It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
#include
#include
#include
#include
#include
#include
int main() {
mpz_class min_range("18446744073709551615");
mpz_class max_range("36893488147419103231");
mpz_class counter = 0;
mpz_class dec;
gmp_randstate_t state;
gmp_randinit_default(state);
std::time_t start_time = std::time(nullptr);
double total_time = 0;
mpz_t range;
mpz_sub(range, max_range.get_mpz_t(), min_range.get_mpz_t());
while (true) {
mpz_urandomm(dec.get_mpz_t(), state, range);
mpz_add(dec.get_mpz_t(), dec.get_mpz_t(), min_range.get_mpz_t());
counter++;
std::time_t current_time = std::time(nullptr);
double elapsed_time = difftime(current_time, start_time);
if (elapsed_time > total_time) {
std::cout << "Total " << counter << " numbers in " << elapsed_time << " seconds: " << std::setprecision(0) << std::fixed << counter / elapsed_time << " numbers/s" << std::endl;
total_time = elapsed_time;
}
}
gmp_randclear(state);
mpz_clear(range);
return 0;
}
import time
import os
import sys
import random
import secp256k1 as ice
import gmpy2
if os.name == 'nt':
os.system('cls')
else:
os.system('clear')
t = time.ctime()
sys.stdout.write(f"\033[?25l")
sys.stdout.write(f"\033[01;33m[+] Kangaroo: {t}\n")
sys.stdout.flush()
modulo = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
order = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141)
Gx = gmpy2.mpz(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
Gy = gmpy2.mpz(0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
# Define Point class
class Point:
def __init__(self, x=0, y=0):
self.x = gmpy2.mpz(x)
self.y = gmpy2.mpz(y)
PG = Point(Gx, Gy)
Z = Point(0, 0) # zero-point, infinite in real x, y - plane
def add(P, Q, p=modulo):
if P == Z:
return Q
elif Q == Z:
return P
elif P.x == Q.x and (P.y != Q.y or P.y == 0):
return Z
elif P.x == Q.x:
m = (3 * P.x * P.x) * gmpy2.invert(2 * P.y, p) % p
else:
m = (Q.y - P.y) * gmpy2.invert(Q.x - P.x, p) % p
x = (m * m - P.x - Q.x) % p
y = (m * (P.x - x) - P.y) % p
return Point(x, y)
def mul2(P, p=modulo):
if P == Z:
return Z
m = gmpy2.f_mod(3 * P.x * P.x * gmpy2.invert(2 * P.y, p), p)
x = gmpy2.f_mod(m * m - 2 * P.x, p)
y = gmpy2.f_mod(m * (P.x - x) - P.y, p)
return Point(x, y)
def mulk(k, P=PG, p=modulo):
if k == 0:
return Z
elif k == 1:
return P
elif k % 2 == 0:
return mulk(k // 2, mul2(P, p), p)
else:
return add(P, mulk((k - 1) // 2, mul2(P, p), p), p)
def X2Y(X, y_parity, p=modulo):
X_cubed = gmpy2.powmod(X, 3, p)
X_squared = gmpy2.powmod(X, 2, p)
tmp = gmpy2.f_mod(X_cubed + 7, p)
Y = gmpy2.powmod(tmp, gmpy2.f_div(gmpy2.add(p, 1), 4), p)
if y_parity == 1:
Y = gmpy2.f_mod(-Y, p)
return Y
def comparator(A, Ak, B, Bk):
result = set(A).intersection(set(B))
if result:
sol_kt = A.index(next(iter(result)))
sol_kw = B.index(next(iter(result)))
HEX = "%064x" % abs(Ak[sol_kt] - Bk[sol_kw])
dec = int(HEX, 16)
wifc = ice.btc_pvk_to_wif(HEX)
wifu = ice.btc_pvk_to_wif(HEX, False)
caddr = ice.privatekey_to_address(0, True, dec)
uaddr = ice.privatekey_to_address(0, False, dec)
total_time = time.time() - starttime
print('\n[+] total time: %.2f sec' % (total_time))
t = time.ctime()
print(f"\033[32m[+] PUZZLE SOLVED: {t} \033[0m")
print(f"\033[32m[+] Private key (wif) Compressed : {wifc} \033[0m")
with open("KEYFOUNDKEYFOUND.txt", "a") as file:
file.write("\n\nSOLVED " + t)
file.write(f"\nTotal Time: {total_time:.2f} sec")
file.write(f"\nRandom seed: {seed}")
file.write("\nPrivate Key (decimal): " + str(dec))
file.write("\nPrivate Key (hex): " + HEX)
file.write("\nPrivate key (wif) Compressed : " + wifc)
