May I ask why you guys are doing this? What do you think is the advantage?
Limited resources......
logarithmic difference (base 10) between WIFs 1-65:
log(3) - log(1) ≈ 0.47712125471966244
log(7) - log(3) ≈ 0.36797678529459443
log(8 ) - log(7) ≈ 0.05799194697768673
log(21) - log(8 ) ≈ 0.41912930774197565
log(49) - log(21) ≈ 0.36797678529459443
log(76) - log(49) ≈ 0.19061751225227766
log(224) - log(76) ≈ 0.46943442605337143
log(467) - log(224) ≈ 0.3190688622319493
log(514) - log(467) ≈ 0.04164623842916361
log(1155) - log(514) ≈ 0.3516188652328874
log(2683) - log(1155) ≈ 0.3660386884437759
log(5216) - log(2683) ≈ 0.2887169100519248
log(10544) - log(5216) ≈ 0.3056678145260709
log(26867) - log(10544) ≈ 0.40621377807107406
log(51510) - log(26867) ≈ 0.28267237455957017
log(95823) - log(51510) ≈ 0.26957821362600115
log(198669) - log(95823) ≈ 0.31666034225815626
log(357535) - log(198669) ≈ 0.25518845663206713
log(863317) - log(357535) ≈ 0.3828517305049723
log(1811764) - log(863317) ≈ 0.3219313330147192
log(3007503) - log(1811764) ≈ 0.22010444330662446
log(5598802) - log(3007503) ≈ 0.26988903984573276
log(14428676) - log(5598802) ≈ 0.41113137224813495
log(33185509) - log(14428676) ≈ 0.3617220019295993
log(54538862) - log(33185509) ≈ 0.21575758852777027
log(111949941) - log(54538862) ≈ 0.3123177972583235
log(227634408) - log(111949941) ≈ 0.3082140392839779
log(400708894) - log(227634408) ≈ 0.24559107367744676
log(1033162084) - log(400708894) ≈ 0.4113394776328735
log(2102388551) - log(1033162084) ≈ 0.30854452321700526
log(3093472814) - log(2102388551) ≈ 0.167733320870153
log(7137437912) - log(3093472814) ≈ 0.36309603966333015
log(14133072157) - log(7137437912) ≈ 0.2966942328950074
log(20112871792) - log(14133072157) ≈ 0.15323750896247362
log(42387769980) - log(20112871792) ≈ 0.3237664837075102
log(100251560595) - log(42387769980) ≈ 0.3738505729734196
log(146971536592) - log(100251560595) ≈ 0.16614209284620785
log(323724968937) - log(146971536592) ≈ 0.3429429631062055
log(1003651412950) - log(323724968937) ≈ 0.4914067024711515
log(1458252205147) - log(1003651412950) ≈ 0.16224974149667518
log(2895374552463) - log(1458252205147) ≈ 0.29787211121731233
log(7409811047825) - log(2895374552463) ≈ 0.40810238044098246
log(15404761757071) - log(7409811047825) ≈ 0.3178478526126524
log(19996463086597) - log(15404761757071) ≈ 0.11329819966627307
log(51408670348612) - log(19996463086597) ≈ 0.41008318549831724
log(119666659114170) - log(51408670348612) ≈ 0.366936795177466
log(191206974700443) - log(119666659114170) ≈ 0.20353056363880792
log(409118905032525) - log(191206974700443) ≈ 0.33034581824839665
log(611140496167764) - log(409118905032525) ≈ 0.17429151410955282
log(2058769515153876) - log(611140496167764) ≈ 0.5274666664452157
log(4216495639600700) - log(2058769515153876) ≈ 0.3113439266558567
log(6763683971478124) - log(4216495639600700) ≈ 0.20523165173925442
log(9974455244496707) - log(6763683971478124) ≈ 0.16870587869969977
log(30045390491869460) - log(9974455244496707) ≈ 0.47888866680875336
log(44218742292676575) - log(30045390491869460) ≈ 0.16782853304825565
log(138245758910846492) - log(44218742292676575) ≈ 0.49504543109679533
log(199976667976342049) - log(138245758910846492) ≈ 0.16032751092312678
log(525070384258266191) - log(199976667976342049) ≈ 0.41923819544053276
log(1135041350219496382) - log(525070384258266191) ≈ 0.3347941601156713
log(1425787542618654982) - log(1135041350219496382) ≈ 0.09904313245967539
log(3908372542507822062) - log(1425787542618654982) ≈ 0.4379411376951916
log(8993229949524469768) - log(3908372542507822062) ≈ 0.36191974453574244
log(17799667357578236628) - log(8993229949524469768) ≈ 0.2964961881251935
log(30568377312064202855) - log(17799667357578236628) ≈ 0.23486049906891004
import math
# Given list of numbers
numbers = [
1, 3, 7, 8, 21, 49, 76, 224, 467, 514, 1155, 2683, 5216, 10544, 26867, 51510,
95823, 198669, 357535, 863317, 1811764, 3007503, 5598802, 14428676, 33185509,
54538862, 111949941, 227634408, 400708894, 1033162084, 2102388551, 3093472814,
7137437912, 14133072157, 20112871792, 42387769980, 100251560595, 146971536592,
323724968937, 1003651412950, 1458252205147, 2895374552463, 7409811047825,
15404761757071, 19996463086597, 51408670348612, 119666659114170, 191206974700443,
409118905032525, 611140496167764, 2058769515153876, 4216495639600700,
6763683971478124, 9974455244496707, 30045390491869460, 44218742292676575,
138245758910846492, 199976667976342049, 525070384258266191, 1135041350219496382,
1425787542618654982, 3908372542507822062, 8993229949524469768,
17799667357578236628, 30568377312064202855
]
def calculate_log_difference(lst):
log_diff = []
for i in range(1, len(lst)):
diff = lst[i] / lst[i - 1]
log_diff.append(math.log10(diff))
return log_diff
# Calculate the logarithmic difference between consecutive elements
logarithmic_difference = calculate_log_difference(numbers)
# Print the result
for i in range(len(logarithmic_difference)):
print(f"log({numbers[i+1]}) - log({numbers[i]}) ≈ {logarithmic_difference[i]}")
When we look at the differences, we can observe that they are roughly consistent, hovering around 0.4 to 0.6.
The differences appear to fluctuate without any apparent pattern.