Script above is the python version of your code written in alien language, I'm on phone so I couldn't test to see if it works, later I will test it on my laptop and fix any issues. Insha'Allah. ( God willing )
Also;
Thanks for the update on the code, appreciate it. My scripts ( small part of them ) don't need much speed because they are not supposed to auto solve a key, they are intended as learning tools, I talked about improving performance to make king of information stop whining so much. 🤣
I use GMP even for random number generation..I'm playing around with collisions and cycles now.
import os
import time
import gmpy2
from gmpy2 import mpz
from functools import lru_cache
import secp256k1 as ice
import multiprocessing
from multiprocessing import Pool, cpu_count
# Constants
MODULO = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
ORDER = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141)
GX = gmpy2.mpz(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
GY = gmpy2.mpz(0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)
# Define Point class
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
PG = Point(GX, GY)
ZERO_POINT = Point(0, 0)
# Function to multiply a point by 2
@lru_cache(maxsize=None)
def multiply_by_2(P, p=MODULO):
c = gmpy2.f_mod(3 * P.x * P.x * gmpy2.powmod(2 * P.y, -1, p), p)
R = Point()
R.x = gmpy2.f_mod(c * c - 2 * P.x, p)
R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p)
return R
# Function to add two points
@lru_cache(maxsize=None)
def add_points(P, Q, p=MODULO):
dx = Q.x - P.x
dy = Q.y - P.y
c = gmpy2.f_mod(dy * gmpy2.invert(dx, p), p)
R = Point()
R.x = gmpy2.f_mod(c * c - P.x - Q.x, p)
R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p)
return R
# Function to calculate Y-coordinate from X-coordinate
@lru_cache(maxsize=None)
def x_to_y(X, y_parity, p=MODULO):
Y = gmpy2.mpz(3)
tmp = gmpy2.mpz(1)
while Y > 0:
if Y % 2 == 1:
tmp = gmpy2.f_mod(tmp * X, p)
Y >>= 1
X = gmpy2.f_mod(X * X, p)
X = gmpy2.f_mod(tmp + 7, p)
Y = gmpy2.f_div(gmpy2.add(p, 1), 4)
tmp = gmpy2.mpz(1)
while Y > 0:
if Y % 2 == 1:
tmp = gmpy2.f_mod(tmp * X, p)
Y >>= 1
X = gmpy2.f_mod(X * X, p)
Y = tmp
if Y % 2 != y_parity:
Y = gmpy2.f_mod(-Y, p)
return Y
# Function to compute a table of points
def compute_point_table():
points = [PG]
for k in range(255):
points.append(multiply_by_2(points[k]))
return points
POINTS_TABLE = compute_point_table()
# Global event to signal all processes to stop
STOP_EVENT = multiprocessing.Event()
# Function to check and compare points for potential solutions
def check(P, Pindex, DP_rarity, A, Ak, B, Bk):
check_modulo = gmpy2.f_mod(P.x, DP_rarity)
if check_modulo != 0:
return False
message = f"\r[+] [Pindex]: {mpz(Pindex)}"
messages = []
messages.append(message)
output = "\033[01;33m" + ''.join(messages) + "\r"
sys.stdout.write(output)
sys.stdout.flush()
A.append(mpz(P.x))
Ak.append(mpz(Pindex))
collision_index_A = find_collision(Ak)
if collision_index_A is not None:
return comparator(A, Ak, B, Bk, collision_index_A)
collision_index_B = find_collision(Bk)
if collision_index_B is not None:
return comparator(A, Ak, B, Bk, collision_index_B)
return False
# Cycle detection function for Ak
def find_collision(Ak):
seen = set()
for i, item in enumerate(Ak):
if item in seen:
return mpz(i) # Collision detected, return as mpz
seen.add(item)
return None # No collision detected
# Cycle detection function for Bk
def find_collision(Bk):
seen = set()
for i, item in enumerate(Bk):
if item in seen:
return mpz(i) # Collision detected, return as mpz
seen.add(item)
return None # No collision detected
# Function to compare two sets of points and find a common point
def comparator(A, Ak, B, Bk, collision_index):
global STOP_EVENT
result = set(A).intersection(set(B))
if result:
sol_kt = A.index(next(iter(result)))
sol_kw = B.index(next(iter(result)))
difference = Ak[sol_kt] - Bk[sol_kw]
HEX = "%064x" % difference
wifc = ice.btc_pvk_to_wif("%064x" % mpz(difference))
dec = int(ice.btc_wif_to_pvk_hex(wifc), 16)
wifu = ice.btc_pvk_to_wif(HEX, False) # Uncompressed
uaddr = ice.privatekey_to_address(0, False, dec) # Uncompressed
caddr = ice.privatekey_to_address(0, True, dec) # Compressed
HASH160 = ice.privatekey_to_h160(0, True, dec).hex()
t = time.ctime()
total_time = time.time() - starttime
print(f"\033[32m[+] PUZZLE SOLVED: {t}, total time: {total_time:.2f} sec \033[0m")
