGjKJj8

Part 10 Start point dec: 59951918239556042750
Part 10 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZvyy1SuiD7bVpxgmdfN
Part 10 1/4 dec from 66: 42658095670453338111
Part 10 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZazYKLn4NiWe2KmF7j8
Part 10 1/2 dec from 66: 48422703193487572991
Part 10 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZhf1t3VGzBYG87a7NRw
Part 10 3/4 dec from 66: 54187310716521807871
Part 10 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZpKVSkCVbeZtE1H9iQ8
Part 10 End point dec: 59951918239556042751
Part 10 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZvyy1SuiD7bWKqCb6cT

Part 11 Start point dec: 62257761248769736702
Part 11 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZyeZEXbQ46okGY7gWo9
Part 11 1/4 dec from 66: 43234556422756761599
Part 11 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZbfBscSyqTpCdf9Admy
Part 11 1/2 dec from 66: 49575624698094419967
Part 11 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZizJzaq7ug9PLvewANu
Part 11 3/4 dec from 66: 55916692973432078335
Part 11 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZrKS7ZDFytUa4BmMTS9
Part 11 End point dec: 62257761248769736703
Part 11 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZyeZEXbQ46okmPYKfxL

Part 12 Start point dec: 64563604257983430654
Part 12 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa2K9TcH5u61zi2oYhET
Part 12 1/4 dec from 66: 43811017175060185087
Part 12 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZcKqRt7uJD7mF4zwEkF
Part 12 1/2 dec from 66: 50728546202701266943
Part 12 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZkKc78AxqAkWZdisLwg
Part 12 3/4 dec from 66: 57646075230342348799
Part 12 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZtKNnNE2N8PFtGjKJj8
Part 12 End point dec: 64563604257983430655
Part 12 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa2K9TcH5u621CsjkSLq

Part 13 Start point dec: 66869447267197124606
Part 13 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa4yjggxmk5EF9cf1wrW
Part 13 1/4 dec from 66: 44387477927363608575
Part 13 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZczUz9npkxRKrQ27nPS
Part 13 1/2 dec from 66: 51881467707308113919
Part 13 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZmeuDfWokfMdnPcTtgB
Part 13 3/4 dec from 66: 59375457487252619263
Part 13 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZvKKTBEnkNHwiSqAUkY
Part 13 End point dec: 66869447267197124607
Part 13 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa4yjggxmk5EFeVWWKPF

Part 14 Start point dec: 69175290276410818558
Part 14 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7eKumeTb4SVb6skSxw
Part 14 1/4 dec from 66: 44963938679667032063
Part 14 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZdf8YRTkDhitTp71pAW
Part 14 1/2 dec from 66: 53034389211914960895
Part 14 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZnzCLCreg9xm1FxSeJp
Part 14 3/4 dec from 66: 61104839744162889727
Part 14 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZxKG7zFZ8cCdYZASpQa
Part 14 End point dec: 69175290276410818559
Part 14 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa7eKumeTb4SW635PmjP

Part 15 Start point dec: 71481133285624512510
Part 15 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qaAJv8rL9S3ek2d8DWnX
Part 15 1/4 dec from 66: 45540399431970455551
Part 15 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZeKn6h8fgT2T5BG1zyQ
Part 15 1/2 dec from 66: 54187310716521807871
Part 15 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZpKVSkCVbeZtE1H9iQ8
Part 15 3/4 dec from 66: 62834222001073160191
Part 15 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZzKCnoGKWr7KNn5yNok
Part 15 End point dec: 71481133285624512511
Part 15 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qaAJv8rL9S3ekXXbZqcM

Part 16 Start point dec: 73786976294838206462
Part 16 Start point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qaCyWMw1qH2rzUAU5Hx5
Part 16 1/4 dec from 66: 46116860184273879039
Part 16 1/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZezRexob9CL1gZKDxzH
Part 16 1/2 dec from 66: 55340232221128654847
Part 16 1/2 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZqenZHYLX9B1Sh6RD2t
Part 16 3/4 dec from 66: 64563604257983430655
Part 16 3/4 WIF from 66: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa2K9TcH5u621CsjkSLq
Part 16 End point dec: 73786976294838206463
Part 16 End point WIF: KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qaCyWMw1qH2rzy6joVM6
-------------------------------------------------------------------------------------------------------------
But nothing. Just a glass ball, pure luck or brute force... Grin
copper member
Activity: 1330
Merit: 899
🖤😏
near a solar cycle, traversing through 306 days of unyielding pursuit
Why 306 days though? Is that how accurate your calculations are, 512 GPUs and 306 days of a solar cycle?