file.write("\nPrivate key (wif) Uncompressed: " + wifu)
file.write("\nBitcoin address Compressed: " + caddr)
file.write("\nBitcoin address Uncompressed: " + uaddr)
file.write(
"\n-------------------------------------------------------------------------------------------------------------------------------------------\n"
)
file.close()
return True
else:
return False
def check(P, Pindex, DP_rarity, A, Ak, B, Bk):
if P.x % DP_rarity == 0:
A.append(gmpy2.mpz(P.x))
Ak.append(gmpy2.mpz(Pindex))
return comparator(A, Ak, B, Bk)
else:
return False
# Generate a list of powers of two for faster access
def generate_powers_of_two(hop_modulo):
return [gmpy2.mpz(1 << pw) for pw in range(hop_modulo)]
def search(P, W0, DP_rarity, Nw, Nt, hop_modulo, upper_range_limit, lower_range_limit, powers_of_two):
solved = False
t = [gmpy2.mpz(lower_range_limit + gmpy2.mpz(random.randint(0, upper_range_limit - lower_range_limit))) for _ in range(Nt)]
T = [mulk(ti) for ti in t]
dt = [gmpy2.mpz(0) for _ in range(Nt)]
w = [gmpy2.mpz(random.randint(0, upper_range_limit - lower_range_limit)) for _ in range(Nw)]
W = [add(W0, mulk(wk)) for wk in w]
dw = [gmpy2.mpz(0) for _ in range(Nw)]
print('[+] tame and wild herds are prepared')
Hops, Hops_old = 0, 0
t0 = time.time()
while not solved:
for k in range(Nt):
Hops += 1
pw = T[k].x % hop_modulo
dt[k] = powers_of_two[pw]
solved = check(T[k], t[k], DP_rarity, T, t, W, w)
if solved: break
t[k] += dt[k]
T[k] = add(P[int(pw)], T[k])
if solved: break
for k in range(Nw):
Hops += 1
pw = W[k].x % hop_modulo
dw[k] = powers_of_two[pw]
solved = check(W[k], w[k], DP_rarity, W, w, T, t)
if solved: break
w[k] += dw[k]
W[k] = add(P[int(pw)], W[k])
if solved: break
t1 = time.time()
if (t1 - t0) > 5:
print('\r[+] Hops: %.0f h/s' % ((Hops - Hops_old) / (t1 - t0)), end='', flush=True)
t0 = t1
Hops_old = Hops
print('[+] Hops:', Hops)
return 'sol. time: %.2f sec' % (time.time() - starttime)
puzzles = [\
('0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69',32),\
('03a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4',40),\
('025e466e97ed0e7910d3d90ceb0332df48ddf67d456b9e7303b50a3d89de357336',44),\
('026ecabd2d22fdb737be21975ce9a694e108eb94f3649c586cc7461c8abf5da71a',45),\
('03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6',50),\
('0230210c23b1a047bc9bdbb13448e67deddc108946de6de639bcc75d47c0216b1b',65),\
('03633cbe3ec02b9401c5effa144c5b4d22f87940259634858fc7e59b1c09937852',130)]
puzzle = 40
for elem in puzzles:
s, n = elem
if puzzle == n: break
kangaroo_power = 4
DP_rarity = 1 << int(((puzzle - 2*kangaroo_power)/2 - 2))
hop_modulo = ((puzzle - 1) // 2) + kangaroo_power
Nt = Nw = 2**kangaroo_power
X = gmpy2.mpz(s[2:66], 16)
Y = X2Y(X, gmpy2.mpz(s[:2]) - 2)
W0 = Point(X,Y)
starttime = oldtime = time.time()
search_range = 2**(puzzle-1)
lower_range_limit = 2 ** (puzzle - 1)
upper_range_limit = (2 ** puzzle) - 1
print(f"[+] [Puzzle]: {puzzle}")
print(f"[+] [Lower range limit]: {lower_range_limit}")
print(f"[+] [Upper range limit]: {upper_range_limit}")
# Precompute powers of two for faster access
powers_of_two = generate_powers_of_two(hop_modulo)
# Initialize variables
T, t, dt = [], [], []
W, w, dw = [], [], []
#Random seed Config
seed = os.urandom(9)
print(f"[+] [Random seed]: {seed}")
random.seed(seed)
Hops = 0
N_tests = 1
P = [PG]
for k in range(255): P.append(mul2(P[k]))
print('[+] P-table prepared')
for k in range(N_tests):
solved = False
search(P, W0, DP_rarity, Nw, Nt, hop_modulo, upper_range_limit, lower_range_limit, powers_of_two)
print('[+] Average time to solve: %.2f sec' % ((time.time()-starttime)/N_tests))