print(f"\033[32m[+] WIF: \033[32m {wifc} \033[0m")
with open("KEYFOUNDKEYFOUND.txt", "a") as file:
file.write("\n\nPUZZLE SOLVED " + t)
file.write(f"\nTotal Time: {total_time:.2f} sec")
file.write('\nPrivate Key (dec): ' + str(dec))
file.write('\nPrivate Key (hex): ' + HEX)
file.write('\nPrivate Key Compressed: ' + wifc)
file.write('\nPrivate Key Uncompressed: ' + wifu)
file.write('\nPublic Address Compressed: ' + caddr)
file.write('\nPublic Address Uncompressed: ' + uaddr)
file.write('\nPublic Key Hash Compressed (Hash 160): ' + HASH160)
file.write(
"\n-------------------------------------------------------------------------------------------------------------------------------------\n"
)
STOP_EVENT.set() # Set the stop event to signal all processes
# Memoization for point multiplication
ECMULTIPLY_MEMO = {}
# Function to multiply a point by a scalar
def ecmultiply(k, P=PG, p=MODULO):
if k == 0:
return ZERO_POINT
elif k == 1:
return P
elif k % 2 == 0:
if k in ECMULTIPLY_MEMO:
return ECMULTIPLY_MEMO[k]
else:
result = ecmultiply(k // 2, multiply_by_2(P, p), p)
ECMULTIPLY_MEMO[k] = result
return result
else:
return add_points(P, ecmultiply((k - 1) // 2, multiply_by_2(P, p), p))
# Recursive function to multiply a point by a scalar
def mulk(k, P=PG, p=MODULO):
if k == 0:
return ZERO_POINT
elif k == 1:
return P
elif k % 2 == 0:
return mulk(k // 2, multiply_by_2(P, p), p)
else:
return add_points(P, mulk((k - 1) // 2, multiply_by_2(P, p), p))
# Generate a list of powers of two for faster access
@lru_cache(maxsize=None)
def generate_powers_of_two(hop_modulo):
return [mpz(1 << pw) for pw in range(hop_modulo)]
# Worker function for point search
def search_worker(Nt, Nw, puzzle, tortoise_power, starttime, lower_range_limit, upper_range_limit):
global STOP_EVENT
random_state_t = gmpy2.random_state(hash(gmpy2.random_state()))
random_state_w = gmpy2.random_state(hash(gmpy2.random_state()))
t = [mpz(lower_range_limit + gmpy2.mpz_random(random_state_t, upper_range_limit - lower_range_limit)) for _ in range(Nt)]
T = [mulk(ti) for ti in t]
dt = [mpz(0) for _ in range(Nt)]
w = [gmpy2.mpz_random(random_state_w, upper_range_limit - lower_range_limit) for _ in range(Nt)]
W = [add_points(W0, mulk(wk)) for wk in w]
dw = [mpz(0) for _ in range(Nw)]
Hops, Hops_old = 0, 0
oldtime = time.time()
starttime = oldtime
while True:
for k in range(Nt):
Hops += 1
pw = T[k].x % hop_modulo
dt[k] = powers_of_two[pw]
solved = check(T[k], t[k], DP_rarity, T, t, W, w)
if solved:
STOP_EVENT.set()
raise SystemExit
t[k] += dt[k]
T[k] = add_points(POINTS_TABLE[pw], T[k])
for k in range(Nw):
Hops += 1
pw = W[k].x % hop_modulo
dw[k] = powers_of_two[pw]
solved = check(W[k], w[k], DP_rarity, W, w, T, t)
if solved:
STOP_EVENT.set()
raise SystemExit
w[k] += dw[k]
W[k] = add_points(POINTS_TABLE[pw], W[k])
if STOP_EVENT.is_set():
break
# Main script
if __name__ == "__main__":
os.system("clear")
t = time.ctime()
sys.stdout.write("\033[01;33m")
sys.stdout.write(f"[+] {t}" + "\n")
sys.stdout.write(f"[+] Cycle detected, applying Floyd's cycle-finding algorithm..." + "\n")
sys.stdout.flush()
# Configuration for the puzzle
puzzle = 50
compressed_public_key = "03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6" # Puzzle 50
lower_range_limit = 2 ** (puzzle - 1)
upper_range_limit = (2 ** puzzle) - 1
tortoise_power = puzzle // 8
Nt = Nw = (2 ** tortoise_power // puzzle) * puzzle + 8
DP_rarity = 8 * puzzle
hop_modulo = (puzzle // 2) + 8
# Precompute powers of two for faster access
powers_of_two = generate_powers_of_two(hop_modulo)
T, t, dt = [], [], []
W, w, dw = [], [], []
if len(compressed_public_key) == 66:
X = mpz(compressed_public_key[2:66], 16)
Y = x_to_y(X, mpz(compressed_public_key[:2]) - 2)
else:
print("[error] pubkey len(66/130) invalid!")
print(f"[+] [Puzzle]: {puzzle}")
print(f"[+] [Lower range limit]: {lower_range_limit}")
print(f"[+] [Upper range limit]: {upper_range_limit}")
print("[+] [Xcoordinate]: %064x" % X)
print("[+] [Ycoordinate]: %064x" % Y)
W0 = Point(X, Y)
starttime = oldtime = time.time()
Hops = 0
process_count = cpu_count()
print(f"[+] Using {process_count} CPU cores for parallel search")
# Create a pool of worker processes
pool = Pool(process_count)
results = pool.starmap(
search_worker,
[
(
Nt,
Nw,
puzzle,
tortoise_power,
starttime,
lower_range_limit,
upper_range_limit,
)
]
* process_count,
)
pool.close()
pool.join()