Nice poem!😉
member
Activity: 503
Merit: 38
Determined are the adversaries, toiling with 512 GPUs akin to the heralded 3090. To unravel a 130-bit key, these diligent souls expend near a solar cycle, traversing through 306 days of unyielding pursuit. But even with such a multitude of computational might, the 130-bit realm does not relent easily. A mighty task to conquer the 2^130-bit range beckons for 512 valiant GPUs donning the attire of the 3090. Their efforts encompass days and nights, amid soaring costs, for the serenity of cryptographic victory.The pursuit of knowledge and foresight, the wily Pollard's kangaroo method seeks to challenge Bitcoin's cryptographic prowess. Grin
hero member
Activity: 862
Merit: 662
@nomachine if you can share with ppls, it would be great!

Those are useless
member
Activity: 503
Merit: 38
@nomachine if you can share with ppls, it would be great!

I don't know what I didn't do. I tried everything possible. There is no pattern here. I even targeted the last eight characters at the end of WIF for seven whole months trying to reconstruct the private key. Whichever option you choose and you don't know the public key, this is unsolvable. Or it can be solved in a couple of thousand years. The numbers in question are the size of the entire universe. Quantum computing is needed to solve this. And a very good one at that.
newbie
Activity: 5
Merit: 0
@nomachine if you can share with ppls, it would be great!
member
Activity: 503
Merit: 38
Whoopse!

I've found some similiar wallets and hope it will helps others!


I have about half a million addresses that start with the first 8 characters. It's best if someone tries to look into the glass ball and tell me exactly what range to aim for. Grin
newbie
Activity: 5
Merit: 0
Whoopse!

I've found some similiar wallets and hope it will helps others!

Pub Addr: 13zb1hQbaerA5T1Xre2527Z1pmbLUc6rPZ
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa8iAQU8aE1A6zGJA5jk
Priv (HEX): 3CCCCCDDF1B391C09

Pub Addr: 13zb1hQbe6vj6nihY3u42CPhiPuPYrnf8S
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa8iAQYJwa8CNQMBydm8
Priv (HEX): 3CCCCCE297C4D7F94

Pub Addr: 13zb1hQbYT1ByLFM5sbTK9aaXGWqJmzWU4
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5RH9dhExaUny7uqpnC
Priv (HEX): 3A5498A99F06F1AB2

Pub Addr: 13zb1hQbf6tENAUHRX8dw862zWWXECn7C1
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5RH9fD87x9vSyZK9Pb
Priv (HEX): 3A5498AB4E8AF8505

Pub Addr: 13zb1hQbYe6Ponuw24fs3YTgbVqLy1XnBc
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qZzyrMg78PgPrqNoXY1c
Priv (HEX): 37000027202EA3413

Pub Addr: 13zb1hQbzBLGYb7iYZXYg7RAgcVyj5Yrrg
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa6MAuQveKTUHBDw4gA5
Priv (HEX): 3B07163DE597AABA5

Pub Addr: 13zb1hQbYT1ByLFM5sbTK9aaXGWqJmzWU4
Priv (WIF): p2pkh:KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qa5RH9dhExaUny7uqpnC
Priv (HEX): 3A5498A99F06F1AB2
copper member
Activity: 1330
Merit: 899
🖤😏
If we find 10 same characters of address, Is it possible to find pvk?

For example, we know pvk and address and address is same first 10 characters, how to possible right pvk from this?
Addresses and private keys are not directly related, even if you find 34 characters out of 35 characters you can't find the private key! Happy hunting.😉
Pages:
Jump to: