Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 205. (Read 229797 times)

newbie
Activity: 26
Merit: 2

"If it is a Deterministic Wallet the creator must have done a huge code implementation just to create the transactions of this Puzzle"

Keys 1 to 160 are not one deterministic wallet. Perhaps (and indeed) the puzzle contains several deterministic wallets.
newbie
Activity: 1
Merit: 1

With reference to the the message "I am the creator." :

Quote

Code:
I am the creator.

You are quite right, 161-256 are silly.  I honestly just did not think of this.  What is especially embarrassing, is this did not occur to me once, in two years.  By way of excuse, I was not really thinking much about the puzzle at all.

I will make up for two years of stupidity.  I will spend from 161-256 to the unsolved parts, as you suggest.  In addition, I intend to add further funds.  My aim is to boost the density by a factor of 10, from 0.001*length(key) to 0.01*length(key).  Probably in the next few weeks.  At any rate, when I next have an extended period of quiet and calm, to construct the new transaction carefully.

A few words about the puzzle.  There is no pattern.  It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty).  It is simply a crude measuring instrument, of the cracking strength of the community.

Finally, I wish to express appreciation of the efforts of all developers of new cracking tools and technology.  The "large bitcoin collider" is especially innovative and interesting!

Again the quote "It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty)" it is to me a bit misleading.

If it is a Deterministic Wallet the creator must have done a huge code implementation just to create the transactions of this Puzzle.
A deterministic wallet use 12 or more standard words and start from a seed like: "xprv......." that is the HD node root key (base58), than he needs a Seed hex that is
generated by the 12 words given.

I suppose he did everything OK but if you look closely to the Private Keys of the empted addresses you see something repeating:

Code:
No. |=========PRIVATE KEY IN HEX ===================================== |
01  | 0000000000000000000000000000000000000000000000000000000000000001 |                         00000001
02  | 0000000000000000000000000000000000000000000000000000000000000003 |                         00000011
03  | 0000000000000000000000000000000000000000000000000000000000000007 |                         00000111
04  | 0000000000000000000000000000000000000000000000000000000000000008 |                         00001000
05  | 0000000000000000000000000000000000000000000000000000000000000015 |                         00010101
06  | 0000000000000000000000000000000000000000000000000000000000000031 |                         00110001
07  | 000000000000000000000000000000000000000000000000000000000000004C |                         01001100
08  | 00000000000000000000000000000000000000000000000000000000000000E0 |                         11100000
09  | 00000000000000000000000000000000000000000000000000000000000001D3 |                00000001 11010011
10  | 0000000000000000000000000000000000000000000000000000000000000202 |                00000010 00000010
11  | 0000000000000000000000000000000000000000000000000000000000000483 |                00000100 10000011
12  | 0000000000000000000000000000000000000000000000000000000000000A7B |                00001010 01111011
13  | 0000000000000000000000000000000000000000000000000000000000001460 |                00010100 01100000
14  | 0000000000000000000000000000000000000000000000000000000000002930 |                00101001 00110000
15  | 00000000000000000000000000000000000000000000000000000000000068F3 |                01101000 11110011
16  | 000000000000000000000000000000000000000000000000000000000000C936 |                11001001 00110110
17  | 000000000000000000000000000000000000000000000000000000000001764F |       00000001 01110110 01001111
18  | 000000000000000000000000000000000000000000000000000000000003080D |       00000011 00001000 00001101
19  | 000000000000000000000000000000000000000000000000000000000005749F |       00000101 01110100 10011111
20  | 00000000000000000000000000000000000000000000000000000000000D2C55 |       00001101 00101100 01010101
21  | 00000000000000000000000000000000000000000000000000000000001BA534 |       00011011 10100101 00110100
22  | 00000000000000000000000000000000000000000000000000000000002DE40F |       00101101 11100100 00001111
23  | 0000000000000000000000000000000000000000000000000000000000556E52 |       01010101 01101110 01010010
24  | 0000000000000000000000000000000000000000000000000000000000DC2A04 |       11011100 00101010 00000100


or for a larger view:

Code:
**************** From Address #1 to #61  **********************************************************
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0101 1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0001 1PitScNLyp2HCygzadCh7FveTnfmpPbfp8
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1100 1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110 0000 1M92tSqNmQLYw33fuBvjmeadirh1ysMBxK
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1101 0011 1CQFwcjw1dwhtkVWBttNLDtqL7ivBonGPV
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 0010 1LeBZP5QCwwgXRtmVUvTVrraqPUokyLHqe
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1000 0011 1PgQVLmst3Z314JrQn5TNiys8Hc38TcXJu
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0111 1011 1DBaumZxUkM4qMQRt2LVWyFJq5kDtSZQot
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0100 0110 0000 1Pie8JkxBT6MGPz9Nvi3fsPkr2D8q3GBc1
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1001 0011 0000 1ErZWg5cFCe4Vw5BzgfzB74VNLaXEiEkhk
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1000 1111 0011 1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1100 1001 0011 0110 1BDyrQ6WoF8VN3g9SAS1iKZcPzFfnDVieY
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0111 0110 0100 1111 1HduPEXZRdG26SUT5Yk83mLkPyjnZuJ7Bm
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 1000 0000 1101 1GnNTmTVLZiqQfLbAdp9DVdicEnB5GoERE
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0111 0100 1001 1111 1NWmZRpHH4XSPwsW6dsS3nrNWfL1yrJj4w
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 0010 1100 0101 0101 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1011 1010 0101 0011 0100 14oFNXucftsHiUMY8uctg6N487riuyXs4h
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1101 1110 0100 0000 1111 1CfZWK1QTQE3eS9qn61dQjV89KDjZzfNcv
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0101 0110 1110 0101 0010 1L2GM8eE7mJWLdo3HZS6su1832NX2txaac
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 1100 0010 1010 0000 0100 1rSnXMr63jdCuegJFuidJqWxUPV7AtUf7
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1010 0101 1110 1110 0101 15JhYXn6Mx3oF4Y7PcTAv2wVVAuCFFQNiP
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0100 0000 0011 0010 0110 1110 1JVnST957hGztonaWK6FougdtjxzHzRMMg
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1010 1100 0011 1000 0111 0101 128z5d7nN7PkCuX5qoA4Ys6pmxUYnEy86k
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 1001 0001 0110 1100 1110 1000 12jbtzBb54r97TCwW3G1gCFoumpckRAPdY
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0111 1110 0010 0101 0101 0001 1110 19EEC52krRUK1RkUAEZmQdjTyHT7Gp1TYT
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1101 1001 0100 1100 1101 0110 0100 1LHtnpd8nU5VHEMkG2TMYYNUjjLc992bps
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 1101 0100 1111 1110 0111 0100 0111 1LhE6sCTuGae42Axu1L1ZB7L96yi9irEBE
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1011 1000 0110 0010 1010 0110 0010 1110 1FRoHA9xewq7DjrZ1psWJVeTer8gHRqEvR
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1010 1001 0110 1100 1010 1000 1101 1000 187swFMjz1G54ycVU56B7jZFHFTNVQFDiu
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0100 1010 0110 0101 1001 0001 0001 1101 1PWABE7oUahG2AFFQhhvViQovnCr4rEv7Q
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1010 1110 1101 0010 0001 0001 0111 0000 1PWCx5fovoEaoBowAvF5k91m2Xat9bMgwb
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 1101 1110 1000 0010 0000 1010 0111 1100 1Be2UF9NLfyLFbtm3TCbmuocc9N1Kduci1
0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0111 0101 0111 0111 0101 0110 1010 1001 0011 14iXhn8bGajVWegZHJ18vJLHhntcpL4dex
0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0010 0011 1000 0010 1111 1010 1100 1101 0000 1HBtApAFA9B2YZw3G2YKSMCtb3dVnjuNe2
0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1011 0101 1111 1000 0011 0000 0011 1110 1001 122AJhKLEfkFBaGAd84pLp1kfE7xK3GdT8
0000 0000 0000 0000 0000 0000 0000 0000 0000 1110 1001 1010 1110 0100 1001 0011 0011 1101 0110 1EeAxcprB2PpCnr34VfZdFrkUWuxyiNEFv
0000 0000 0000 0000 0000 0000 0000 0000 0001 0101 0011 1000 0110 1001 1010 1100 1100 0101 1011 1L5sU9qvJeuwQUdt4y1eiLmquFxKjtHr3E
0000 0000 0000 0000 0000 0000 0000 0000 0010 1010 0010 0010 0001 1100 0101 1000 1101 1000 1111 1E32GPWgDyeyQac4aJxm9HVoLrrEYPnM4N
0000 0000 0000 0000 0000 0000 0000 0000 0110 1011 1101 0011 1011 0010 0111 1100 0101 1001 0001 1PiFuqGpG8yGM5v6rNHWS3TjsG6awgEGA1
0000 0000 0000 0000 0000 0000 0000 0000 1110 0000 0010 1011 0011 0101 1010 0011 0101 1000 1111 1CkR2uS7LmFwc3T2jV8C1BhWb5mQaoxedF
0000 0000 0000 0000 0000 0000 0000 0001 0010 0010 1111 1100 1010 0001 0100 0011 1100 0000 0101 1NtiLNGegHWE3Mp9g2JPkgx6wUg4TW7bbk
0000 0000 0000 0000 0000 0000 0000 0010 1110 1100 0001 1000 0011 1000 1000 1101 0101 0100 0100 1F3JRMWudBaj48EhwcHDdpeuy2jwACNxjP
0000 0000 0000 0000 0000 0000 0000 0110 1100 1101 0110 0001 0000 1011 0101 0011 1100 1011 1010 1Pd8VvT49sHKsmqrQiP61RsVwmXCZ6ay7Z
0000 0000 0000 0000 0000 0000 0000 1010 1101 1110 0110 1101 0111 1100 1110 0011 1011 1001 1011 1DFYhaB2J9q1LLZJWKTnscPWos9VBqDHzv
0000 0000 0000 0000 0000 0000 0001 0111 0100 0001 0111 0110 1011 0000 0001 0101 1111 0100 1101 12CiUhYVTTH33w3SPUBqcpMoqnApAV4WCF
0000 0000 0000 0000 0000 0000 0010 0010 1011 1101 0100 0011 1100 0010 1110 1001 0011 0101 0100 1MEzite4ReNuWaL5Ds17ePKt2dCxWEofwk
0000 0000 0000 0000 0000 0000 0111 0101 0000 0111 0000 1010 0001 1010 0000 0000 1001 1101 0100 1NpnQyZ7x24ud82b7WiRNvPm6N8bqGQnaS
0000 0000 0000 0000 0000 0000 1110 1111 1010 1110 0001 0110 0100 1100 1011 1001 1110 0011 1100 15z9c9sVpu6fwNiK7dMAFgMYSK4GqsGZim
0000 0000 0000 0000 0000 0001 1000 0000 0111 1000 1000 1110 0100 0111 1110 0011 0010 0110 1100 15K1YKJMiJ4fpesTVUcByoz334rHmknxmT
0000 0000 0000 0000 0000 0010 0011 0110 1111 1011 0110 1101 0101 1010 1101 0001 1111 0100 0110 19LeLQDmSR8nxFa4v7UdX9SC41mdxP6Rx9
0000 0000 0000 0000 0000 0110 1010 1011 1110 0001 1111 1001 1011 0110 0111 1110 0001 0001 0100 1LzhS3k3e9Ub8i2W1V8xQFdB8n2MYCHPCa
0000 0000 0000 0000 0000 1001 1101 0001 1000 1011 0110 0011 1010 1100 0100 1111 1111 1101 1111 17aPYR1m6pVAacXg1PTDDU7XafvK1dxvhi
0000 0000 0000 0000 0001 1110 1011 0010 0101 1100 1001 0000 0111 1001 0101 1101 0110 0001 1100 15c9mPGLku1HuW9LRtBf4jcHVpBUt8txKz
0000 0000 0000 0000 0010 1100 0110 0111 0101 1011 1000 0101 0010 0001 1000 1001 1010 0010 0001 1Dn8NF8qDyyfHMktmuoQLGyjWmZXgvosXf
0000 0000 0000 0000 0111 0100 1001 0110 1100 1011 1011 1000 0111 1100 1010 1011 0100 0100 1111 1HAX2n9Uruu9YDt4cqRgYcvtGvZj1rbUyt
0000 0000 0000 0000 1111 1100 0000 0111 1010 0001 1000 0010 0101 0011 0110 0111 1011 1011 1110 1Kn5h2qpgw9mWE5jKpk8PP4qvvJ1QVy8su
0000 0000 0000 0001 0011 1100 1001 0110 1010 0011 0111 0100 0010 1111 0110 0100 1001 0000 0110 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB

so in other words the Creator must have created the Private Keys that were easy for him to manage (256 PK to remeber)
plus he did decide that the Private Keys had to be created following the rule of the MSB shifting bit, that is always
"1" from the PK of the previous address as you can see here better:

Code:
                                                                                                                            
You can see the MSB bit shifting left for every address also this rule tell us the Space Address Range  into which search for the
PK. Deterministic Wallets do not do that.

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 001. 1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 01.. 19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1... 1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 .... 1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 001. .... 1PitScNLyp2HCygzadCh7FveTnfmpPbfp8
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 01.. .... 1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC

I other words I do believe that the PKs are generated following a specific rule while was creted the transaction of
"sending" to the 256 address.

We all know that the PK must follow the following:

Partial_PrivateKey >= 2^(n-1)
Partial_PrivateKey <= 2^n

but also we know that:

PrivateKey = Partial_PrivateKey (+/-) value

and check again:
PrivateKey >= 2^(n-1)
PrivateKey <= 2^n

where
n = the address index
and
value = f(x) . This function could be a generator of a number to add to the lower address space range or to sunctract from the high address space range.
This generator could use
x = the amount of bitcoin sent the idexed address   or
x = the sum of all the bitcoin sent to the previous indexed address or
x = the count of all "1" binary cotainained to represent the amout of citcoin sent
x = .... use as much intuition you want.....I did not found any x yet although
x = could be the binary representation of a portion of an image

BTW: Good luck BTC SmileyBTC
hero member
Activity: 862
Merit: 662
newbie
Activity: 19
Merit: 1
in the range
decimals

400000000000000000000000000000000000000000000000000000000000:500000000000000000000000000000000000000000000000000000000000

find an address whose first digits in red match yours.

target= 4975641556000000000000000000000000000000000000000000000000000

finds an address whose first red digits match another private key in the same range.


well seems pretty obvios that you range is going to match easy with full random

This is my counter propose is

target= 4975641556000000000000000000000000000000000000000000000123456


the problem is that you sacrifice probability to gain speed.
If you have a car race of thousands of miles, you don't reduce the size of the fuel tank to make the car faster and unlikely to reach the finish line.

You do nothing with processing many keys where, for example, their first 15 digits are the same.
everything needs a balance.
hero member
Activity: 862
Merit: 662
in the range
decimals

400000000000000000000000000000000000000000000000000000000000:500000000000000000000000000000000000000000000000000000000000

find an address whose first digits in red match yours.

target= 4975641556000000000000000000000000000000000000000000000000000

finds an address whose first red digits match another private key in the same range.


well seems pretty obvios that you range is going to match easy with full random

This is my counter propose is

target= 4975641556000000000000000000000000000000000000000000000123456
hero member
Activity: 862
Merit: 662
OK i got your point and it maybe be a reasonable point if those operations need the same amount of time but that is not always the case, let me explaint to you why almost all the programs implement Random range choice  + Sequential N keys

Every time that you need to get the publickey from a Privatekey

Code:
public_key = bitcoin_privkey_to_pubkey(pk)

it performe a Scalar multiplication also knows as "Double and add" algorithm depeding of the implementation it can do from 32 to 256 Publickey additions internally

So every random key that you want to convert to publickey do in average that amount of operations

In the other case if you go random + sequential you only do that operation once per random choice, but every next sequential key only need One Publickey addition per key.

Example:

Full true random for 1024 keys needs 32768 Publickey additions in average (using a implementation that do 32 Publickey operations per Scalar multiplication)
 
Fake Random (as you call it) for 1024 keys, only need 1055 Publickeys additions (1 for Scalar multiplication and 1023 for subsequent publickey additions)

So in the time that the full true random do 1024, the "fake random" can do some near 32768 keys. And this is only the tip of the iceberg, for some libraries sequential operations are highly optimized and the performance can  be some Factors the previos example, that is why most program do random + sequential.

So Only if those two variants have the same speed, you will be right

newbie
Activity: 19
Merit: 1

It is totally a question of speed i bet that you python script don't get more thant 50 thousand keys per second.

We can do some test in some 32-36 bit range i guess that the fake randomness can beat your proposal


a test:
try this:

in the range
decimals

400000000000000000000000000000000000000000000000000000000000:500000000000000000000000000000000000000000000000000000000000

find an address whose first digits in red match yours.

target= 4975641556000000000000000000000000000000000000000000000000000

finds an address whose first red digits match another private key in the same range.

rules: you will only search in the given range,
Let's suppose that we don't know what the private key is.

therefore, we will not be able to reduce the range, nor skip processes to obtain an advantage.

something like a vanity search.


I'm sure that any version of code that uses "real random" will find a match faster than using Random + sequential in your code.

The point of this is to show that we have technical limitations in terms of computing power, so searches that include sequential only slow down the process.

It does work, for small ranges, but it is an obstacle in large numbers.


if you cheat on the test you only cheat yourself.


newbie
Activity: 19
Merit: 1


We can do some test in some 32-36 bit range i guess that the fake randomness can't beat your proposal

The python code is an example of how random should be, obviously it's an interpreter and it's slow. It's just for the purpose of making my point.
newbie
Activity: 19
Merit: 1
I disagree with you totally. But that is OK no? I can't imagine a world where all the people think in the same way.

Some people can debate with you that there is not such thing like true random...

I like the random values that /dev/urandom give...

Have a good day.

When I say 50% more I mean the number of digits.

you software  example.

you range             1000000000 (10 digits)

target=12345600000000000000(20 digits)


your software will change the first few digits(red) every x amount of keys.
which does slow down the search compared to a "real random " which changes all the range digits for each key.

And yes, a real random does not technically exist, but you want to deny without giving arguments, you know very well what I mean.


hero member
Activity: 862
Merit: 662
I disagree with you totally. But that is OK no? I can't imagine a world where all the people think in the same way.

Some people can debate with you that there is not such thing like true random...

I like the random values that /dev/urandom give...

It's not a question of speed, due to current computing limitations sequential search is a lost cause.

It is totally a question of speed i bet that you python script don't get more thant 50 thousand keys per second.

We can do some test in some 32-36 bit range i guess that the fake randomness can beat your proposal

Have a good day.
newbie
Activity: 19
Merit: 1
No, the only reason you think that is because the software you know of is basically copy-paste code.

better chance you have to solve the puzzle #66 with this basic code:

What is your speed?  Roll Eyes Roll Eyes Huh

It's not a question of speed, due to current computing limitations sequential search is a lost cause.
if you have 1000 petakey/s
and you search in a range 50% greater than your speed is not feasible -R + sequential.
because your software would not influence the first digits.

on the other hand, a real random has more opportunity with less computing power.
example

pk =1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
your code                                                                                          100000000000000000000000000

random sequential just changes the values in color "red" more slowly, than with a true random.


hero member
Activity: 862
Merit: 662
No, the only reason you think that is because the software you know of is basically copy-paste code.

better chance you have to solve the puzzle #66 with this basic code:

What is your speed?  Roll Eyes Roll Eyes Huh
newbie
Activity: 19
Merit: 1

Warning!

stay away from applications where their Random mode is a random start point(every "X" amount) + sequential .

avoid Fake Random.


Every Random program does the same. That's normal

No, the only reason you think that is because the software you know of is basically copy-paste code.


better chance you have to solve the puzzle #66 with this basic code:

Code:
import bitcoin 
import random
 
print("searching address....")

while True:
        a = random.randint(36893488147419103231, 73786976294838206463)
        b = hex(a)[2:]
        c = str.format(b)
        pk= c.zfill(64)
        public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
        public_key_compressed = bitcoin.compress(public_key)
        pkaddr = bitcoin.pubkey_to_address(public_key_compressed)
        target = "13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so"
        if pkaddr in target:
            print("address found")
            data = open("found.txt","a")
            data.write(str(pk)+"\n"+ str(pkaddr)+"\n")
            data.close()
            exit


because it makes better use of random.




member
Activity: 194
Merit: 14

Warning!

stay away from applications where their Random mode is a random start point(every "X" amount) + sequential .

avoid Fake Random.


Every Random program does the same. That's normal
jr. member
Activity: 74
Merit: 1
I have been working on big numbers and public keys so much, now when I look at them, I'm just blank, totally with no idea what I'm looking at, now I understand why mathematicians are a bit off, they go crazy after a while.🤣
Need to rest to gain focus, this challenge is what I strive for.

At least you know what to do with it all. I'm a little confused almost in very begining
full member
Activity: 282
Merit: 114
It's fake and unusuable.
Real key for #75 is 4c5ce114686a1336e07 so it totally other side than predicted 6e109e699439a400000
newbie
Activity: 19
Merit: 1

Warning!

stay away from applications where their Random mode is a random start point(every "X" amount) + sequential .

example:

I will use decimals for the example.

if we want to find the following pk:

1234500000000000000000000000000000000000000000


in range:

1000000000000000000000000000000000000000000000:2000000000000000000000000000000000000000000000

assuming your resources limit:

10000000000000000000(key/s)

assuming that the random start point is:

1134500000000000000000000000000000000000000000


compared:


1134500000000000000000000000000000000000000000

                                          10000000000000000000(you Range)



In short, you would have to be incredibly lucky that at least the first 15 digits of the "random start point"
match the private key you are looking for.


The ideal code for this is a real random, that the millions of keys scanned are 100% random within the given range.


avoid Fake Random.
jr. member
Activity: 64
Merit: 1
34Sf4DnMt3z6XKKoWmZRw2nGyfGkDgNJZZ
member
Activity: 275
Merit: 20
the right steps towerds the goal
Code:
from sklearn.linear_model import LinearRegression
import numpy as np

train_sequence = [1, 3, 7, 8, 21, 49, 76, 224, 467, 514, 1155, 2683, 5216, 10544, 26867, 51510, 95823, 198669, 357535, 863317, 1811764, 3007503, 5598802, 14428676, 33185509, 54538862, 111949941, 227634408, 400708894, 1033162084, 2102388551, 3093472814, 7137437912, 14133072157, 20112871792, 42387769980, 100251560595, 146971536592, 323724968937, 1003651412950, 1458252205147, 2895374552463, 7409811047825, 15404761757071, 19996463086597, 51408670348612, 119666659114170, 191206974700443, 409118905032525, 611140496167764, 2058769515153876, 4216495639600700, 6763683971478124, 9974455244496707, 30045390491869460, 44218742292676575, 138245758910846492, 199976667976342049, 525070384258266191, 1135041350219496382, 1425787542618654982, 3908372542507822062, 8993229949524469768, 17799667357578236628, 30568377312064202855]

X_train = np.array([[2**i] for i in range(len(train_sequence))])  # Powers of 2
y_train = np.array(train_sequence)

model = LinearRegression()
model.fit(X_train, y_train)

i = 1
for i in range(len(train_sequence), 256):
    next_number = model.predict([[2**i]])
    next_number_decimal = int(next_number)
    next_number_hex = hex(next_number_decimal)

    print("Puzzle : "+str(i)+" hexadecimal is:", next_number_hex)
    #print("The next number in the sequence (hexadecimal) is:", next_number_hex)
    #print("The next number in the sequence (decimal) is:", next_number_decimal)
    train_sequence.append(next_number_decimal)
    X_train = np.vstack([X_train, [2**i]])
    y_train = np.append(y_train, next_number_decimal)
    model.fit(X_train, y_train)


The line from sklearn.linear_model import LinearRegression is importing the LinearRegression class from the linear_model module of the scikit-learn. which is a popular machine learning library in Python that provides various tools and algorithms for data analysis, The LinearRegression class is used to create an instance of a linear regression model. This model is then trained on the provided training_data (X_train and y_train) using the fit() method, which fits the linear regression line to the given data points. Once the model is trained, it can be used to make predictions on new data points using the predict() method. However, in this particular case, the model may not be able to make predictions for the next numbers in the sequence, not even close or far. The predictions generated by the model appear to be the same for each number up to 256, indicating that the model may not be capturing the underlying pattern in the sequence effectively. Consequent, it seems that the model is not useful for predicting the next numbers in the sequence beyond the provided training data. here all prediction 66 to 256, useless  Roll Eyes

Puzzle : 66 hexadecimal is: 0x370ce49e46646a000
Puzzle : 67 hexadecimal is: 0x6e15318735d5b8000
Puzzle : 68 hexadecimal is: 0xdc25cb5914b880000
Puzzle : 69 hexadecimal is: 0x1b846fefcd27e20000
Puzzle : 70 hexadecimal is: 0x3708966444e0900000
Puzzle : 71 hexadecimal is: 0x6e10e34d3451f00000
Puzzle : 72 hexadecimal is: 0xdc217d1f1334b00000
Puzzle : 73 hexadecimal is: 0x1b842b0c2d0fa200000
Puzzle : 74 hexadecimal is: 0x37085180a4c85000000
Puzzle : 75 hexadecimal is: 0x6e109e699439a400000
Puzzle : 76 hexadecimal is: 0xdc21383b731c5800000
Puzzle : 77 hexadecimal is: 0x1b8426bdf30e1c000000
Puzzle : 78 hexadecimal is: 0x37084d326ac6c6000000
Puzzle : 79 hexadecimal is: 0x6e109a1b5a3808000000
Puzzle : 80 hexadecimal is: 0xdc2133ed391ab8000000
Puzzle : 81 hexadecimal is: 0x1b8426790f6dfd0000000
Puzzle : 82 hexadecimal is: 0x37084ced8726a60000000
Puzzle : 83 hexadecimal is: 0x6e1099d67698080000000
Puzzle : 84 hexadecimal is: 0xdc2133a8557a900000000
Puzzle : 85 hexadecimal is: 0x1b842674c133fc00000000
Puzzle : 86 hexadecimal is: 0x37084ce938eca600000000
Puzzle : 87 hexadecimal is: 0x6e1099d2285df800000000
Puzzle : 88 hexadecimal is: 0xdc2133a407408800000000
Puzzle : 89 hexadecimal is: 0x1b8426747c505b000000000
Puzzle : 90 hexadecimal is: 0x37084ce8f40904000000000
Puzzle : 91 hexadecimal is: 0x6e1099d1e37a3c000000000
Puzzle : 92 hexadecimal is: 0xdc2133a3c25ce8000000000
Puzzle : 93 hexadecimal is: 0x1b8426747802200000000000
Puzzle : 94 hexadecimal is: 0x37084ce8efbac80000000000
Puzzle : 95 hexadecimal is: 0x6e1099d1df2c1c0000000000
Puzzle : 96 hexadecimal is: 0xdc2133a3be0ed00000000000
Puzzle : 97 hexadecimal is: 0x1b84267477bd4200000000000
Puzzle : 98 hexadecimal is: 0x37084ce8ef75ee00000000000
Puzzle : 99 hexadecimal is: 0x6e1099d1dee73400000000000
Puzzle : 100 hexadecimal is: 0xdc2133a3bdc9d000000000000
Puzzle : 101 hexadecimal is: 0x1b84267477b8f2000000000000
Puzzle : 102 hexadecimal is: 0x37084ce8ef71a2000000000000
Puzzle : 103 hexadecimal is: 0x6e1099d1dee2ec000000000000
Puzzle : 104 hexadecimal is: 0xdc2133a3bdc5a8000000000000
Puzzle : 105 hexadecimal is: 0x1b84267477b8af0000000000000
Puzzle : 106 hexadecimal is: 0x37084ce8ef715a0000000000000
Puzzle : 107 hexadecimal is: 0x6e1099d1dee2bc0000000000000
Puzzle : 108 hexadecimal is: 0xdc2133a3bdc5600000000000000
Puzzle : 109 hexadecimal is: 0x1b84267477b8a900000000000000
Puzzle : 110 hexadecimal is: 0x37084ce8ef715400000000000000
Puzzle : 111 hexadecimal is: 0x6e1099d1dee29800000000000000
Puzzle : 112 hexadecimal is: 0xdc2133a3bdc52800000000000000
Puzzle : 113 hexadecimal is: 0x1b84267477b8a6000000000000000
Puzzle : 114 hexadecimal is: 0x37084ce8ef714e000000000000000
Puzzle : 115 hexadecimal is: 0x6e1099d1dee2a0000000000000000
Puzzle : 116 hexadecimal is: 0xdc2133a3bdc538000000000000000
Puzzle : 117 hexadecimal is: 0x1b84267477b8a90000000000000000
Puzzle : 118 hexadecimal is: 0x37084ce8ef71520000000000000000
Puzzle : 119 hexadecimal is: 0x6e1099d1dee2a00000000000000000
Puzzle : 120 hexadecimal is: 0xdc2133a3bdc5680000000000000000
Puzzle : 121 hexadecimal is: 0x1b84267477b8ac00000000000000000
Puzzle : 122 hexadecimal is: 0x37084ce8ef715c00000000000000000
Puzzle : 123 hexadecimal is: 0x6e1099d1dee2b000000000000000000
Puzzle : 124 hexadecimal is: 0xdc2133a3bdc56800000000000000000
Puzzle : 125 hexadecimal is: 0x1b84267477b8ae000000000000000000
Puzzle : 126 hexadecimal is: 0x37084ce8ef715a000000000000000000
Puzzle : 127 hexadecimal is: 0x6e1099d1dee2b4000000000000000000
Puzzle : 128 hexadecimal is: 0xdc2133a3bdc558000000000000000000
Puzzle : 129 hexadecimal is: 0x1b84267477b8a90000000000000000000
Puzzle : 130 hexadecimal is: 0x37084ce8ef71500000000000000000000
Puzzle : 131 hexadecimal is: 0x6e1099d1dee2ac0000000000000000000
Puzzle : 132 hexadecimal is: 0xdc2133a3bdc5480000000000000000000
Puzzle : 133 hexadecimal is: 0x1b84267477b8a600000000000000000000
Puzzle : 134 hexadecimal is: 0x37084ce8ef714a00000000000000000000
Puzzle : 135 hexadecimal is: 0x6e1099d1dee2a000000000000000000000
Puzzle : 136 hexadecimal is: 0xdc2133a3bdc53000000000000000000000
Puzzle : 137 hexadecimal is: 0x1b84267477b8a6000000000000000000000
Puzzle : 138 hexadecimal is: 0x37084ce8ef7148000000000000000000000
Puzzle : 139 hexadecimal is: 0x6e1099d1dee28c000000000000000000000
Puzzle : 140 hexadecimal is: 0xdc2133a3bdc530000000000000000000000
Puzzle : 141 hexadecimal is: 0x1b84267477b8a80000000000000000000000
Puzzle : 142 hexadecimal is: 0x37084ce8ef714e0000000000000000000000
Puzzle : 143 hexadecimal is: 0x6e1099d1dee2a40000000000000000000000
Puzzle : 144 hexadecimal is: 0xdc2133a3bdc5480000000000000000000000
Puzzle : 145 hexadecimal is: 0x1b84267477b8a600000000000000000000000
Puzzle : 146 hexadecimal is: 0x37084ce8ef714a00000000000000000000000
Puzzle : 147 hexadecimal is: 0x6e1099d1dee29c00000000000000000000000
Puzzle : 148 hexadecimal is: 0xdc2133a3bdc52800000000000000000000000
Puzzle : 149 hexadecimal is: 0x1b84267477b8a3000000000000000000000000
Puzzle : 150 hexadecimal is: 0x37084ce8ef7144000000000000000000000000
Puzzle : 151 hexadecimal is: 0x6e1099d1dee294000000000000000000000000
Puzzle : 152 hexadecimal is: 0xdc2133a3bdc510000000000000000000000000
Puzzle : 153 hexadecimal is: 0x1b84267477b8a30000000000000000000000000
Puzzle : 154 hexadecimal is: 0x37084ce8ef71400000000000000000000000000
Puzzle : 155 hexadecimal is: 0x6e1099d1dee2840000000000000000000000000
Puzzle : 156 hexadecimal is: 0xdc2133a3bdc4f00000000000000000000000000
Puzzle : 157 hexadecimal is: 0x1b84267477b8a100000000000000000000000000
Puzzle : 158 hexadecimal is: 0x37084ce8ef714400000000000000000000000000
Puzzle : 159 hexadecimal is: 0x6e1099d1dee28000000000000000000000000000
Puzzle : 160 hexadecimal is: 0xdc2133a3bdc51000000000000000000000000000
Puzzle : 161 hexadecimal is: 0x1b84267477b8a0000000000000000000000000000
Puzzle : 162 hexadecimal is: 0x37084ce8ef7140000000000000000000000000000
Puzzle : 163 hexadecimal is: 0x6e1099d1dee278000000000000000000000000000
Puzzle : 164 hexadecimal is: 0xdc2133a3bdc4e8000000000000000000000000000
Puzzle : 165 hexadecimal is: 0x1b84267477b89e0000000000000000000000000000
Puzzle : 166 hexadecimal is: 0x37084ce8ef71380000000000000000000000000000
Puzzle : 167 hexadecimal is: 0x6e1099d1dee26c0000000000000000000000000000
Puzzle : 168 hexadecimal is: 0xdc2133a3bdc4d00000000000000000000000000000
Puzzle : 169 hexadecimal is: 0x1b84267477b89c00000000000000000000000000000
Puzzle : 170 hexadecimal is: 0x37084ce8ef713600000000000000000000000000000
Puzzle : 171 hexadecimal is: 0x6e1099d1dee26c00000000000000000000000000000
Puzzle : 172 hexadecimal is: 0xdc2133a3bdc4c000000000000000000000000000000
Puzzle : 173 hexadecimal is: 0x1b84267477b89a000000000000000000000000000000
Puzzle : 174 hexadecimal is: 0x37084ce8ef7136000000000000000000000000000000
Puzzle : 175 hexadecimal is: 0x6e1099d1dee274000000000000000000000000000000
Puzzle : 176 hexadecimal is: 0xdc2133a3bdc4d0000000000000000000000000000000
Puzzle : 177 hexadecimal is: 0x1b84267477b89e0000000000000000000000000000000
Puzzle : 178 hexadecimal is: 0x37084ce8ef71360000000000000000000000000000000
Puzzle : 179 hexadecimal is: 0x6e1099d1dee2700000000000000000000000000000000
Puzzle : 180 hexadecimal is: 0xdc2133a3bdc4c80000000000000000000000000000000
Puzzle : 181 hexadecimal is: 0x1b84267477b89900000000000000000000000000000000
Puzzle : 182 hexadecimal is: 0x37084ce8ef713200000000000000000000000000000000
Puzzle : 183 hexadecimal is: 0x6e1099d1dee25c00000000000000000000000000000000
Puzzle : 184 hexadecimal is: 0xdc2133a3bdc4c000000000000000000000000000000000
Puzzle : 185 hexadecimal is: 0x1b84267477b89c000000000000000000000000000000000
Puzzle : 186 hexadecimal is: 0x37084ce8ef7138000000000000000000000000000000000
Puzzle : 187 hexadecimal is: 0x6e1099d1dee274000000000000000000000000000000000
Puzzle : 188 hexadecimal is: 0xdc2133a3bdc4c8000000000000000000000000000000000
Puzzle : 189 hexadecimal is: 0x1b84267477b89b0000000000000000000000000000000000
Puzzle : 190 hexadecimal is: 0x37084ce8ef71360000000000000000000000000000000000
Puzzle : 191 hexadecimal is: 0x6e1099d1dee26c0000000000000000000000000000000000
Puzzle : 192 hexadecimal is: 0xdc2133a3bdc4d00000000000000000000000000000000000
Puzzle : 193 hexadecimal is: 0x1b84267477b89e00000000000000000000000000000000000
Puzzle : 194 hexadecimal is: 0x37084ce8ef713600000000000000000000000000000000000
Puzzle : 195 hexadecimal is: 0x6e1099d1dee27000000000000000000000000000000000000
Puzzle : 196 hexadecimal is: 0xdc2133a3bdc4d800000000000000000000000000000000000
Puzzle : 197 hexadecimal is: 0x1b84267477b899000000000000000000000000000000000000
Puzzle : 198 hexadecimal is: 0x37084ce8ef7136000000000000000000000000000000000000
Puzzle : 199 hexadecimal is: 0x6e1099d1dee274000000000000000000000000000000000000
Puzzle : 200 hexadecimal is: 0xdc2133a3bdc4e0000000000000000000000000000000000000
Puzzle : 201 hexadecimal is: 0x1b84267477b8980000000000000000000000000000000000000
Puzzle : 202 hexadecimal is: 0x37084ce8ef712e0000000000000000000000000000000000000
Puzzle : 203 hexadecimal is: 0x6e1099d1dee2500000000000000000000000000000000000000
Puzzle : 204 hexadecimal is: 0xdc2133a3bdc4900000000000000000000000000000000000000
Puzzle : 205 hexadecimal is: 0x1b84267477b89000000000000000000000000000000000000000
Puzzle : 206 hexadecimal is: 0x37084ce8ef711800000000000000000000000000000000000000
Puzzle : 207 hexadecimal is: 0x6e1099d1dee24000000000000000000000000000000000000000
Puzzle : 208 hexadecimal is: 0xdc2133a3bdc47000000000000000000000000000000000000000
Puzzle : 209 hexadecimal is: 0x1b84267477b88e000000000000000000000000000000000000000
Puzzle : 210 hexadecimal is: 0x37084ce8ef7118000000000000000000000000000000000000000
Puzzle : 211 hexadecimal is: 0x6e1099d1dee22c000000000000000000000000000000000000000
Puzzle : 212 hexadecimal is: 0xdc2133a3bdc460000000000000000000000000000000000000000
Puzzle : 213 hexadecimal is: 0x1b84267477b88b0000000000000000000000000000000000000000
Puzzle : 214 hexadecimal is: 0x37084ce8ef71160000000000000000000000000000000000000000
Puzzle : 215 hexadecimal is: 0x6e1099d1dee23c0000000000000000000000000000000000000000
Puzzle : 216 hexadecimal is: 0xdc2133a3bdc4700000000000000000000000000000000000000000
Puzzle : 217 hexadecimal is: 0x1b84267477b89000000000000000000000000000000000000000000
Puzzle : 218 hexadecimal is: 0x37084ce8ef712400000000000000000000000000000000000000000
Puzzle : 219 hexadecimal is: 0x6e1099d1dee23400000000000000000000000000000000000000000
Puzzle : 220 hexadecimal is: 0xdc2133a3bdc47000000000000000000000000000000000000000000
Puzzle : 221 hexadecimal is: 0x1b84267477b891000000000000000000000000000000000000000000
Puzzle : 222 hexadecimal is: 0x37084ce8ef712c000000000000000000000000000000000000000000
Puzzle : 223 hexadecimal is: 0x6e1099d1dee258000000000000000000000000000000000000000000
Puzzle : 224 hexadecimal is: 0xdc2133a3bdc4b0000000000000000000000000000000000000000000
Puzzle : 225 hexadecimal is: 0x1b84267477b8960000000000000000000000000000000000000000000
Puzzle : 226 hexadecimal is: 0x37084ce8ef71320000000000000000000000000000000000000000000
Puzzle : 227 hexadecimal is: 0x6e1099d1dee25c0000000000000000000000000000000000000000000
Puzzle : 228 hexadecimal is: 0xdc2133a3bdc4b00000000000000000000000000000000000000000000
Puzzle : 229 hexadecimal is: 0x1b84267477b89700000000000000000000000000000000000000000000
Puzzle : 230 hexadecimal is: 0x37084ce8ef712e00000000000000000000000000000000000000000000
Puzzle : 231 hexadecimal is: 0x6e1099d1dee24c00000000000000000000000000000000000000000000
Puzzle : 232 hexadecimal is: 0xdc2133a3bdc4b000000000000000000000000000000000000000000000
Puzzle : 233 hexadecimal is: 0x1b84267477b893000000000000000000000000000000000000000000000
Puzzle : 234 hexadecimal is: 0x37084ce8ef7124000000000000000000000000000000000000000000000
Puzzle : 235 hexadecimal is: 0x6e1099d1dee240000000000000000000000000000000000000000000000
Puzzle : 236 hexadecimal is: 0xdc2133a3bdc490000000000000000000000000000000000000000000000
Puzzle : 237 hexadecimal is: 0x1b84267477b8930000000000000000000000000000000000000000000000
Puzzle : 238 hexadecimal is: 0x37084ce8ef71260000000000000000000000000000000000000000000000
Puzzle : 239 hexadecimal is: 0x6e1099d1dee2440000000000000000000000000000000000000000000000
Puzzle : 240 hexadecimal is: 0xdc2133a3bdc4680000000000000000000000000000000000000000000000
Puzzle : 241 hexadecimal is: 0x1b84267477b88e00000000000000000000000000000000000000000000000
Puzzle : 242 hexadecimal is: 0x37084ce8ef711e00000000000000000000000000000000000000000000000
Puzzle : 243 hexadecimal is: 0x6e1099d1dee22c00000000000000000000000000000000000000000000000
Puzzle : 244 hexadecimal is: 0xdc2133a3bdc46800000000000000000000000000000000000000000000000
Puzzle : 245 hexadecimal is: 0x1b84267477b891000000000000000000000000000000000000000000000000
Puzzle : 246 hexadecimal is: 0x37084ce8ef7124000000000000000000000000000000000000000000000000
Puzzle : 247 hexadecimal is: 0x6e1099d1dee244000000000000000000000000000000000000000000000000
Puzzle : 248 hexadecimal is: 0xdc2133a3bdc468000000000000000000000000000000000000000000000000
Puzzle : 249 hexadecimal is: 0x1b84267477b88d0000000000000000000000000000000000000000000000000
Puzzle : 250 hexadecimal is: 0x37084ce8ef711e0000000000000000000000000000000000000000000000000
Puzzle : 251 hexadecimal is: 0x6e1099d1dee2400000000000000000000000000000000000000000000000000
Puzzle : 252 hexadecimal is: 0xdc2133a3bdc4980000000000000000000000000000000000000000000000000
Puzzle : 253 hexadecimal is: 0x1b84267477b88f00000000000000000000000000000000000000000000000000
Puzzle : 254 hexadecimal is: 0x37084ce8ef711a00000000000000000000000000000000000000000000000000
Puzzle : 255 hexadecimal is: 0x6e1099d1dee22c00000000000000000000000000000000000000000000000000
Puzzle : 256 hexadecimal is: 0xdc2133a3bdc45000000000000000000000000000000000000000000000000000


If you need to check predictions below 66, you can exclude the decimal numbers of like (64 and 65) from the training data and and check predictions as well.
jr. member
Activity: 59
Merit: 1
I wrote a small python script to try to predict the next number of the #66 address

from sklearn.linear_model import LinearRegression

# Training numbers
train_sequence = [1,3,7,8,21,49,76,224,467,514,1155,2683,5216,10544,26867,51510,95823,198669,357535,863317,1811764,3007503,5598802,14428676,33185509,54538862,111949941,227634408,400708894,1033162084,2102388551,3093472814,7137437912,14133072157,20112871792,42387769980,100251560595,146971536592,323724968937,1003651412950,1458252205147,2895374552463,7409811047825,15404761757071,19996463086597,51408670348612,119666659114170,191206974700443,409118905032525,611140496167764,2058769515153876,4216495639600700,6763683971478124,9974455244496707,30045390491869460,44218742292676575,138245758910846492,199976667976342049,525070384258266191,1135041350219496382,1425787542618654982,3908372542507822062,8993229949524469768,17799667357578236628,30568377312064202855]

# Forming the training data and target values
X_train = [[2**i] for i in range(len(train_sequence))]  # Powers of 2
y_train = train_sequence

# Creating and training the model
model = LinearRegression()
model.fit(X_train, y_train)

# Predicting the next number
next_number = model.predict([[2**len(train_sequence)]])
next_number_decimal = int(next_number)  # Converting the predicted number to decimal
next_number_hex = hex(next_number_decimal)  # Converting the predicted number from decimal to hexadecimal

print("The next number in the sequence (hexadecimal) is:", next_number_hex)
print("The next number in the sequence (decimal) is:", next_number_decimal)


If helpfull 1N97k1LdzjwdG6riN9ksJBhgDQyajV14GU

The next number in the sequence (hexadecimal) is: 0x370ce49e46646a000 P66
The next number in the sequence (decimal) is: 63468747843896254464
The next number in the sequence (hexadecimal) is: 0x6e15318735d5b8000 P67
The next number in the sequence (decimal) is: 126916812407624663040
The next number in the sequence (hexadecimal) is: 0xdc25cb5914b880000 P68
The next number in the sequence (decimal) is: 253812941535081660416
The next number in the sequence (hexadecimal) is: 0x1b846fefcd27e20000 P69
The next number in the sequence (decimal) is: 507605199789995720704
The next number in the sequence (hexadecimal) is: 0x3708966444e0900000 P70 : 349b84b6431a6c4ef1
The next number in the sequence (decimal) is: 1015189716299823448064


The goal mate is not give you the exact number, but to get a number that is fairly close to searched number so you can small search in smaller range. As you can se in line #70 the number that predicted is not far away from the actual one.

So… a range greater than 2^65 is not far? OMG! xD

Jump to: