Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 274. (Read 243316 times)

full member
Activity: 541
Merit: 137
where do we find a free script that does it all and still saves it in a txt file?

There are several commands from various programming languages that you can use. For example, if you are using python, you can use the open() function + parameter (w)rite
open ('youfile.txt', 'w')
whether your file exists or not (if the file does not exist it will create automatically) or you can use (a)ppend parameter

open ('youfile.txt', 'a')
your result will be added to the existing "text" on your file
newbie
Activity: 24
Merit: 0
Hello guys! is there a program that saves all found addresses in a txt file? for example from one point to another: 8147ae147ae147ae:828f5c28f5c28f5c
Just create a sequential order script to start at priv key a and end at priv key z.

where do we find a free script that does it all and still saves it in a txt file?
full member
Activity: 1232
Merit: 242
Shooters Shoot...
Hello guys! is there a program that saves all found addresses in a txt file? for example from one point to another: 8147ae147ae147ae:828f5c28f5c28f5c
Just create a sequential order script to start at priv key a and end at priv key z.
newbie
Activity: 24
Merit: 0
Hello guys! is there a program that saves all found addresses in a txt file? for example from one point to another: 8147ae147ae147ae:828f5c28f5c28f5c



full member
Activity: 431
Merit: 105
Code:
# Blind Birthday Attack. Proof of concept.
# https://defuse.ca/blind-birthday-attack.htm

require 'securerandom'
require 'openssl'

# Use 32-bit HMAC so that it's actually possible to perform the attack in
# a reasonable amount of time. This value must be a multiple of 8.
HMAC_BITS = 32

# Compute HMAC-SHA256
def hmac(key, message)
  return OpenSSL::HMAC::digest('SHA256', key, message)[0, HMAC_BITS/8]
end

# Here's the oracle, which we are attackking.  t has a 256-bit random secret
# key. When we give it two inputs a and b, it HMACs them both, and tells us how
# much of the HMACs match.
KEY = SecureRandom.random_bytes(32)
def oracle(a, b)
  h1 = hmac(KEY, a)
  h2 = hmac(KEY, b)
  h1_binary = h1.bytes.map { |c| c.to_s(2).rjust(8,'0') }.join('').split('')
  h2_binary = h2.bytes.map { |c| c.to_s(2).rjust(8,'0') }.join('').split('')
  0.upto(HMAC_BITS - 1) do |i|
    if h1_binary[i] != h2_binary[i]
      return i
    end
  end
  return HMAC_BITS
end

# Here's an implementation of the attack.

# We organize messages into a tree to find collisions.
class TreeNode
  attr_accessor :message, :left, :right
end

# We need a good supply of unique messages.
def random
  return SecureRandom.random_bytes(32)
end

def attack
  # Start the tree with one random message.
  root = TreeNode.new
  root.message = random()

  # Keep track of how much resources we use for the attack.
  queries = 0
  tree_size = 0
  closest = 0

  # Each time this outer loop iterates, a new message is added to the tree.
  loop do

    # Generate a new random message to add to the tree.
    newnode = TreeNode.new
    newnode.message = random()

    # Start inserting at the root of the tree.
    current = root

    # Keep track of how deep we are into the tree.
    # This is the number of HMAC bits that are known to match between the
    # 'current' node's message and the newnode's message.
    matching = 0


    # Each time this inner loop iterates, we go one level deeper into the tree.
    loop do

      # Ask the oracle how many bits the two HMACs match.
      thismatch = oracle(current.message, newnode.message)
      queries += 1

      # If we have a better match than ever before, tell the user, so that they
      # don't get bored and quit the attack before it finishes.
      if thismatch > closest
        closest = thismatch
        puts "Closest collision so far: #{thismatch}"
        puts "Tree size: #{tree_size}"
      end

      # If we found a collision, tell the user and stop the attack.
      if thismatch == HMAC_BITS && current.message != newnode.message
        puts "Found a collision amongst #{tree_size} in #{queries} queries!"
        puts "Message 1: #{current.message.unpack("H*")[0]}"
        puts "Message 2: #{newnode.message.unpack("H*")[0]}"
        return
      end

      # If the (matching+1)st HMAC bit matches, we go right. Else, left.
      if thismatch > matching
        # If the right node is nil, this is where we add the new node.
        if current.right.nil?
          current.right = newnode
          tree_size += 1
          break
        end
        # Otherwise, just move on to the next level.
        current = current.right
      else
        # If the left node is nil, this is where we add the new node.
        if current.left.nil?
          current.left = newnode
          tree_size += 1
          break
        end
        # Otherwise, just move on to the next level.
        current = current.left
      end

      # We've moved down to the next level.
      matching += 1
    end

  end
end

attack()

i found this blindbirthday thingie is this a bit what you meant andzhig
jr. member
Activity: 184
Merit: 3
GPUs are expensive today due to mining profitability - but older GPUs that cant mine ETH OR not well tested (yet) are cheap enough to, potentially, be used to crack #120-125 (at least i think so). I have no money (my budget is ~ 2k$ and thats the money i definitely would not spent now on computers - my "dark\black\doom day" savings) - but some rich enough enthusiast could try to - Tesla K80 it is really powerful ( i assume it should be 30-50% of the Tesla V100 power in BitCrack or Kangaroo). Tesla K80 could be found for 160-300 $. You'll need ~ 400-500 pcs. Each will eat around 300 W that will result in 120-150 kW Smiley) and will require motherboards/cpus/ram/powersource that also cost some money but you could use some old server hardware that is cheap enough (dont know for sure, but expect it to increase the overall cost up to 20-25%, not more). 400 * (300+100)$ == 160 000 $ for hardware AND 3-6 month of 150 kW == 650 000 kWh ~ 65 k$ (at 0.1 $ per kWh). I know - it is still seems not really profitable - but it's fun and the hardware will be able to do some other useful calculations (i believe tesla K80 could be used in mining on some unpopular altcoins - just not well tested/optimized).

150 kW - crazy for home use i'd say (yeah 400-500 GPUs all with server coolers - imaging living on airfield.

(Just reminding - i've tested some Private Keys using my script + BitCrack, you may see in "Examples": https://github.com/HomelessPhD/BTC32)
If you are strong in the construction of graphs try something in geometry to catch (and not lose mind).There, for all sorts of radiuses, the tests of circles, inscribed circles and trapezes, stars etc, the chordam can be calculated something (in theory)  https://ibb.co/vq99Sd5 https://en.wikipedia.org/wiki/Bertrand_paradox_(probability) This is if we take our (21 length) numbers of 3 signs and conditionally 000 from above.
newbie
Activity: 9
Merit: 1
GPUs are expensive today due to mining profitability - but older GPUs that cant mine ETH OR not well tested (yet) are cheap enough to, potentially, be used to crack #120-125 (at least i think so). I have no money (my budget is ~ 2k$ and thats the money i definitely would not spent now on computers - my "dark\black\doom day" savings) - but some rich enough enthusiast could try to - Tesla K80 it is really powerful ( i assume it should be 30-50% of the Tesla V100 power in BitCrack or Kangaroo). Tesla K80 could be found for 160-300 $. You'll need ~ 400-500 pcs. Each will eat around 300 W that will result in 120-150 kW Smiley) and will require motherboards/cpus/ram/powersource that also cost some money but you could use some old server hardware that is cheap enough (dont know for sure, but expect it to increase the overall cost up to 20-25%, not more). 400 * (300+100)$ == 160 000 $ for hardware AND 3-6 month of 150 kW == 650 000 kWh ~ 65 k$ (at 0.1 $ per kWh). I know - it is still seems not really profitable - but it's fun and the hardware will be able to do some other useful calculations (i believe tesla K80 could be used in mining on some unpopular altcoins - just not well tested/optimized).

150 kW - crazy for home use i'd say (yeah 400-500 GPUs all with server coolers - imaging living on airfield.

(Just reminding - i've tested some Private Keys using my script + BitCrack, you may see in "Examples": https://github.com/HomelessPhD/BTC32)
jr. member
Activity: 184
Merit: 3
There is no fact that experts on hacking (with experience in decades) will be able to come up with something (or have been hacked for a long time)

It looks more like rar password hacking. Each new step increases password long.

Quote
RAR Encryption is based on AES with a 256-bit key. Even taking into account the Moore law on Brut's 16-character persistent password, more than a century will be required.

Explanation why it is so

Length of the English alphabet 26 characters, plus 10 numbers. We have the full length of the password alphabet in 36 characters.
If Brut is used and we admit a repetition of symbols in a row, the number of possible combinations is equal to the factorial of the length of the alphabet.

36! = 3719933267899010000000000000000000000000.

This is the number of possible combinations.

Here they are talking about two GPUs and the speed is 15,000 overgoing per second.

From here we obtain, taking into account the law of Moore (every two years, performance doubles) the number of hips for 100 years:

15000 * 3600 * 24 * 365 * (2 ^ 50) = 5325956919328350000000000

It is easy to see that this number is much smaller than the above.

If we divide the initial number of password options for this number, we will receive the number of instances that will be required to break the password after 100 years.

371993326789901000000000000000000000000000/532595691932835000000000000 = 698453503144019

I believe that hacking the password even on the scale of the whole world does not make sense. It is much more profitable to use social engineering and any other non-technical approach.
And if the password is simply forgotten - to apply psychotechnics or abandon the venture.

By the way, if you add a password to the alphabet one character, the complexity of its brute force increases by the length of its alphabet. Therefore, it is so important to use a complex password with special mixes inside.
  

We have no compressed WIF 51 char.

5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip + 15 (51×51×51×51×51×51×51×51×51×51×51×51×51×51×51) = 41072642160770556400888251 all brut...

or

5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip7 + 14 = 805345924720991301978201 all brut...
5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip8 + 14 = 805345924720991301978201 all brut...
5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip9 + 14 = 805345924720991301978201 all brut...

It's even more than sorting out the numbers        18446744073709551615

Think just to find the number of long 20 char from 0-9 = 10×10×10×10×10×10×10×10×10×10×10×10×10×10×10×10×10×10×10×10 = 100000000000000000000
or analog 00-99                                                                                             100×100×100×100×100×100×100×100×100×100 = 100000000000000000000
e.t.c.

***

Therefore continue to dig in the sandbox...

Need one who can calculate the likelihood of probabilities and put traps.

throw a coin 1000 times (from set 00-99, len 100 to set "set" len 60) These 1000 sets ("set" len 60) retain in the string and save.

then for each of these 1000 ("set" len 60) we smack every string of 2 characters and choose new sets ( "new set" len 15 or 17)

We get out 1000×1000×1000 = 1000000000 And it is already starting to choose (traps) and mix (a,b,c-c,b,a-b,a,c-c,a,b)

How much will it be places to occupy 1000000000 rows of 15 or 17 characters you need to check))

In the picture with circles where the traps can be placed (or like that). With many complete cycles in these traps, we need it will be.

https://ibb.co/DC3tqYZ

How many 1 character takes 1 byte ... 17 by 2 + "" without converting a string 17*2*2 68000000000 byte > 68 Gb.

And it still needs to save on the disk and then somehow need to read (it's good if it can read the desired line without loading all the lines into memory).

Example 100x100x100

1000000

['38', '07', '22', '46', '45', '40', '22', '77', '59', '81', '85', '24', '62', '78', '34', '17', '89'] traps      1/1000000
['57', '46', '22', '76', '78', '22', '38', '16', '92', '24', '76', '60', '89', '89', '86', '17', '81'] traps     10/1000000
['76', '17', '92', '10', '75', '92', '93', '92', '92', '92', '92', '92', '33', '97', '46', '93', '64'] traps   100/1000000
['61', '16', '83', '10', '83', '92', '06', '43', '61', '40', '61', '85', '22', '16', '60', '10', '61'] traps  1000/1000000

then there is vomit or 65 to search or choose by initial for 63...

import random
import time

Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']

RRR1 = []
RRR2 = []
i = 1
while i <= 100:

    for x1 in range(60): # set 00-99 screening out length
        DDD = random.choice(Nn)
        RRR1.append(DDD)

    RRR2.append(RRR1)
    RRR1=[]
    i=i+1

#for elem in RRR2:
#    print(elem)

RR1 = []
RR2 = []

for elem in RRR2:
    i = 1
    while i <= 100:
        for x1 in range(30):
            DDD = random.choice(elem)
            RR1.append(DDD)

        RR2.append(RR1)
        #print(RR1)
        RR1=[]
        i=i+1

print("")

#for elem in RR2:
#    print(elem)



R1 = []
R2 = []

for elem in RR2:
    i = 1
    while i <= 100:
        for x1 in range(17):
            DDD = random.choice(elem)
            R1.append(DDD)

        R2.append(R1)
        #print(R1)
        R1=[]
        i=i+1

print("")

#for elem in R2:
#    print(elem)

print(len(R2))    
print(R2[0])     #traps
print(R2[10])    #traps
print(R2[100])   #traps
print(R2[1000])  #traps
#print(R2[123456])


time.sleep(360.0)



***

or so "F5 throw a coin" 60 > 30 > 17



import random
import time


Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']

#print(Nn,len(Nn))

RRR = []
RRR2 = []
count = 0
print("")
print("loop 1")
print("")
#for A in range (10000000):
i = 1
while i <= 1000:
    
    count += 1
    
    for RR in range(60):
        DDD = random.choice(Nn)
        RRR.append(DDD)    

    Nn1 =['30']
    Nn2 =['56']
    Nn3 =['83']
    Nn4 =['77']
    Nn5 =['31']
    Nn6 =['20']
    Nn7 =['64']
    Nn8 =['20']
    Nn9 =['28']
    Nn10 =['55']
    
    
    
    for elem1 in Nn1:
        if elem1 in RRR:
            
            for elem2 in Nn2:
                if elem2 in RRR:
                    
                    for elem3 in Nn3:
                        if elem3 in RRR:
                    
                            for elem4 in Nn4:
                                if elem4 in RRR:
                    
                                    for elem5 in Nn5:
                                        if elem5 in RRR:
                    
                                            for elem6 in Nn6:
                                                if elem6 in RRR:
                    
                                                    for elem7 in Nn7:
                                                        if elem7 in RRR:
                    
                                                            for elem8 in Nn8:
                                                                if elem8 in RRR:
                    
                                                                    for elem9 in Nn9:
                                                                        if elem9 in RRR:
                    
                                                                            for elem10 in Nn10:
                                                                                if elem10 in RRR:



                                                                                    print(count,"huuurrraaa...","   ",RRR,len(RRR),"   ",Nn1,Nn2,Nn3,Nn4,Nn5,Nn6,Nn7,Nn8,Nn9,Nn10)
                                                                                    RRR2.append(RRR)
                                                                                    break
    #print(RRR)                                            
    RRR = []
    
    #print(RRR)
    i=i+1


#print(RRR2)
print("")
print("loop 2")

RRR = []
RRR3 = []
count = 0


i = 1
while i <= 1000:
        
    count += 1
        
    for RR in range(30):
        DDD = random.choice(RRR2[0])
        RRR.append(DDD)    

    Nn1 =['30']
    Nn2 =['56']
    Nn3 =['83']
    Nn4 =['77']
    Nn5 =['31']
    Nn6 =['20']
    Nn7 =['64']
    Nn8 =['20']
    Nn9 =['28']
    Nn10 =['55']
        
        
        
    for elem1 in Nn1:
        if elem1 in RRR:
                
            for elem2 in Nn2:
                if elem2 in RRR:
                        
                    for elem3 in Nn3:
                        if elem3 in RRR:
                        
                            for elem4 in Nn4:
                                if elem4 in RRR:
                        
                                    for elem5 in Nn5:
                                        if elem5 in RRR:
                        
                                            for elem6 in Nn6:
                                                if elem6 in RRR:
                        
                                                    for elem7 in Nn7:
                                                        if elem7 in RRR:
                        
                                                            for elem8 in Nn8:
                                                                if elem8 in RRR:
                        
                                                                    for elem9 in Nn9:
                                                                        if elem9 in RRR:
                        
                                                                            for elem10 in Nn10:
                                                                                if elem10 in RRR:



                                                                                    print(count,"huuurrraaa...","   ",RRR,len(RRR),"   ",Nn1,Nn2,Nn3,Nn4,Nn5,Nn6,Nn7,Nn8,Nn9,Nn10)
                                                                                    RRR3.append(RRR)
                                                                                    break
        #print(RRR)                                            
    RRR = []
        
        #print(RRR)
    i=i+1
count = 0
print("")
#print(RRR2)
print("")
print("loop 3")

i = 1
while i <= 1000:
        
    count += 1
        
    for RR in range(17):
        DDD = random.choice(RRR3[0])
        RRR.append(DDD)    

    Nn1 =['30']
    Nn2 =['56']
    Nn3 =['83']
    Nn4 =['77']
    Nn5 =['31']
    Nn6 =['20']
    Nn7 =['64']
    Nn8 =['20']
    Nn9 =['28']
    Nn10 =['55']
        
        
        
    for elem1 in Nn1:
        if elem1 in RRR:
                
            for elem2 in Nn2:
                if elem2 in RRR:
                        
                    for elem3 in Nn3:
                        if elem3 in RRR:
                        
                            for elem4 in Nn4:
                                if elem4 in RRR:
                        
                                    for elem5 in Nn5:
                                        if elem5 in RRR:
                        
                                            for elem6 in Nn6:
                                                if elem6 in RRR:
                        
                                                    for elem7 in Nn7:
                                                        if elem7 in RRR:
                        
                                                            for elem8 in Nn8:
                                                                if elem8 in RRR:
                        
                                                                    for elem9 in Nn9:
                                                                        if elem9 in RRR:
                        
                                                                            for elem10 in Nn10:
                                                                                if elem10 in RRR:



                                                                                    print(count,"huuurrraaa...","   ",RRR,len(RRR),"   ",Nn1,Nn2,Nn3,Nn4,Nn5,Nn6,Nn7,Nn8,Nn9,Nn10)
                                                                                    #RRR3.append(RRR)
                                                                                    break
        #print(RRR)                                            
    RRR = []
        
        #print(RRR)
    i=i+1



 
Quote
loop 1

428 huuurrraaa...     ['14', '64', '23', '43', '22', '65', '95', '10', '74', '62', '77', '81', '11', '25', '87', '42', '30', '79', '16', '36', '84', '31', '16', '18', '57', '08', '21', '94', '50', '99', '53', '56', '69', '38', '77', '90', '15', '63', '45', '87', '76', '60', '89', '85', '87', '44', '96', '90', '28', '87', '80', '63', '10', '07', '12', '55', '83', '24', '34', '38', '20', '93', '47', '25', '20', '69', '51', '48', '75', '13'] 70     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']


loop 2
837 huuurrraaa...     ['77', '20', '94', '25', '77', '55', '14', '36', '10', '64', '15', '28', '87', '65', '25', '76', '13', '31', '79', '93', '90', '96', '56', '80', '30', '55', '83', '75', '94', '83'] 30     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']


loop 3
132 huuurrraaa...     ['28', '56', '77', '93', '13', '75', '64', '75', '76', '55', '31', '30', '83', '96', '87', '20', '93'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']



Here we have out of 1000 samples, the required one was found 428

1
...
428
...
1000 (60-70)

And for each we chose 30

1 - 1000
...
428 > 837
....
1000 - 1000 (25-30)

And from the 837 we found 123 (15-17)

that is enough 1000x1000= 1000000 (30 lenght), from file or mem for selection (15-17)

Then can create this file 1000000 (30 lenght) and drive it a randomly or fixed with a sample when replacing this file 1000000 (30 lenght) in a few days.

Or run a few samples for the first step (60)
he will jump on the desired samples from 1 > 428 > 1000
And we choose from them a fixed position 1000 samples with fixed sample 428

Or is it all a delusional idea ...  

loop 1 100000
loop 2 1000
loop 3 1000


83 huuurrraaa...     ['17', '77', '75', '28', '17', '20', '64', '39', '31', '74', '17', '56', '20', '30', '55', '01', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
1107 huuurrraaa...     ['83', '77', '39', '56', '20', '12', '55', '31', '28', '00', '63', '64', '30', '56', '14', '17', '56'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
1430 huuurrraaa...     ['56', '33', '12', '77', '55', '02', '31', '28', '14', '33', '12', '30', '83', '20', '64', '01', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2028 huuurrraaa...     ['19', '55', '83', '77', '43', '56', '20', '13', '13', '19', '30', '64', '31', '28', '21', '13', '06'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
3920 huuurrraaa...     ['39', '05', '64', '08', '56', '77', '28', '30', '27', '70', '27', '12', '76', '31', '83', '20', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
3991 huuurrraaa...     ['72', '08', '12', '30', '01', '64', '28', '05', '56', '44', '20', '20', '77', '83', '31', '55', '20'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
4505 huuurrraaa...     ['56', '77', '31', '30', '56', '28', '05', '64', '83', '77', '55', '42', '20', '33', '24', '72', '28'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
4556 huuurrraaa...     ['55', '83', '77', '31', '77', '72', '56', '55', '64', '88', '26', '42', '30', '20', '33', '28', '77'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
7113 huuurrraaa...     ['41', '77', '64', '20', '56', '60', '31', '83', '28', '69', '28', '49', '86', '86', '69', '30', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
7469 huuurrraaa...     ['83', '77', '69', '55', '41', '64', '31', '55', '83', '30', '55', '69', '28', '56', '49', '41', '20'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
9882 huuurrraaa...     ['56', '77', '81', '28', '10', '31', '07', '83', '20', '06', '64', '30', '20', '30', '55', '02', '01'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
10505 huuurrraaa...     ['30', '60', '33', '55', '20', '28', '28', '33', '64', '31', '77', '20', '33', '56', '64', '28', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
10654 huuurrraaa...     ['36', '20', '64', '89', '89', '28', '30', '86', '77', '20', '83', '55', '56', '31', '33', '28', '31'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
12215 huuurrraaa...     ['31', '83', '30', '43', '77', '57', '28', '55', '16', '56', '57', '28', '23', '64', '91', '94', '20'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
12685 huuurrraaa...     ['83', '11', '45', '20', '64', '91', '56', '90', '28', '28', '90', '55', '31', '23', '77', '20', '30'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
13747 huuurrraaa...     ['31', '77', '30', '28', '91', '64', '23', '77', '41', '20', '41', '30', '55', '16', '19', '56', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
13865 huuurrraaa...     ['43', '30', '83', '56', '28', '58', '64', '55', '20', '16', '11', '77', '31', '55', '41', '64', '31'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
13871 huuurrraaa...     ['83', '28', '16', '77', '30', '55', '30', '55', '20', '11', '31', '83', '77', '57', '77', '64', '56'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
16347 huuurrraaa...     ['28', '70', '61', '56', '55', '20', '31', '70', '05', '83', '76', '30', '31', '80', '38', '77', '64'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
17977 huuurrraaa...     ['55', '28', '20', '56', '28', '20', '28', '12', '56', '67', '64', '29', '31', '77', '83', '30', '56'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
18164 huuurrraaa...     ['28', '11', '31', '77', '55', '20', '83', '64', '83', '56', '33', '77', '49', '06', '30', '38', '77'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
20687 huuurrraaa...     ['64', '98', '55', '30', '56', '28', '77', '31', '83', '98', '20', '31', '28', '98', '28', '06', '49'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
23872 huuurrraaa...     ['14', '77', '31', '55', '07', '64', '28', '49', '51', '56', '20', '56', '20', '30', '31', '30', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']


loop 1 100000
loop 2 100000
loop 3 1000

961 huuurrraaa...     ['27', '27', '27', '68', '83', '77', '27', '55', '27', '27', '28', '20', '56', '68', '31', '64', '30'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2486 huuurrraaa...     ['27', '81', '00', '55', '56', '28', '64', '20', '83', '55', '29', '31', '77', '27', '30', '22', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
5863 huuurrraaa...     ['28', '71', '30', '27', '64', '55', '20', '65', '83', '29', '99', '99', '61', '31', '77', '14', '56'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
7435 huuurrraaa...     ['31', '07', '73', '28', '56', '30', '56', '07', '15', '64', '35', '77', '64', '83', '20', '20', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
8306 huuurrraaa...     ['30', '20', '76', '42', '28', '36', '36', '64', '56', '73', '31', '77', '28', '55', '30', '27', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
8672 huuurrraaa...     ['42', '77', '56', '28', '55', '20', '31', '29', '00', '81', '55', '64', '30', '73', '83', '83', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
8999 huuurrraaa...     ['83', '56', '27', '28', '31', '56', '55', '56', '92', '77', '20', '56', '30', '28', '30', '77', '64'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
9181 huuurrraaa...     ['73', '92', '20', '42', '83', '30', '31', '55', '64', '73', '28', '56', '20', '73', '30', '77', '73'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
12129 huuurrraaa...     ['77', '28', '30', '00', '64', '07', '56', '83', '30', '56', '68', '92', '20', '74', '77', '31', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
13618 huuurrraaa...     ['32', '79', '15', '04', '64', '31', '28', '56', '64', '04', '83', '55', '55', '77', '77', '20', '30'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
15672 huuurrraaa...     ['28', '30', '83', '03', '55', '64', '83', '76', '31', '77', '50', '27', '76', '56', '14', '20', '29'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
15984 huuurrraaa...     ['20', '31', '77', '14', '28', '56', '31', '64', '03', '99', '64', '55', '55', '83', '30', '64', '14'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
17184 huuurrraaa...     ['92', '83', '65', '31', '28', '41', '00', '64', '77', '28', '99', '30', '64', '55', '00', '56', '20'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
20035 huuurrraaa...     ['64', '20', '77', '20', '12', '57', '31', '50', '55', '56', '29', '28', '77', '30', '92', '55', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
20181 huuurrraaa...     ['28', '28', '83', '29', '64', '31', '56', '57', '55', '32', '20', '28', '20', '30', '12', '77', '30'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
20348 huuurrraaa...     ['30', '20', '71', '12', '83', '71', '12', '29', '31', '64', '29', '57', '28', '55', '31', '77', '56'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
20700 huuurrraaa...     ['31', '27', '28', '12', '12', '50', '64', '03', '50', '83', '20', '56', '28', '20', '77', '55', '30'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
26421 huuurrraaa...     ['31', '30', '12', '55', '70', '29', '12', '20', '35', '64', '83', '56', '77', '28', '30', '00', '71'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
36070 huuurrraaa...     ['74', '31', '55', '10', '17', '29', '31', '02', '77', '56', '30', '64', '64', '28', '31', '20', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
36174 huuurrraaa...     ['56', '31', '10', '26', '28', '35', '64', '77', '55', '30', '02', '65', '20', '83', '81', '83', '90'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
37751 huuurrraaa...     ['72', '30', '26', '31', '64', '65', '28', '56', '77', '31', '56', '20', '35', '29', '83', '48', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
39388 huuurrraaa...     ['52', '17', '88', '55', '83', '20', '77', '74', '30', '28', '74', '29', '56', '64', '80', '31', '17'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
41472 huuurrraaa...     ['77', '83', '64', '30', '20', '83', '19', '28', '39', '55', '31', '56', '93', '20', '40', '26', '64'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
42379 huuurrraaa...     ['64', '20', '28', '77', '24', '58', '28', '88', '56', '30', '31', '55', '83', '39', '55', '39', '52'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
...

2149902 huuurrraaa...     ['64', '68', '80', '28', '77', '61', '56', '30', '31', '41', '83', '80', '80', '77', '20', '55', '80'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2150060 huuurrraaa...     ['64', '20', '22', '31', '83', '30', '56', '20', '30', '30', '56', '77', '28', '05', '41', '55', '41'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2150438 huuurrraaa...     ['20', '30', '28', '56', '64', '31', '30', '56', '77', '41', '55', '30', '83', '83', '69', '20', '91'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2150942 huuurrraaa...     ['91', '56', '31', '20', '30', '30', '64', '83', '77', '55', '22', '64', '94', '20', '95', '28', '66'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2151627 huuurrraaa...     ['80', '31', '14', '55', '22', '77', '83', '30', '56', '15', '28', '68', '31', '22', '28', '20', '64'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2152941 huuurrraaa...     ['56', '30', '35', '77', '80', '14', '55', '83', '03', '00', '64', '28', '20', '83', '35', '05', '31'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2153463 huuurrraaa...     ['68', '20', '30', '35', '55', '31', '20', '55', '83', '32', '56', '55', '77', '88', '28', '64', '77'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2155518 huuurrraaa...     ['77', '28', '28', '64', '30', '83', '31', '77', '56', '77', '55', '20', '28', '55', '61', '83', '28'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2162821 huuurrraaa...     ['46', '30', '77', '65', '46', '37', '28', '31', '48', '20', '56', '76', '08', '64', '83', '28', '55'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2163547 huuurrraaa...     ['20', '83', '30', '83', '09', '28', '99', '47', '31', '77', '56', '30', '77', '64', '55', '48', '83'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']
2170943 huuurrraaa...     ['64', '30', '28', '20', '57', '77', '56', '83', '75', '83', '20', '28', '55', '83', '55', '80', '31'] 17     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['28'] ['55']


1321 count.
full member
Activity: 2170
Merit: 182
Is there really a chance of this to be answered? there are tons of pages already yet nothing comes closer to the  correct answer  Grin
Has anyone solved this puzzle yet?



puzzle not easy to solve all
actually it is very hard lol  Grin
newbie
Activity: 7
Merit: 0
They were generated in the same way like the ones:
Code:
KwaU4bVbTwJbr1TgE3xih8PHhGLL3QPLMR1k4bxTbhhmiMWK7RpQ
Kwb9qcKfscK6AEtZBBCubHehc88DpxiqDLceSYez7TzWedpimoKm
KwbKHeZ4UGBPc84dvBtJN7XRSfYLQS9v23kYxVu5XkUyNq7ahVa6
KwboqLj9EHeWapWSTJ5ykNhCuojzFQxa96vQBMojsw8gi63Jk1WY
KwcdQSGpozBFLyPbAysyMefqZ9R4M1xwMgRbMd3LeqKUc2u4A9vq
KwcK3EXVKZyyTmPZVf2kYoGM8KonJBNsYqMYen1uJLM7Tciqjj6D
KwcSW67bmtpdF54gzDGc75kuvpmakUKi7iipvqSLDz7MTKHFWEek
KwdK47ZNkykg3K5FCPKvbrQESgXZm7sbQkRU64F58MEcCcjqWPWZ
Kwe7L5LDaQ8ZVkjowGrMTT9tCB2NU2VNTK4octfN6716Q4t7ANDR
KwE9S3LAmKoBnDkm2UeSvXBQr58Xwpzp5BjDH5auM4cuDuii4ixe
KweatcNVv3bQuUq8qugXaN1oRrxh63L5fWP87j8Sw7WBvu2pXa1h
KweCuWb4NEHpfEp3gKZyfnUQtn5uVVn4tzFGh1w6qja1CnuuE5m8
KwEj4eaEVEF2e5SPSffHWVRZNPoRLB1fsQvDhac7gc4Ur6vPvLKp
KwEYDsuCW8H12LxsQiDLyGXPpoGf5d8TXoc7uRAnKBAnAVn1uFLZ
KwEYtYryipu6YrXj67ermRGMJ37S2om6SXBPpppbNP6pfw98v8Qa
KwEzBsyjykEoJyWQwPRQUjorbu8Nhz3Zo9XFPJbXUs1KsHKnE9E7
KwfawZKQQD1Aci4YbvehYZpjMT2EN1i8jNzsGrkR8knpoVTZKMfN
KwFcF4kNZNrHcsEWKtdNtAKZXsedGh7FzaHaL9BZ74vyE9NND94y
KwFF9p3JhuPor1Sys1RD1KT2t45JhrxH5YFyd2WNThCUZQktMpcD
KwFfkkzPi1hFdfUJZbqKHAZTkJu6QvtUYRPuYmmhoLpeoMCDZfvm
KwfK5kpN8Qj4jhoxtGaiv2w8ug1iQtLBVEkitrfSbJn16QksgDQr
KwfxyE488Ak17pt26z6fausEsFR5ieXohuqZtH1iitDrueeNh7ZA
Kwg6dCrTu7Przp1q25DV8vmh1A2d3o96SrUuX2g2sn2sdgYyHfRf
KwGfVgSDLzd3y9DedBoUc9iHCpoQhbxVT91k89S3Vs3EgayJk68C
KwgHimuwxkph9nnYkmDvNsUUM5ZiD9DiSDLsrjScgD1rMSoscu4N
KwgrgpzborSHFrkB8J98FF6Wwksc6vsBYYXfH7ZvgecjwobYBRGk
Kwh47Ur236B1v8G2AjBYNB5se9XPCrXUJn6fWhHwxgZc2QFDbAL4
KwHWCKNj4EbJRakaPmLg1PkPSsaRAVKYjS7m5A4nVoAVtYBotbSk
Kwi7b389WY8SEax9YaKpjCPYtt2yR3emPBNkQmKi3cLgxbGTeV5u
KwiokRv8kdzPsVh9britFZZgJSaX8E9epyDDjdA2sME4kMx1syBK
KwipgfJohxUSG4XiHWWoBuQMBsjzS1zXoPx7FPJ8tNfQv4snpZ76
Kwipwusdf8EJFwdPRUwB2ULuDfcueNL8pE8ity1Qn8MCgmkXYDf8
KwJBUnhJgPN6t1wPQZmSYpMqMLtPH8RkCd5RbiZyA8BvmWGCnmEU
KwjD44EHEKnt9ukASXXSbf1Qw9UNGFA8WvRwBU77D7iUM4parLG3
KwjGQc9p2NmbyqnZBNgtARpLci7RsGHMeCmyMZ8ag8Vb1djZAM5f
KwJkzAS2tNZ488awuJ3FwvUjbExxbmQogVhDhMdQxeuiqBZidiJG
KwJm27piLRAnTtBHSh7PBFtWjozpt9CPF8bHaKmxjzJVX61siNjB
Kwjp6iPBTpM2wNfQ5U7PUsndQh14NbY8vP6n3BPZxUvvfRHqAj11
KwjutV7wReXKRZL8U1cK5r57DpYZihy2W8Sg9mA3a8FiFGp3GcRE
KwKCrhgK9JWpaLLzpiqPHHfop8CJZTa49Tw7iixNa3GqbMaXB17S
Kwket92GCr2ffp9vcAe4D8FTrdsXsy32Ap7ruvax8QzqrF8ASJAp
KwKnmXrwcjqnbwZc8TdTYFLUr3jyAbJmEKLiNMUbCVzfPM6ojAAB
KwkqXq4Esza1e2rh2gd3i3HDRYeSpxwaHYvbgum8GRWoEFJYvCFy
KwKzqxjsD6kU7R9akx1TfynJvoBVxcCV6ftKvxUrK3C6UFi3oNCN
KwLkNFMWiqURqD5Cfm6Dtq32FymGgrZ2nXKcP8EYsQjmKLeyPjhe
KwMBqEMKUXeH9iCnMLEyqxQg2aJp7a6DQyy1s9Q1cYtQ82w8QpBH
KwmdRtNZPc4Lb3HjaWjRiKFBVhF3y6Qjmjd3zoVs9c2MEVDLA4eS
KwmK4sQqVsvrCswRbw6AH1znmy2agQpFMqnkWL1GMHbXWwX1BTq5
KwMwb8qam2Q4KosA2K1Wi7RiFTCr1XARazC6FJYvjKdaFCbCez5j
KwNFcPA2iHbumAHvv8JrQAdXBtw1VDBtghX9pKHEBX3DY4HEhFns
KwNqgHbdqcSdmHzWYWwqxdWAuPHq5Rucfwb3UdS5vrLHtNCFNtuD
KwoYeS199R3dL7x6rVgpTsYeB9bBHJrGK8oUpsJAacuicsFXEHj5
KwP1zcc1e4iYGDF2d5XxRfYyirC5e9R1VX7MfXLdqbGRvdK4s19w
KwP5ZR2rQ5Xuf2d6NGgSQUjaT8hf4pB1sXnAqkxUCpuj6So6aphW
KwPbs5z9NApxWpesT9n5qaMrqU1oDBhNjkhB1V6KTYzkf87aRx3J
Kwpe17eN581T9JmYXcMzeJxr71JCP4hDsuMFVMHV26u5z7GzuG1A
KwpiTpn9NwHSZo6wQx79J8ddmJqC7HNBz3pT2poq5rf7KvKpuBei
KwpmrATqUksF3tncsZcRq9hqfceXujXxMQefRsCrvYxeoq4H8mv5
KwpWFQKmq4rF3PyDDKRtMRVVKbdVUj7ThrxKXZEmxJp51WEtevAN
Kwpz7CMFk1zZBxfprVoUKstarwq3Px9qSCZMU9G7MhvDbjnPPVm8
KwQbUzBTNcQMaFmgLZZpXkcvCxuhwkdSev5oGVCtNbF8sHXZzejA
KwQCR1K2Nacq5EfKFEc35jRHM1tt4SRxZSAxkhC9whZ3aUav85F5
KwQoGrNsAjwWzvnteDsNrXux1YGoSP6u7u5CDPEngW1ejBUQN7Dd
KwqoHPip6SQstsgE6fYBaw3qPhMWFd9mPtFYfg4VQoDkmc3GsrL5
KwqT313Nj9U3QndqMNpbvgjrq9aoCwu63iE5qVKKjAwDVyjFL8Km
KwrLxEboCS8YEFQ7YT59xJJTGgDPa5KabbDSL6f2XFwyikRNWkSY
KwrRXBjQGutJ5ka4wjrs6KFGqMo59nkoL3EuA7gqNWCPK3ro4Fh1
KwshPCPxL7WV2Pwkzb8HBSCL97jTukiMhNrBcCCn2A1ncPeb7iG6
KwsvN5RpheEuNzFef78XfR6gYeESudyoABBaWs41SbGG7tXzPRK4
KwT1m7i14a73dWCrfy758WERBxqeD1aUzfCqPetf25byrpcgLUqB
Kwt9HjaVFe7ohpygtbau5FAFwGdXEfDPyg1WCCCRPvNVJD8hz1xv
KwTcUYKsczQPzZpNvuEQXDhK2ivbbCVgVs2cc6YZrYDxRE55bzqt
Kwtnbrf55Hk33jcP7woSfh2RtgDJbUxBNtjdy5MnScNhvCExz99z
Kwue1wLGCCd3UKgqSkKKAXHoYS2jVPHdfvEyy5uC8bjMtF9qfKVr
KwUmPb26JYBJKohKTtnqDjjb3dzoeQj1k5pEfyr6yuVUR6Mofzwb
KwuQVyTsnJJSSLv58A4W2JMJZXhXYhNapMtt3742bTLRoZGyQ8rW
KwV5wGkeLYJ1ESWGR8oJgwZZgK6druHsJzXM9nv3CGX3XaDx1jXA
KwVDxM5dHLJvhCCWQk9md4ANRLxVXUpskfyMidTdRqvBBPx8aFMy
KwVgkpmJMVUq7s7xKtJem5b8gXgKw55aKDUVMdNNo7CxrJLTeHTC
KwVh3Tjk7B89ghkdkoayGwSnT2x9MunVjxGgY3HAVqeVQoeUX6nF
KwvjbcmwuzTLs5XG87bEr2HgNDYVurw3qtnJaX8oPEQVRwXKPuif
KwvMMtVg1fPSH7ZYxNMaUbztaJcRKa7qBjYq6iio2eTWPcFMS2XB
KwVnYG3Nf2SsAqJHBzHzrDMpXBXVA4Lckean31cRggHgFgFEVnh7
KwvqmqxgBFjXqksdVZjtANbHiYh4Y5AFEioMATnHiY76QTik5okG
KwvRYwrZDZ4iAzRAwwWEDcGxBH3NADsdreevhPTLiCmaj51wzDjs
KwwDgwzzDim5D5zDf9TLnUPFfWeYZmdEwqDd8ErzmWeYwe65u2g2
KwxegXLh7hyvNrqc19YYj27mUnZwho1Uu8dSyuMpZjnQUcaAGgcm
KwXEwTBxESNP4GAJxm83MNpnS5ACgBLSDReNUb511cw5Rq6tdAfg
KwxN5uphGk95JVaawpNxKCjLWe2TG2P7uCBvwdTdxScqH44JCE4C
KwXrC5g4zt3WNsmUNGq8ZkmzkcsspuuJ6JSYK4NWj5sk4WJwFG5M
KwXU5HbFxCaHZuNBwsWbKfVs6at8DK9g7GEaMtiV5PqoDRY9BkfD
Kwy1yCkFpVtRt5HDyqbDQCjskujnVDGYScYfrVMEn6YFYYFgPpKM
KwYDSiAcykXFHh4pKEWbrk2d6TU4Mar25fM2eP4JgToNkcCekKmj
KwywQdPjjcrV8muyc8RXJUHevC8GdPBaBxytHH4ULnLU7WQUKiQe
Kwz43ogsxNZrXNjDT8AZme5mBZbhc1nUodxWKAqNawhUrR17ZEoz
KwzHh46mhSGn3hH8vyKNHfdntEf2dknhsZmAyGLz7aPJwNNkVxHJ
KwZJTDZzWihNKzd4mT2MdGqrnh491e2ksAK9p4KGtsXVFgv7ndDs
KwZPzRtQpY63tnkbg8nfrVsm9wUUioCARNVhPDFh8g71Em1pYpNK
KwZSw2HehnCCGYrjk9MDxsdY5WiJLaSBLJVKp7aUeq3VTyqPtqbr
Kx1AwshE8LYXcCEC9C5r5UwCUU537gKMpBsdemfDvXCNZC1Hceye
Kx27HMRd6roqrThBi6PRoKVwwJ3nzVN1Zq2DajNJ9E915yPTT9oh
Kx282tBmrfHqegDsxk4Mv2TquGVxhwEuzc7ps94on6kyLSnQqRmE
Kx28o9u4Rv5nqTHgqFM3As1bS5uuatW3QoKqW3qYuseuDE8hc1W5
Kx2N7HW3xUcNEjefj8uGKR2FQZ3tbLhaXLrshydmhV5t7qfAja5Z
Kx3Jb6acsDAZ3Ha2paHZcut1YgtRFPZ5GrFEaFy22MPGM4s2omVm
Kx3RnsYZFtEFM5rCPcJoWRQWc1CjZhUa6ysMis4tuYi7diW7ZKzs
Kx4e3vm8hzsuUhKRufuhFFCaW1rcT8fi6ADfs3uNRrNShtvgza5X
Kx4TMjKvRvfgwitQHYAW7nrxXGUnhjg1SeBzQ5zKeEsyRuWAgtUe
Kx5DaSAeNx646psNBvkHTy4FagHkBbnJn5urq6F7AYEYKtCFwiFZ
Kx5iDARTVczX6YuEZP3rypbhBNBP278SH4puAKYpWzwhCi2gTs6U
Kx5LqMRSk3Feik1ZpJFF8oP2A7xnh2FmoRAK7DjWQVsJLq9nRnRr
Kx5zBLAS65AUadAzMffaPVXwRdQD7b31HrWqaFL37zizWmLvBVHi
Kx72NmXKnWjUwD7BjebBFVoemyEPxqhYmfP7e5W6VmpZWJjZ9aqF
Kx8pPvK51aoYyKBbZV8YNQoVw7Tgt9R3UWPuBivHcdkN7KmrqycJ
Kx8RoRdeGgPrqejCTPbmWs4tjkhqDYTdLcWriFiFAoYxuJDQGcup
Kx9NKM1HjRRAwj7oRQTEZi4RH2Qv3eDgkTTouJ3EzcYCi1hwiotj
Kx9sdVN2F51YdQFSFb88aQTcLFkJw8zpmCaA7gm8MyjwKoMEVLvF
Kx9X2wUxh4KneuVuRezcHwDtLfWkuywSpjmsJXXW3U1dPebbFN7X
KxA3Fod4qswMN7eX8NNdboYsDerHqvGW2Xq6c2W5hkymmTzARKMF
KxA4arubJKGDZNRNifPhmQN6H5iGG9c4HdGCvwdp5xM7xSLxHFZt
KxAcF5YpGVK2VwsvaGewRM3hKbs3HfBX2hE7YasHvz3WDwW9BvGX
KxaeAGF5ivdAKnUDCwyUQyzPDCcDoMEFQddChyMsz4GmBAkZmzm2
KxaivNoCnpEwaZ65VmByyi7oNmtN9Uzjgo3tnDuyig2Gyq9ALVKi
KxaukgQiaZM3YikcbQKLgWRzwZmKziUMwmi8PWHtTs8fuV43SK8i
KxbC3dmZSwbZwJvMVEjfgkeWPhmgiaPBJauhyCR6aQAr1R7aPBVz
KxbvQsxcUKZg2DbkUKQ8efyKNLomqdew8Mo8Ux1B1FDrXqqWqsvY
KxcEr5wPTi2tVcuAnBBufenJkER1tRRoBgLKNqUWfvnX2wLesfy5
KxCfo1csa3HCnmhwPjcNwXCW36ePP9RwT27jKEKwkgMwXzYtB8UT
KxCjCJuVjbKEYzdo399C94GhHoUtiJMRq3d7Z3G8QrLPKnpD7oGp
KxcwBbbRQP8bktXsZYgyLfsRxuURDxwpj7Pa7Stei67pogTo2Dus
KxcYFeBri5og276WVXz8KQnaCqZZH16di93k3WUQH9Vonm4QYXrG
KxdghS5TEfuSy3ACUvyvGf78Drm4j1VRxcoscXatc1sYirigJZJi
KxdKYPWfP6WhZo3a9Be924C5L4QcpweeH2vxnFNWnbeRioF29Ure
KxDr8wXSTsdcvqnpyhMns55FMK3z7KRCHyp5KWbFaCbPJk2hnPy7
KxDUYNgtU9dVjXYzf4kNUgv86vqfwCpRWoRB8fdUkdafoCKkJ4aT
KxentUJMeQokCfbRcDywixgjYaGUFgBZXoa2VuJj9mhvJPUff7eF
KxfgeuYAGZxfymJLiw4ytXYgsra5wbdNHiZXNg5P1pe81ehR1b8k
KxfrwuFvmsN26Rguy69mKwREgbJzfnRieJj36zofEaMUfVQ4fsYy
KxfWQAegGyk9BobSf1nLMi4ZwwdKPNWcGfpkFyx4Tnup6xdUmBQc
KxGERK4Ja8NtXkjc5mpRLwT7LAwoskGKCSvscS1kjrsVfLTYtTXg
KxGniNBz839ZEZwjWXiCa9wYBZZr8F7SVESyZ3RVT9qc4QBwiJNW
KxGsaMGJ84XgWh2RBDuqSDv3MWqrG7S1T1srtrGUh2JNezWZ93Nb
KxhRNXHViWBhygkYDUUFiUsh55yCd8feSiQbTC1PGDewWSgyEXrn
Kxhszby7ALbzpkZY5wF4oBNu9nyPek5pMK7sVrJWJvRnJNtWjUVC
KxhXJQC1fTvhmdSZdxgBhMySoUqW1TL4JfLv3hpFEygXgaV2mNLM
KxiGRD5BQLpTpwX9W7aYp7QQbLihiKKTEsnLRiBQhJUBrVo2ztHB
KxiGx5tAFdMgmqsGedakRqUw6Q2bw3nJfxpGh3prQaNo8t7i9CKe
KxismgJkpf4ey5WFL413yNeWpAQFFKLxgsDudKcbPNbN2xTQFrM8
KxiWMxwkRdpv3foffgv87exRfcrU233CwB85gLrv4siuwrHaxanU
KxiZ2vJstXV4oo383k7jugid2Cu8SvaSQTxTXH8fmMZ6i4A6Rk59
KxJHQv4585xXEQKNte5dYofsAMhPNN42y8HDFMWSiwJfeYppQKhr
KxJhYuHpgBPegajMeHtV9Vd8cteoFuBnYbJ8AMQtx7LnqDF55qBj
KxJQR2SkcmURWgJ3XrCcj5Lf8r812QN8NGQURiwXSugmnZnwr9y4
KxK4jji9Q3TasBSAMbLgZq7z6kmpcLr5bVRgYNhnbUpRhCNgnh1Z
KxKGhZgMuFynmRApBoQ7vR5QdUNmFiJBbBNT3AvhX24pprCVoy63
KxKNEFRNC1yMpyj8Jjw2mCY4CwJ8ezMtSEjGybsY3dGNGj64wG68
KxLAoZZza7VHWw5UQKi7yy4k4zmtQLRuqWoEGwrt4WDM7sbmo3iZ
KxLhZCMzo7VTD9BChRkvVprxsmQL3d3hMahBDjcuDKBGZfEk8129
KxmghCmCjF89sCvJEX2YUiGyr4AMWwma8dcr5pxwkgpJSSgbmNdq
KxmQL36nP9v1K4YBn9hYqnMgJe7AWmigVbXfAKdiyfuJRgWu43P2
KxMuuz47PrnYy8vXHTeCCWQSsVdAGZ2z56xvN4kYGg3LhypviCy3
KxMVw9wLu6XCoApqLxwae9w5ezanDnLMwYzMnQ9BTjEha8WNNJLF
KxN6KX3j35sVMSkSBCLWaL7khsTmNxA4o9RmHpAQucpMeFhCV5Gk
KxndKuQwuQFdqDeN2k5et33T98jPRUvsa9bVkRvAXBgjtwUFx54e
KxNmPTWaapR83koexngXJ4X81FXnwN9TZtuCMd1W1vurKo9X9e9J
KxnPMMii1gqAeK2DUuNSUzcLB4b7x6DgwMvNbYEcgiJpozJFPntd
KxNswTtjqbXqbzyYkmwAFCDRF7zJcaPa8ED9wkCExQP6tRCbxsnd
KxnUB21UD4ehg3JRoE1i3b9U76kYxqzG2Y5LG3es9yTGSmeA32SG
KxNwNqP6c81b28oUnrSwNcFggUFmwsgaG8nZGJ6ENMABQFnbZ8Q6
Kxo37rvp4AbLwzYzbdurnEDFQ4aE1VRAWdqZAAdPdLFGkyCe6J1r
Kxo6EGj35damyAj9jQb5tuGConRaicw5VH4yHBCMy55PTaEEcxEt
Kxobk7sckjrQbAUfSe2xP22pWiin6viiL2i51DLFjr4EsKsPqpX7
KxoBN83PRpTj59ADR7WegpvZ4yX6wjEbWWQA8enMaMgCJkUQVAbG
KxpAoL8mpEMjqQ8vu3g6XLifpYx9jkpYZHxXBFtW5hmY9NwGwKtj
Kxpg6JZsS7vBBN6zDR1UTA8M6CexdtUprF9WELkUQFMP6pfFPSmq
Kxq9mMG5SFs2658N5BvECGsywaKdwTqZ57HEtWYxhR9wWXd1VdBj
KxqWB5RJvBUJ8rGUYWGtaZKfV5TTreLzxW5JYAReApgHtytGg3Pz
Kxr3Z1otB7aRWjExvwiJG19cSxnaUVQYN77F3HSJxjaUhuX4LV87
KxRj64TfhVPiHUPjgckxTprF7BDnQP539VuAJJ55UAV7ZtxqDKH3
KxrjWLzLpaKCTaUdnCRcLcY5cTn5vn1zBdzuH2xbjwNP7x3JwxoZ
KxRjxJ1SgDSd6cvMLcFtNTgL98oGoajpiZr46mStfGgtoQKTGPq5
KxrQEdM2Frvff2yyKNcJ6aC7yLs3Wk7gnWWodXGv8wFgAr1UMuJp
KxrQUmbnURVC91G1S96oYWhFGaDLzBhqeEx3r6ekTG2UFX5k1sBu
KxrXucHGw5itQA5eRjLt2Y5pAuGfQ1EE4KpWWEJBnAzXSDJAk3LV
KxsjMqin6fxH6Z5ZybUv3wcy9sxuExxqNPBsetsnkqDvxafteDNN
KxSL5nYdGH3GisLJEQ4QFN9cohkXZKgaxQegJc43FaVJM3YnReDw
KxSQrAG5iKWtQKQDwJ1xQjjqso2iakM6kBkAbcn8mnpJJajwS3f1
KxSQZzGbzQBkoxoQ3ZEqxg7JCHLYY1RAUV5bodMNPJL3wb2Zsc5H
KxszZwtTejFoffexinCzibBi82Y7d5cCUagETDLz85hL4gtQfdSZ
Kxtbgz6jLpTRv3KNA9WyymuKAoBjMzKGNfgjicHeSPNnDRqr6ihN
KxtELRMbA1tQZ3FDCw1BWiHgT8HMCuu5zhT42XNf5fUc1tsganPN
KxTEXZkG29CBv8L6nUXhEM51E2XRBp53WNaigJzovnAGkCPT7udZ
KxtwobtHVHDeQ7Bm2A9YgAns9232H3UJRYyuetRVRaYseKC8V7KB
KxtYc3SsZwZ5hjTy44ddaCtPEeo7xBPXvFj7wQiuo4SkDaUqyVby
KxuavwHKkqbG8FeKgBndSArDQFQED9Lp7trLkEcWr4dYixNh8ABr
KxUsidvLzLkpf2u6KFmWajKN4zjFBqkRtNjjbB3fjSdSVWTjd1K2
KxV5WhiCiYXAoGRKkx7JFw6C9xHpwm6oBxg4BEBzLG6m8rbGComx
KxvhJ9koo86U3hGVHpo5rchqZxvRKVtnLCQGDmGXBVetDZdHgscu
KxvJaLbxpenmnkauGoD1SgWmFxe2XTPxikNoG9JCA1W7QEwZUsvu
Kxvx6ca74D6niREehexbVYeymKWDRsSezhk1vASrbxDVwPYzQ5Ef
KxWdiXqUFXgC582sCZ2USxEfFUfrnbpx2ESQAFYN5zKssxg553FF
KxWfrsJ4jysSH8STAXRFPzioDYqMA7zZwSJjqZDjqxb25sWjAiZK
KxWmYmrU2znazGbXK48Nx7frLSFfRreKRXtvi6h8EZ238qooR7Ja
KxwwfAy7FW6wzR1Hw4c1vfaorvqw81TKuk6cYMiwcbYExQCBDSP2
KxWyafhE2Cy8SuXsMrUbEKhmBsgtPFWeA7U3U9n6xYSzigvzK2p7
KxX4JwrLLywUqGKtwxfi87bpZRUKUgskjYqb5m3d4SwUCBmReu9h
KxXsmQkrVo7pXovDeUYAKTaD3Q4bjxmsdvbDsFEG17uatmYNUxvE
KxXvuhfy3WF4DjHJL3rgUQpDwBVYGZ5MeQsQbN247XWaANvpcfqP
KxY8TFxGthvWQepBTCPgYKEr55KiMv8cLP7PTgq4H7pqFuYpbJBX
KxYZeQCAxZQkdcpSVK3fXtCFRbEyMEN6fd5wT4N23hUfpViD3Zjw
Kxz4gxt9TnfYtUBV8gHfbrjwRUiy69pHr2Ktpp7gAgQYRPDiREho
Ky171SZAZrRv22JLARaSwcA9yPn3WjHzuzLZRgkKuvGu3hhGkxxf
Ky2rrrwM4kXb2F4ERHY79mSjQ4Ax9h8GtWhitdy1GcrAQdM2weyA
Ky37kaqHJZrG8vyj7w3HMzDTFAJy8wLhBsFbTMZx2i8vu8NvcNSV
Ky3EGaEmnax7wgHeouuAHCJGX1Wdhi779vhJMgczceESqDmW1GrS
Ky3LnLku8VcpDDm9qP3kny2esZjwdfDNsWUM2AzSTHaxkcm1vtvT
Ky4U4psXE8HdJoAJStDviUS8vSuRzxU569trEsTP6GqicRf6deJm
Ky6Fp8ArAXyMnvudciQxhEg9yrP8PLqjk2QLyd93i5VxCpNQERmp
Ky6Jqaukcmm2U2KNbvTuwtdZFSVmabQstSgnsDzkjv36GyJExZkZ
Ky6sVzpH2hfxvwx5ewutiKeB1eWoxX5kTXLzPx6fPNDrvkYys3dR
Ky7crGA4a6v1Q35ehbGDqLSJCVfEtFViLUSQ9qVbo13V5rBbmpFR
Ky7kQTjH4BP63WKQ2bh6APL7gaNYxXncpQPUDxt8SueZfD8MGG1s
Ky97UePwoKhm8dURSd8eFvuczwGjtNANp7wN9xvo7nrHBz3Lw2hq
Ky9dLsoi3z1n4nByewYK7s69xdynTFkD5RaneYiQEWHFcgPKqRxk
KyABNKAggH92KQ2gUbMj7Z8jUSBAbb6N1qq9wbjZGppCpMZBBsJJ
KyAk7FwfWYcnqab785pYSoAihoZGVisZAtpyYiPzNP5MuUfURRSs
KyAYsrbhjhfiK58yoq3aYbS7tzww6Js8TgpEEVSYQBGy7oGb41zy
KybD8Jpj75iKk3ELHrWaqgPCBbPPHTZCCnYPeepPmwp9682Dm78H
KybPYkSoMgeDTZN5rJ4zivqGtvHJ4z6dM3y1RUg8eyk4aQ57iMDt
KyBQzK3toM6HTodeFDxkk4JFASe8aZ9CckukswTnFQ2Ldg1Xy852
Kycasu1GUZ7AqB7E1yrEM7SeTX2YzmNgTQrjyKW74djACtGVytEs
KycDRCtn8oCrd9pUj2gnWKaqzEHpCMiyUeTekwiSPzRa2BWXF6k8
KycG6QGBF9niQh7afHvT6Z1PLYNaQujB1zLywdytrpMQZus5oy2C
KyCPafYLzM7NvGyS79DEKY54SPboQghdoL8EWew4h28U8fzdcEVR
KyCpKNJgh1VXMbHohhX6vFFPLNM82Fybv2tcdwTqaLyLoc5SeuyG
KyCWXD2r6pumXhFH7u3PAdKf7qfjzYq3HgyjbqS33MbG5GZaUzXH
KycZMqMUY4jULwnRyVAfuQugmQBCzAgWT9p6yn97RqDqBybPVoF6
Kyd4pNFqrygKMRLydaPZFsPkyLqE3jD8ci9W9sUGnJnBiPeUUhc9
KydryyS88NkQ5aR5rUMkdMpcTzQUUs7EUT6oDU66cRzzZdKGVwqN
KyDS1c7sLx3caGNVgGMzm7PcRTV1YQSoc9SgfSmPYZRUSgFKozHH
KyEa8aZ5JB2FPCaCAP96njtutRazCbeJqRsFioTKCXdF7PTR3HeX
KyEGi3kUaemxdxo4wcrW51w5578zG61q1YMK13Udu57iWCTkfSJM
KyemU4L5Yt8AnJHyLhdtw5WoejsVxB1482wCgp9j1FN1bBM62wTc
KyF2taWGfkNvBZar3zU86S24TVyUYipJYR221S8HKX7DdGkRMPX9
KyFbivTahTtF1naiRFenR6oXjvQqiJPaYJ585UbFfLYfESNncwfw
KyFQ6h7gjsZoxPxwASKbA5VUoYCTyhurJnZ54ZVAkgbRJfvCbkYA
KyFSju8SRdefhypfDCD4eCZnznNQfc27erNpvP8y9GnFLnsQ8dNM
KyfXWdaAnKsMKhV81uvwEMpwX2a2BGMWfZG3SAjVpahE6xYAJvLP
KygcMyLRovo4WDkpFzPfmCBS6VNZdc8E3JE7gojEhEMWwphidbWq
KygHa5cNWEQ5keFuQ8MyVHQWCtG6tZnuHKrNJgmf2YcaE5faZAM1
KygHGfyvG8P3yEfdCWCAHGSzBCAyguj9g3wUcUk2ExzxTWxhAAy9
KyGLkhCHbFa5oQbcDTFWpMFbnqixEvArDhFps2Em5iDxE8Kciawm
KyGn6j3HHvhqxsTn6oT8NZ3iVCWBi9M7pFnqYbm8D1C34bC3xgoe
KygTR2rkqPMJ1EaNCwAAAENAfPxKGE1fdY5vWubNWoNM3CEmWdgi
KygVnAgdhwNK8qi4uhbypQZEUtu3YZYVYCVTwVLNXBTtevKTcy9R
KyhbRckuuJ9WpQfVKMU1f8kvfo8RAq6FEx1ECf74anHKhEEziSJb
KyhchWqy9RtWmr4WZFDH3XWd1xfMfBKiS5vr1Yz56in2QBcVCXS2
KyHKE6cLGxjWBqNb7iRdV7Ubu6KnmwUKzqNdsDf5RwMnVzzVCRK4
KyhojJSZzttst2tw8MCMocYcYP6x1J8RvGj2zP8kTKBgZ3fnzHiS
KyHpw7BDVpYZDwenZt7c3kezQv4V18fdYRgGHWvpFSf4GqwDwQA3
KyhQNYKuY1DFB34vQKPXVtKCTe1agNSkF8Ww9uEU7iTwx2njAhi1
KyikC76UA548WxQyuuUfWVe2r4h42bXjJsEuDpAyRgRkfZHvf6Cy
KyJC45rH4biphg7DDi7GugEv1odNa9GaqhxcmC8g5SkSB7pfcqfZ
KyjsZgtXcNk3z6YgxiU47rHwWm9WwHvPvaJJqXeKsNuTaMvBTxTN
KyKtwfkWTCQW7uGcSJWSULpdeLjYxJqpopiWcqUFoVh3ji5bC9V3
Kyky4Bk9KSRfkpGwAusex9Chg6vkeMj68EKAmZ9qX6HmvhrkekQ3
KyLGAZSZ99EoNedAdLWmThNGPaAXzJdX6xaVwA1F8db4Qw3QcXSd
KymSAv95Gwj8aq6G9VMGhNdwFVZgofBCMUnScn2vfTR725MpRq7S
KymtsiPZzisLf2bPv21q8NCTJtNvuMwe6AjfsXBLQpVACWFNbBi6
Kyng1WcYyovhA54KwF77uRXrotSqULx2KvSQWLBcJ4AaeZvz4Nnp
Kynixjy3aAPg8WVAZFZ4EupjuVhBmcRndjmGVTPE36Y6aPUHs7FV
KyocLHrDnH7d6fdeB7rBYZ9WPYGE1rt5WDVn7U8syw3nt3FDg3Xx
KyouZivaJGKjZxnW2BqT8NjFLonBHVyaUcZmQkD8nFjuKzW5BSXZ
KypFJ5YhPwyDV7SKiQCwmHJkjZdHVz6hmb5UcVn7eaHR5pBByLvx
KyPjawvocJMydPHhyZ8sduHaccXayf2PiszqXh5QZK23BTsABjPc
KypNuoVNf38TpdTiFeyFjVMWKzeN1c8KfcULJdCXEYubuzRLWK7V
KypyERnFbmR7wmqfgVLK2Rf5NJ12vXXjkrGE3XkKaaS32rj5pQBW
KyqfNWMAjQSbaFEonXsgN2WbyCkGoeA6GT57R57p5X3AunxKc7tr
KyQFrqCqM92B7tK2hxWiByPWqzr6UHAPhnuTW1PXzy3j9sq87YC5
KyQGgnH29Bn31X1zGv6qopW182qPKnERaL6cZCiRuumBFjiqzgXa
KyQoowAMxVtjQh3Z1HtkosYZ72bYUEeGdLR78LVzwdA3MtkrutYm
KyqtCAhd2bEfoWjbBbGTiCrc2KkMBG3SJSy6mnQbD2kvYs1ZX8DR
KyQtFSKmKM1fC45PgafBrFnko8VFi3PCx4T216DCwNdZfzvewdMq
KyR4mN9UyHnzVruEFYJM3LWFNJUtySmfgdhJ1RZ8HDENar4iNQRW
KyrHDpjowX2LZBYaTc4bNUtA6E5bV44rtvLoYDekPLv7ngAjovcg
KyRSR36FMS1p8rWBfMhuveEkjwmic87hYjjJzUuWChZtEc2o4jcy
KyS2HmSYyHjLhKx7amkLA8eKvfwHj3FmEHXcm5xxLjWRAQmBQKaP
KysdfcW1bnGawdGDuWLpEUEWHyx4nwrsMasS3wrXuqaJqiQ1MRPm
KySQxbicSv79eEHgttnKGvXAruJYKDQkuQPpxmj5kLDZEged6BKf
KysvsvWFjhp126xJoUiz38ZUewa9pZkLSHeBPUj8gPh952ianqfF
KytFunR3iCPy1nwzCpJsgP42MAKQfLqMbFcTmvPDMFPJAE9JknXa
KytYod6Qy4osRZaN2scNzhjhKhNTmx7uFsMf2nm9qDyrpWRyP6Ks
KyuAiuL52SVy9eSJuQ79NgzexsKFopYq1hMRYATfy3Q7xbY22zbe
KyUMNKqhFyxkay2neLXEMdpkqjxSYb8EZXUKGyzuGnt68pnSMzbi
Kyun9LkFXCH1rhZRTECDsHHfCM4tuxAGtfov4NSW6zr2qdv4XiWs
KyvcTJH1s2ekg9orF6wXdzG6qvG5bnpu9yS351QPY6fbgv3tSEXr
KyvMKLy8hvCrueW3xBCQ1BXwQDBTxCFct5dW3ktdbjxGb7yfHf4f
KyVneoAin4gayLzgjFQEmTQyYUTznRxx1y98ro2b7jAUHVxXDzZU
KyvqgzDvBmBXDVsfC8BpKeaB7w3NmKDohkRcHS1cPBAcEqgMpZDf
KyvTahPiU7UTnJfqwJ5TBK4XL2rk3FFZ5jiafeiz8yLuFrwiKod1
Kyw1eMnCFFUgcKpiArhHMNQomiKsMQ5yxtfEXJT52exZXAs1yNpD
KywDzDU6nk8nzmgbG7XjEcktBc564kddHsTik1AbaUvHmCw23uJH
KywJbqvyxh5Rmym8wqBeagcZPRcHkT3yYjJgaiBYCaZ35wTeK1C8
KyWm8dz63QFTyhm4aLDk3zg2c4MGZnGNaapJYFbvjTqoJGLAktz6
KywPqxmz7zKvyV2R5Z9nKTFfoj6o9TEi8BAnxJP6VpvhXknCRhGt
KywrSY9zY53uJCgPESqLmHcNPxDHcv1G41pA6cHgsM2meAtEa2km
KyWrUeDVdazWL2UcWR7rkBqhtHGBAq54RTMvgYUZUHAVo2pezDgj
Kyx8sVVhmJ6MDAZ7mw4AdoQV5fwtiEUS8BGFB4zr3k5p8iCqWJgg
KyXLnsoR8BrJsCcSqrHYYrGqisR7a2KbANvcuDPHcjvoEL8S9NTx
KyXMvn78LKZkSKHbhvaX2YTvJYFpASGb2NRoUX9WAmzQdLa7wyYt
KyXnzmo5VhdVPXLiekUtNs7JqRjqUZ7Bxu2f3YD9qFkK2H3MFvrk
KyxoTVfcdEnCK7e55i6iG6jvyxTn7cue2kLcWovD8NRaCvTpBtW8
KyXqKBhdfZJ58Xq5kY5J8vtmLQwCxPN4MM397Jbp1MSCE2b7TjZx
KyxTkeauKWwZ14UtAXX7S1GyZCmGAYpwepb3czobcJZkSTGpGq7k
KyXyaj4W6q8BKQM3zyycSoGfFd5fbEL4ft9RVoF1ojninsS2khLy
KyYC36qsMBJZ3J47QHB6eEtukBgipj896N7fGmXqrByQR9Lqvz8z
KyycdqxwAFjwduEzscqCHQxg8bxj2zrDZepmAH8D6UkP5Vh2HkvM
KyycGq4nfEmR1zXHe3w55u2pA8eRFHU99YW9dWdi6JKLtVRQDu2h
KyyDQ8z7jwKYHmxMM3VteY3YqxWoqraUWsuDgq9whaYCaVpZxLHY
KyygxKkC8pp8zi4HPXxKGefTLJaP7gXVnUEhJTm2ewGMVmBTpnaX
KyYPvgbHGXUo6Hnip5kcxUHNQ1QvP8rJNMHEUNBTxACWeQvqnTLu
KyyYDarmdyboTEY19YuH99RXdQq2cto9k7rzKYu2FBs46sDCQnRK
KyzBsNaHn8tR9XeDMEeouK1ZmrmUkHtzN3o9vQBwEkS9Gm8HKqL7
KyZeEehGiex38xs5csmX3wdEe2Hep74DrP5TJMqdG4DiQ9EjHi6L
KyZgEe8KaLw6FxLtwFeQT6HN8dx9Z7gyFG1xsS9oKxDV8r59Cjge
KyZhbjv2RMp9ppJdwWdHp5FAEWnv6vWxk31SdEqBbtiwuQTLoeW8
KyzonsEaMQNsvP23QmZRxPTpcqQRqGctsoYosxLppHdVB4ebRdKP
KyzoXTEtBbq3dHoARJKrwboWL34XC1BsBbykzXoegvWuBmg7vKrX
Kz1AeGxeUah5iUYQmhBBzU2XGMbb27yeGSCvWSVTnRjPcfSjWHPF
Kz1NZ7U14wBJTyzidK7tfzJy2MsvfMagM1TPt9w1Az9cnjggKUb2
Kz1xfHwfhdKGFz2wd43svGuD7SeRUkEUbfAvYXcjR4b2PnNP5u7k
Kz2EJBz4Fg8WxzdUWfg1KHW1DAw55ahWyqjroxgxRFKzxezxHCYE
Kz2ePn7A4YddGbiGq4H2GJzEUyqgYSePSNdBaM4xq1fZnFQcniea
Kz2FcmPPxeoSf8N7GLAbLmY3zRECTdFVQvQFuiLBTUFyErzWDALx
Kz2mCBMsbGRmfkYafjNrsrDHu3HxrbFbgpH1D4ZAoKaJgvnrvAdM
Kz2TEXaERk3Jvz8Xj3f2TNckcHwJjG6EXW89tUZRPzUuJpYKKvzH
Kz3VUw8L4nVhrN6Bob3BrBS4SQb8Hxe4Me4BNui6k4LQMG8ora4X
Kz4uG8qAA4dmcbtnbPJSietpFwitYqu4i5opi81CENtPsT1oKs7H
Kz6AUhHdMYSScESKqj7w7mSPvtdYmjSqqGCr2dojvdaCz2M5xN5V
Kz6byBFWJsvcr7iVngu78nw6CNGrkJz41ShM3Ya1wCzGQumNWQsX
Kz6FCPPYPRrWR2N5WQPixUQpW9jqaCrSejKNNXuycTAv2QL66VAz
Kz6rSV3Y6cHTJ7o5ai4ZETVJsawpSX51HEgmWNrSvKeC5RqCE9Pc
Kz7Ad6oemEjcXoWsVVwPh3cDA13qjM2twjEkhJzdLBai9QrFGmMj
Kz7BHG1734NssUX51sKYuVC7X3AHZ4XkNRKGwHc5KLKdFKDoQRgx
Kz7tW2FH6ztC8U55jwyh7cj61ndfk84v8JoXV2uwMkg2Psk91899
Kz7UuUhNJ8yyeu4XK6FVvwodon9cA6dq7EvZW94RV5do963ZghW1
Kz8V6MgCMfU1xXi9URDzCaUeW4eEqtkkxkaabzcAoEHfkEv8Wbpj
Kz8vsoWk5tygNy7GXdryEbv284FkxZXCHY4PhZXoNkToaWd8XdSW
Kz9JViRRV1GvgAqvX2YjwmCTD4jaEkJyN9ovUYFMWZMgpexVGQnY
Kz9xj125J73QDTQrjfM82xeLFsbUkxK7yPaNYcWUfxXgh5NFTLRa
KzaFmphmqu97CEs6EiLxMKdadCKELK3kkaAJMTqb1AGnEAvwJsQQ
KzaG8iENnj9tvdCK2vizcV1njXUUcdkBZ1FH1nqkL4F2zDMsptB5
KzAJbtLzEUNHQfwRaDrdAm7rLQvVDx61uZmKX22bRrBpjN6amSeL
Kzb7gUht4qnLNK4xmcV4MWr6zvnwVrZuumf96eSLDkjsQEPCb2Q3
KzbDwrqe6LBfgwXhHzj7qA8s11T3U9DFShMuibvE6L6az5AYjLxp
KzBiotqfuKZSJiNoUzuGwKDyaBPdX6zWHNzzXxhFQChHM7yongYS
KzbJ8RA1Vmu4WmtNLvXBDxMTcoksPwGUjLsTawh8asKYfTzbfXxm
KzbnQzHRCw78yjrTpkPtF7TvM3Y7iZD24YkSPKuMLquZyEM7UvZ6
KzbPE2SGZsJE1TVfdiCcoqV4mbcnSYGs6ogbTMhY1CCxnM7Rtw1X
KzC3XiYUCr1c2EHvnfjgkUsgFD25fik57wfbqyQcF9VJGHiAwVis
KzC5voM9BXB3bBjxVhHaHCFAVCVU27DzTfh5iMNZsWwaVKW7ut9u
KzceHzYt3TYTaX2jLYt4imwqhDATFecjirsFNie1SV4Z5v1z3AiM
KzCGgHdadKxoszVwiV5TrTmXSt1A4MQgyi8nLkCFpQzRf8w7Z2yT
KzCqaZjh5UZ8SuRsCvwg7XHJNDwVps5cYivUinvV1saAtD9y2zyw
KzCrPAbfTffGStmvCEnBC6Mx9eBRaXoAtBzMx6B1PidfvQVPFT7y
KzCvfokAbNm8zgzWJTpets7YjJUH8aYCwXi4tH4n2kiQWTajyYBL
KzCzo5pd518zVdmQBdDfaqn1iw1hKMtKF6KZ1XMZfKQF8yTknxJQ
KzdrGkLBwiHySHUSZvzS8TWU66u7NuZ7hSfE866G7es3QApKipL9
KzefosPdNZkkXvrQyAkLVDATsYBeE9qyAofTE4vX5H395yE55wu7
KzEjMKbqpc4XQLpNk7qqzxaGoqo5Dp67M2juHLhQjNoQr156qouR
KzETeAD8qMtouZxP8doQmfnkaTwGWJchBFudtUcj6quiA77LvoJb
Kzf12VanZpcHasxYckREqt4ZE5wWu1zKJ5qNR6iyyrFat5BLtKXM
Kzf1iMdP5SsQdg7fisAzs1RiyGPvikCR2P7WdccFZwHjDLby8Ckv
KzFAX6j3pT4gjC4VGr9iYZSVJi3BYS5UD8oGhrWcef916dxcg6eP
KzFBaBYvnmHDSeJBtFwAYhyukrgcqNtePkMxWXuViw3dResf3axV
KzFeF2uo5wPN9qpKtsN1vvdAkrVmFjnQShLbnp1EUZtNYB6jY7MQ
KzfLGp845d84pVfYvLneAvnzue29mG4QcjWyMNy576RtLoiyhCA1
KzfQ2tQFtFCxbNhD6NVrGdh3N6Kd3oRcGgEVd9mHRhPyWZSxyq1p
Kzfs88xaasQkVVGY6NQsx2p813mZrLyqvnkj7Q5jmxUZpYbQvxmn
KzFUaykW6GjgHMBVUmwJSy1GPqYS1Y8mknZUjyvHrfJadVpLiu6d
KzFUMBBo2eapy31Jut8GF7nF1BAEWFsSPSPiJCNEvGmvhTq2VQKb
Kzg6e2AQnfRgBAUGmJHS9yYconbohaPnT67MVD9RbDjNXfrFADzo
KzG6LFvNgbA9gBAM4SAVoeqJzwY6wfYiWH7CAzSP3zVVz1R79R4u
Kzg8ukJ15E87o3KgnBfjLxUFpmcSKZNQUHHXNHt769bi9fumMpqo
KzgTXMWikVPUjM7kAJ6DeoRACpaiqqzvRca2V4WwAvcXNBZvCre7
KzgVoKiJmquGda3CVbTryKYs6U6RcBGuRPbtQQB95wW37oUBmLrU
KzGw598CPN9W9i85o5QwPPKa2JLFeUTbsSh6snnYi4M9VXKt8dYj
KzgXVa4zYSCome46ggDAWyzUjM7gsP6fLv14HPFJYZh3RBMfSpJJ
KzGyHeUAxMYKxsyKc4LcyzJA7Ty5z7b6VctjBGJnWkBgWyRWp2JC
KzGYPPBh5Gg1iVrSEZFzqogEN6Ea6KzargnUrrb16kUP2tBbUt2Z
Kzh9Hf9EAPLqsZE9icghPSjbWhWZyNFDj1vhQP4kegPbYrPf8m2f
KzhmTm5xkSR1DjQcQpzkmi6fm6b2nVwy688DWuLfdZZoqJuTNaaa
KzHptJRwzdbcBFLWZXCgsMa7491XVxh9fgRUa6eD1yPvWvAgj7Fa
Kzijk9PmFb8xJwDxVBJ7v1kRvuBq6Jh26DoiTtatbxuU3xuabzi9
KzijoEappdbaUwjmUxqiH52h12aLe5thohgAExUyMmT2KG94c5wU
KzjpsMEpszjrGvjKnVYab78CNd7xR2Jpo6Wopr4u4X1UV2eGgaBR
KzjygPcFwUPLzNirmYfaB16qSdKyE5ypWKbWh7vBfnigtA5VUXGR
KzkE4EcT5dvN4pFfE5NKik2cj5UPfWp9WEWHCwaGpd4k2GN2Nyhp
KzkJfjXQrGUAFeBzKRv1AkZP1JgakZJbREu3ewUi9VsWhF5ax8ZH
KzKkMet6GoKVKsoKMCeqFPWP6HZ8ZZjLDAPK5vnY8Fd83UVnUD45
Kzks1ekL7N3iQ45XRVGGJQCrSW8AygpJGnpz41zNihP9amt2gTpc
KzKScwCzNKgVCEkazaAGmU3FQ1iz1TR5WRKwny3hKzbqWLkB3U2m
KzkzKnZiR8bELcyzM5u4qfqnACHL3vaPJq6rg3soheYaWnQBtW4i
KzL7u44QYTFuP6LahL8Xe7yWgNP9WJPbEXzsTauSRa7zZHGiNG1m
KzLGAY3MGNqu9357S3SSnhrGyaNjGLHzVF2JEjaJw9ytmf1njM1L
KzLKAEAfwCkDNhRP823A5Esapw6gst1CJw5DBELVQu58c9fVvoXM
KzmeVvVFEF9FAMABgp7ad59v1bkBu5Q4Y1dYdE9Uyj78YXrCWFZf
Kzmfi4XFHWLSMttoZVMzfiH4ZaAwhmgArmu6ATGQQyPAysFMAH2s
KzmHiGDsGHFco5qYVNyDobiD1T2L3tf688EAZsQU5TagrBX6Q24M
KzmTPeJ6qaSg4ARps4HDNahc2QHcKW9stsL5w8RJF9TFpNBeMeS4
KznA4E6czNMxgrdjsxZbdTC58ZHwV8VimkuoAuzjh4xcpVys4QwB
KznJuDrNtKaUd9rfB8Kq5Jg9wCRmCPoucJz6vxxrnCJMKkbSxyPp
KznKjsbKYTKuWzrGMg34pZ2uf7LjTRnm3Ue8JDV9DgNpzNM1RXLi
KznuCR7qwCFRngnPzKVhpufonvWWrHtj5fze3qKSBTf2YSLREyoz
KzNWH2TYnLkrRvpGG25a8THs3aQN6jE3ij6aL7jjTtiSnqfRGLJt
KzNZx7MNPFGDVHn5tEJ35Sq43YU4A5RzYrVbrDGpGWQgeDZAD2BU
KzosKBCb2b8PZg1X9QRDCWac6jD8TZhEJeHQXxD1NpZoJHMLfJi7
KzP3Jg5rraN3wREW8TqyxXqn4AUEd1bFUBZHN27F1GJKCE7W8FTD
KzPDohJRGz7PeYTmvBtvKd1g2EUVjjgmkcpMjLfoHEg8pxYt418n
KzPt61wE9cPL8tPssadxqYs9AYnqbigGkrjLeqEBTkZEwQjwmkZy
KzqHcw7MSMoBUKVMx1KRSrvaxtrowJQ7Kn48GpHk46ueqUHHf6D8
KzqkqXgVoruhbUPykzpeJsm14WXM72QhdKnKeGPpFojzaYoVaKsj
KzqNmwR3aeafmFRLTZjZdTfAGWUyosEGNN2X6v2QT35X3z1eMfFe
KzQS1uUvHYHuSDA7HCvxtpZYNSGwtaffPMumpJhsXUhUpMjF8FxE
KzqttZFgoZw9KFsN3XT76iePJEjTNVvznrnvenS4iHYWZUF756QC
KzqV6GPNXQcAGMjU7sFFLDejRRGRWQrV6491n1WHLVfjtF5hoKqT
KzqZyL2U3ev6rDHMrF7N37A7ePwyyw2aRRTU43Qf72tSE8ebcNLF
KzRaeJBr9JMvi59Af6z9Kdfveymo9qgaGjTMHMdnBKkXYVLifZDv
KzRDTnfGWgPAsug2NEaEmX8Kf9HWmC8JbHBngTjrFswzzBGkZaC6
KzrPX1MJLd2wd1MqFAtpJBw95NA55zdXTpBX8AwjTmiEAFCDrBCz
KzRW4MydMcLWJyh6Zr7AmYyjaTFN2GuSbJGnkjc6ZTKZfvSp97o4
KzSEPpoqAVJ9hy7bAPabT5yE4s6aAL1WxRRqp5HbdT5MDyKzNhLG
KzsLDyccwnup2R2ZSqZWyGXCkzmw6j4deFRG7Xy9ZpRKasESwcvh
KzSmJ4qSW6JTMZuDFzHrJzhAGTBWRDr5gDrEjutrzTnoUAV9KWff
KzSNbRgD9k1gtGWBJWBuqwp2ACc8Bqr9F4G9MWncwdsAnAixhdqx
Kztfj99EqetYzz34jQy3AgV3PD1a5kBahLLDS7oKCoZqtTDSfGL6
KztK2y8Y9tPyZcdQSvRpPs7BfKSRHAE86RNKSr6Gk8XBSuCT6S5y
KztpBopwwmxCfrkuWSJbkq7gbiMep6oyfZQwfaJfsDAqRNx6N6qJ
Kzu27jyF8mo6WUuApoWMUdJhwuzP9z8T9rwEwJfCjjtXJ4t6gVam
Kzu2Q6UZSqTjtcTv5rarP57bnfYfA1saQTe3idVNuz8k1iRqfTT9
Kzu6o6RZW51JwDfJbp7nt9KvG8i7Rw2jWGnZP6yAgDxsiA2NxcNK
KzUEBXocokEyHBWUJwKx65E8yefNTRDoxqJx3H98a41kDbibsXbh
KzUi7dqxVPJ68Gnrg2MURkTYwr8UrjKvj2qg5wcpC48JiHNvqX7T
KzUpiNDmv3s57EwaEb7WyvfzaTVErXAr5XjcjJb69A2DwPwNPA2U
KzUvDSBEBrL4UKaVQBMW41PjiumDgRycLnPxmQdNSUs6djgT5X9V
KzuXZgiimF7D9oRyRwAEVUSvqjtx5wP1Zzqm9XxhMzZtCwebcHYY
KzUZeCV2G7ev8KiWjUbjTSmnE9hcPJpaGexC78UBpA8EWRFdhmzw
Kzv4dyEF1YTs43UYUtnvGnpTfRikC7ijfFDVGoahEiTCWMtdRAnp
KzVqwPS6thPtMF3YgDB1gw531FR4WA6DkH9eqxpY4kq4mwGEtaVq
KzVVp33DLxLnFGYarri7TnGKHNdMkrdgiQ85HkrQNrZWwghGAEzg
KzwdJL6QD98qAG1P11633V8s8pEGz8pjmbnhhKfiZvKHrgoGcQ4u
KzWFWWSjAQeqeR73GLWNTCZFXWHAjmYcU9JSQRGDwBEvvAjvcVz9
KzWgHFgsMxMsDNu6tBqPNoz1fxcnUpvcigBGWTGbvMACf38HrUSV
KzWT9sqbvv2eAKw3BweHbSy1s93A3ZwaQsGye5CArvexAjV6iUrq
KzwVhmCPZxnMRH6CxK82Sr9CzTGDkP7VM7gDEwYGmiJKNhH8KHf7
KzwXp26C23mvuW1puLupLvSipcBdR8rYejHAZ3EVT166EQvJFHa3
KzwZV6ouK5RGj4TUbyF8oLPpZMBSwXnFofv7aZLyCThxRLj17Kbn
KzxvoesLJ1JAmjSMZ7LUfQ861fcwcXpvYUw4afa4K28QUFtSTSMh
KzyhAmSYseH9ZfxNUWWRmoeg1VpCrMAh2UsHTQkzqhb1mfxL55Af
KzyhRyCpNs5w7em3CcVmg3nWvwA9vMgp882Txd7cUYPU5G7RxTr5
KzYNA4odaNFHNKKTnrBcLkXFnBguNMRpmAtQ8UFBnz3P4Yubvh3y
KzYugH1mYbceK8ccH8DFMiYLjPVNPiBw2oUhpaehL3eEcxpiZthg
KzZ2gwed2jcaR9ZWW4iugzzDjm9ivdwSbTvs6eXPQdinBzRgbR9P
KzZ58nc6rsuXW5wdgUZ6HHU8ZwDU3SRFRDMAXYbi9EYbMBAHoA7T
KzZ7rQZRFUAVeqVYucyMoVWQPWMTmKujqdGZg8GUxvCzemi9kCUZ
KzZHfUeoFRWeUBPFdrfgNgEWREZZTJCvYreSoLpupoW7qUA7kJtV
Kzzqje7cVeYps7Qn3Jm5PPgsH1LESBDYwT6SJfDVtwZCxnp7jFZf
KzZqu91YihtATdQpoWd2peknWNDie6hHP8vfveh9zHWbVsujSf52
L11ECn38a9kW9aFyygotV5jvPqTsiUjNwFpFm28ZH4TBpr4yTMES
L11TsQg7u6wt5WGndAohgc9qVm26KNpthsKdaUftqtpKsA8eZ1CS
L12etypV3mbMLNQsSfH4vW2YtjfcLFW9xC44RT8fcnnVq73gRSNA
L12Vpwcf8VzrwahoXuio7Q3C7rpmYUdDw5iQjYp3oH6gpuUrLLAQ
L12WwZvhMX2hHQLuVq9ohzrnUR4sj5eXYpKdmpy3NFT96xGD1J9c
L13bLsenMNqRQBDNmdaTKq7No6mGiA67a7WAMnUrNtq7o3yPY546
L13cWM7PkTaWenk6sUume2CHDazUwAphQfDuGw4vXrdbot1ia29T
L13ESack6YGhXzgFgohYLt1ZoLRuwPWCmuFBukPgSP1GxWb672ce
L13m2jkdu2DZSKC75FrMEB1ymgzRPtey6z9i8ioU7XqdYbapp2WL
L13ZpkxsUgYbUF3MMmM79QztQiHkchm4MXURcyr8oXUK1YxHNSWX
L14enGF5vA1NJqFc8x7iQQWRZWDDfhjv2EpZARTeDkm3Pchvi9y8
L14vJKWx1KkZbpMADpshpuN3wdXPaeyEJkt9fyeZARRURpUtTwgp
L15QAD2WLJ54jaBWo78jVVEvSpwqkRrTZoEgUcov7cCMkgxb3ybp
L16rLi4qDyLM2FrxmoRxUr8PBH9KrdSygKjnSwXVPLzuJEmQzfgp
L17EtpcZ6LzvK8XNZE9UETHLmLALjquSMGUeuAV5vcKfjiweirvt
L17vkDAbkS5KDmjFypSq2assWpqnVCtTWoGhXPh2a3DGupxwzBV2
L18eMPebXqbdyhhiipbmCLcnaZrgbht7U3FjnREiMZuhv3zEsNzT
L18odpa2CrHn5dj1iGJVKmi1yaR1Ru8QXVqRGzBwuyLSFs7FCg6T
L199LYctRPmpBkLMQjpFYMFLqWbGkXL2DR8Z3a1DMkTk5GLNyt9J
L199o1XmbT5UAjYCgw6kLPtn8gQrS2oeZBdNoevFX9xn8qVdHyeB
L19JzR1TbTBnoVEz6Y2eTycyRoQYUbFkS8fZ4dGY34kGeHrp4UdV
L1a3WHEX1sH4HD39ArYtbyCuGVrdDyBK7xnrkc3AFaUtqhhz5vrD
L1ASq7iDKEXtBh1QdFZSxdcz55MkYx2YnYAUrdxa5YEsP2myRKyQ
L1B6LCksHDGHX8mKXuSzXcM2aiJW8TnF73ogkqoZnBLacAjchnRU
L1BC69fje3KvmLHCwt9GaTrHGJgWKXRWMqdMtYyCERSXBYiZ6Dcc
L1BFxL5hhNDZNUBqtLkPr139dJ49sswvpVU7js4LMZ1rMS7Ds3eQ
L1bgfJidVgVR2fLSe5jgGDjux68yQTFxizsVNVw7ZTj1NYP9sxyf
L1bnTEQJJV56ijTzYkpEkpgL51W41ZBg3LLf7L4TMo3Dos9Zd9E1
L1bonUSQs4SHizZCyzwgFBQCQHeySqsZuC2ZTyet6t9da4jTpVA9
L1BwQFUpazoqRbTtziqCmfiJ9AChDst51LJTM2VTm7un9TMWRK8d
L1CGLnrFCaKrWeNuEkYdQBvggMdoVJADH7GphhTBoUHwSUa8orx5
L1CHyPB8J9XeY6NzgsdiAg6SVi9Ki2VY1FQ7JmDAjL49JsWDC4rw
L1cNx4iazxDF9vxD3mtamRLhB5UwQcwpn9Tc8QvyLUuHvuWspiro
L1cShgsySzzqUutHAjp1YTFzqDvj1aQ3sS1LEQvngtV1EoKXUFEC
L1cwaFCK6PxVBV8b6AHk3ZtqeKubmeBuSiuLGHK3i4kaybAx6w59
L1cZpm8NB8aZgv1vxyB9nirXph98v3tfqEo3m8rbSzPPBAC8H5gX
L1DMpvTwhLwV5Ca4j5Bp5bg8JfXLSfr7vLoUfhxpGMtLr8qrowBK
L1dUj6u1qLX6wRLu4ABk11DzdSNkvBXD77MUC9vj6PuksL9JTmwp
L1DVrbiJ1iptTuqGYJchSNjP5eJbPc8fqnM2KWJvBRtnoF9cCH7T
L1E5KNx1WmaweEBRwZrvJpX7Focahampp8tvPj2GZNjE2Swh3TaH
L1E8KbSkDhuUHeALkGLBz5oSa7A7QZpZiMEKh4Hw7XC7pYUVtaF3
L1eAjpWcAycEdEjHArr6QvpcHUfaCqWoeScjakrfded6FJiWzshD
L1EB2YcPhdsXGxpHFrrX8uPo2MLAi2CqQSvQtPDkbYSKsSttm436
L1Eo9t4rCWiUuBwvncoguArbwNTKPogdmTMrKws2Pjo7RR5SLsa8
L1Er1HEuiSzqJSGeNsraCR9zLXNRv1HTj4MJhJeyjXAEP6qPrDcX
L1eRZLJ74wwmzNkTT2668jyKzQrxSePgFvwFEgBWHWX6wWzw2WMy
L1EU6VWBxuwmcD1qRhWbysBCvRmHt8oMxno8dnKTc3CDGvhiq9cD
L1EuhjhdwBtSNUCk8FaQrxv9wETLec8wuaaU79hCo7rAhAZmH1HP
L1Ey8NtrsasNSkca1A4mSCK5hqNYZjYh5oiJakHQD4Bm7zWnUJEv
L1F1gCatioCg7yQafY94uTxpNQi4kb2eMQSt7cpDuQFN1gGhJADd
L1FMewdpgke8GiNSQsePm9uKjSJJTVRyiUCLGvbzRwiJaoCf431N
L1g7TB6KF4XMqcH6C7svsv4HXkti8ULBsVaifcauP7v5MVh9mGBd
L1GfaCUnZSUPpGRinE5mH4EriYtXA7vyL7uAzSJ3RT72mpF5PcKM
L1GN56xbya9oHTLLKB9DWEbA1yKi4qTQbTDe4jTuDvDvUVzqV4L4
L1GphZNMwoRmgnPS5BS7SyujHYk6CdsW8u9kkxJpxC1YH5uMisrx
L1gtkGdq8SEPg1AWT6FiBRgMcQCAb1sdmdmgfff19L9KLfQRDMyu
L1GUA7wjEPb1JLjAAamaBoHf3ty2pdwbphdux2t1f2BemYoTfwys
L1gUXae8dxVyQU5heCL2vkxcCJBuC5QA17vgHpsLUV6U98RZCmQC
L1gW93vHfKFKq69NycrDaswfz6n9r4ije5pGnPuyTznB9kXEvStJ
L1gWng8JiraPtNvPqtni4tMJjT34XLWu37uQQt3TMZLhi4XD5Gjp
L1gxCLtZPdfwoirLYPHgg3DsUD6TkNumPyMo9xEMyoWF9ipGyD2U
L1H85pFR2tRQxu1mfArdKc7gdX8aKDh13cYTAn49fT2765v6igQC
L1Hbd8SnYtEkf1JwZx2GwJSJ1XKgoY9cT7n8xoVhNQcT9h9bKt7D
L1Hx5EspGb7nddK4xgyq6bxXF1RtDxi9oZHhKLRCmifpvuJKrTZU
L1ioS233Phw3SLStZ2GUg6Ato8FuCzWFAsQt1N2CQUAtiio9LxPN
L1jbRYmDurPXyfS7xRqZCM3fYWjQdob5cd4KvDyN7qtxdC16JMVt
L1JFWTa9boXHzexXaTB2ve8wAJ6UTdeL1maU5obkGfNxaVKkTjfj
L1jhDkgqpfv8TkbQHoH1JXHVWUkw3gZCVPbPL9qLnCRwaEB1LURi
L1Jk7gLFuDQMWxEBA7rAZotCWHA6CJV96ytBLMaNDeVFiDNDMf5K
L1jTKMAQSdDamz6UZXREfRsXwu2gs5zxjXDD8N8FJiwQ9WvuBkGc
L1jvrfMmxd2vU6PeUJatH8C9KuDoMQTa92StvPZo1gXkD89KMn8F
L1kceZPDPLMKVadWsGo59WuSpa8LihLmPzdzW34NRYiBozEy3Fsm
L1kgsNeb1wJY9Y55pJJJ6VifwT2fbnhAbBmi2SA3TDKvpiBjUAZZ
L1kPNH8QS4ywciyhMFMkKg4yEsTrWWDbrX6B6jKuFgSpXPoRtCjG
L1L6k8idbsnPdGZ5b69pvh5xVDFuvFEonfdYwDPahL3c9VGdkxBM
L1LACCyMs5DwkzEugPBoRJdUM2AD5cGwR1DfRVxwXoQXxYh8xjWD
L1LYoRguLCD1buG39rbJ1rN9yKaDpZRqYZB5JmhyD8mg9TdYAExp
L1M3YodbJDiPQtzbNxaLAueyRdnPT3LKmfy8442YQYE9GcXAzu3G
L1mhHXyNJkpDAH2yibo7qaQWDz45D8ibUAo1pF1xFBqYiQtZHwqX
L1n5p6iL7vaxzEnr8KNkAXzkFayq6tbt6qH3WRLYU5N6BDYgA8GR
L1n9EjuZ4KZu4XCg1Ds6jmPg2Bu3221dH4Qsz1vjt1hgc3apERcf
L1nCwCNHH4TW8Z8mkbawQK9qctywkcs7Tae3PrxxwcPcv7KJDNVK
L1NDdX5j9FjFNo6HgPTvj9Bys8xCuR8v4k7aoydjLADvP6ixCVHG
L1NdP9K5vZWZScexgTMRTzLVy1VRDyktvi46rVSSPd2kMh5GpKMc
L1nFnbYLnzjrXoTVLrdphZTE23u4GpTwRBdVmDkvHPkjso411VDk
L1NtCf6apXr6okg8xcbRBoVDfwgoTndmYCNcWQmH3Uvm3uR1tKCq
L1nvctASmoYs9MF5PD7KceWPPKCGG4L1UHm2Q7L1ZcMjUfZhWiZu
L1nyd6fBUjsPnmDzBuabHunihcjny3NkNW6RhSbg7kpdGm9ZazwN
L1oh7Z9FJAWrMnqMQQFhX8dhekq3DxJTGJBsRTf8QmfWT5FARFAw
L1osxHYpyr5Bhwkq4zj6qoJMPsiJQbGa8ueXE5qqnfJWbK4GB3mo
L1PaDNiBAAwEVa4X5KFmbj5qKyyckSdN5Xdsu1hDaje6RsxJ9yNM
L1pky6S4hMvgtu2RSbooS4DPTiD3xbf3BPbEnQQmwoVhzLgstwz7
L1pnbgkwnw8UvM2WtittCYP9H4iaBKzMuXiXPUAksfFurjWM6h1p
L1Q7NEQsu7VrFWGq3K9mZAQzK6Smtyxfjv61ptJty4oGKcs1N5Bk
L1q7YE8NQWeW1PwX8kcJq4bXpG9gSkGWBJgtk98Uv1e59khbYb33
L1QcEnjDYWTVx5X8xjdW4H3q8CRef3kXKCz1rkh9zF4r4Qprm8xU
L1QfzQtbzZF6H4TD5hYvqJy8nLsSG1CkQVXjxkgyLeeZNJXR3VzA
L1qgVxL5R1JbuCshCRhdpyzj6b2KdsV1iM8VNU7TQ7UDZ2DW1ni7
L1qkGvsRJrKMoiSR1EyTvNtsBr725FKaARueGnpZhWYTEH8Q7yeV
L1qnz9XVJ9En4XDaF8h7kjGgL8JDnkCeN9XEMJZcKaXzwmyACbz3
L1qrrKwTMU8Qff8DBbJF2GTYh7fsM6j4poMzCcekSi7L7fKBTkyc
L1QtobgjM8J5EU8G28Co35SgQEMxnKNUUfd9pHtJacb9BNamk9nk
L1rc7MtygGvTFJQ1WDt4e6gqtLzd7g82Q6psEXfNbbJyvBLv44c6
L1RFA1An8T23hzrD9UVqMYudZ8hQDnH1HSxndBy4aFQDj9KYP2n9
L1sjx4bjQ4GYdWAS2wQs8kgrXcwqC2tpkWKo2YMQe4oaevHXWkpD
L1su9U5RQ4NsGFsDSYLmGLR3pjwXEbLvdTMyHWhh9yb5ANdLAuWR
L1subvzJa7gXFF54ijdG4P4V7um6v6pYyDro3bcjKP67DwpJuLLd
L1szMzRgEYxEDeQDcdrQWiWsTEKLdynDFNUg3WtR1rB6AXDpARNx
L1T2sS8T2zFBmUDQUP7M3ziH6htSKKL2i9hvuYZA4UbbeRzwTyBA
L1Tmw8uxkJsGGquNydTGocdhZ1q7VHCBKXqS8N6V8ETt9KtyQfom
L1TPde15tYcJZhvDAFPYZoWmm5g1FLyCnH4oezxpPF35Kn7hGeiQ
L1tQb5xbTfrhTHhhQeqkQPh3NrVh4vGTibjcJkPEKZe9PAAXRV3G
L1u8CGSbF5P2DDgA9ezga9RxSbWbBRG7fqieZmvv76LaPP9EVYKC
L1UDiFFtFyLxRosDJ4FEb1GTpCyXr6yHtDkc1HTzShLTMHa4PfUn
L1UVxRMrB9VzdeqVp4cVBs6ok6PGvM3HbthyoujHwET9LEPyuRDE
L1uXDcgw4SkwoYa7UyzRdwYSCKr8XFztSnZksMmjcTcBocK2VrNv
L1vAxgrgK9gRSiRV2UNFuUdNZDf3c55M1R9vcmQ47eFoRWGTLnUt
L1vB3w5NiDAzP1wQW5KVq82j9RxnqEwNaQxzKmdkiZgRcvrRFjtP
L1vCbmYMmY7zQjYTMg1Z7tBSn9D3ozhbWKFZeE6THnYwzyJzuGzi
L1VK1Y6TvaWQfRr8nkTRUj9RGqvyKPcSm3WbBCJQQYWa3z8LcLbb
L1VMTbUBTBNqEB3yN8sWhyvjh5oPg4e6DgJJTUWC5rPTABNFWSS5
L1VRbKoasqED9SPNeq3fmWRZ6xDkXudqVGfxBPm7vuiqaKQZtQ8D
L1VtAYajUMAThfHBxkhRqxQFaZL9x1QWbjeHU2DzuZ9ShSaTfCUX
L1VzseGW2rn4z8ojh9dvAdDgCxkHuMTzZdpcDpPvGp1uCZ5UoSXL
L1W8hPGE2BaHBFTSWtGiunq4xyMExjDoJDRLrSbH23gCEakjPdJm
L1weBtY2jL9A4ChVwNcrUccuJ4uuZaxCAVuNm16UC22NA6EY6K86
L1WixAuppYnzoKs1ug5AgRvCDW2DhMojL9Cs6skD4UtAWMBzbBv2
L1WvF6LxyKt4FjwycbAngwUkzT18htvmtRa1Ej2ff5sf4dJhArRn
L1X44qLgxegGSrbgSKobS769kTc5mGgad1AjsME2QKXx6f1untsU
L1XdM9oc7gE8HZ23UePqqDtGrU8d8iWjhNKPumrpkDq1ithN5tZV
L1XjvwWj4vwvmZZHLiz681AQgaRQMEY8RbUkuyKYGb3HFDyv1JVK
L1xQADN75MSy8A9ozXKoCKoQPv99zvQfAQAnvkAJTNnoubTrz25F
L1xT1RqLXFSe5SCMB9jUDgd6b7D5tEE8YexP5my8NvEAML7CMcjB
L1YdGZxE76VF8ps2nfLMcDRELtykAJdk2Ybe7ZYH8cebm3cLqS6z
L1yHujrZ6VEmzgDK4DbANZHrBjMxGjVc5eqdxSpUZbiDkcXUUsuB
L1ypVtzStyBdtzjASfjyFrJGA5vTjEeNQjkABREGEkYaLhXerHLu
L1ySS8VoF3spnCfKFzXjxi7YjqMtjTKsmymSpEZ29GvFVL5TL2nL
L1yTbbxQe8cv2pC3Mqs4GuCTAKb6xU4TcXVBjP96JEijWA8pv8t8
L1YYz4FLpMxLoLZvKQq2QsD2DKy6kH7HakHNHFteju6hxyku59as
L1ZfJqc76xr2sHVCyE3y2vo4CLgNRHBNQMvYSAf8HtWmyRupDtgk
L1ZH1LhEFCb5A9W39qzEo7g8QQXGBLxPs79uxoXTYu5y9tEjkMJA
L1ZHDwkLiMDALDGvKjuciwDeYLHWyXYp47nzPGiYRrUrxSq3bJik
L1zQ3Vnhwjrz6czYgpASgEHH4ggmLNeRESwHfiVH4LmMU76NGVTy
L1zZ7XzXs1TUVQhcbZiiVLGdqZXc89XMFZGwMcotsrTAUJWzreJT
L21b54w56QWTMV8dWJdov89zTfLHMFKgUmfiWgx3qEjXS3zDNVY1
L21pjha4RMhqHR9S9ndd7eZuZatVx9RCFPB6L9VPQ56fUN6YRnWo
L22gAVhXyEPFDK72FevwR1W4Gvn9rzobzpvXZWmsDWLXFh8xUcK1
L22Tnkp48drCnhJLVzGW93tnXopPFFtXJ4hiQY6EwVJ7KqMA2nVj
L22ZFEqkzw1iFQ45BJKvQLimyAJgmdszgN9LtAngSrTvYZZ1PSJa
L23DRvPDgGtf4jEFQSKVMDzJPSBAH8NV1eRaHJL53RjC7bDnbwFN
L23MmiAe7sBBsKT3exw5pvf9wvYApGytAA84dkrwqRxqXY8HCo4m
L24dGBbAyvjtTU2tBMNawNfpaNvzJXyJK2oYpAv6GaMUgA4ZG7ix
L24ex7usFL8Ljd21taZhsV89wvV29jSLPYbHdHp9mpwc3V5j79hQ
L25dX1RcJzGnmfCUja1rcRsZPXuN2vB3goTgMhEVYHMpuAkaVTGH
L25Re9WnnNKWGjQ38UMUZFAxpc86gVKqR3CePqxE7DEZSXLaK3th
L25VTNoHgS34hvwwXWCNoPv1Q5Avj6NKNy5EWcGyUfqtssSnmYyW
L25ZEiQoRYfz1iKDBAKV9tAcxy69vF35qXK8rE5fuRFXvWoJQFtV
L274TKykzvKMsoMmmBnA6LxnP9tED5bTV9FbbcYnQf234m7s1JFF
L27CFZNXWiTQZsAS72CsosZyGC8pPNeAdMi19NcJXu5JwaE1Q29W
L27KwxyMvF57UPjR9eqQBjXb2V2UyMmzJJXTLiaqb9DP6Ug4K7fC
L282pjdwrjfEvWWFJfwA87181WMzWe282n479rxjwPfL19EMnr3H
L282YP8dYfzbYNwW3crfDfCEAkoiWcGznBMJNY8Zm9R7HVfVZvqs
L28d7wcgqjsPk89JMrZcdL2j6vPwDyT9jM5hfVzU5MNKapfNfoVk
L28juWUeqd4MsNn1gZ1hCsCeJ6uxPTvT6Dd2eKXfw12frJuaghd4
L28PDLTx9rZnS1NMQ4UUS3pnaDLoasxzVJf8f3pdUKz1QkrYxa22
L29dgrSTjvnraG1LzJCY1VJPwYPszVcxwp41aiv9bwjcKmmG2RU2
L29iiVza3iYXQaNrgdszdTndCRaSZu5wYPa5ydeo7K8XiLtTgta5
L2ADwwzrhDsWXjvTjfqWiPADwdrHmN3viF4frpzgmvFxAtYET3V9
L2AfRUFtetRPoz3atJYhJYNgt4CJadX3ipopxzgDDMqd8xy92xjc
L2agM3vyqmSeYiuEpyFbknVooDkFUnJRwajCjeqKjVggX3SG84KT
L2aHeQmkVR9t5RWCsV9fHjcfgyAsFQJVWR97MFj5gfm3q3ea36w4
L2AHKduwmmc6SUtgyfRyFZs5bQSRXP7Kt8oUmmWpjxJByYYQAjr2
L2bAZ2bvvfgLxM9qVwpHBNj4yerhjYQvEKhwKAD5x6b7BGQ7z9q1
L2bG6DiH1PWQECKKocg6cDFpSVwKafB8wWkrDXpMgVQgj3h21ExD
L2BgAYC9Qrsffjz5fuhwyGefgusPrkvJpGxpzFbYE6ULFE5edacM
L2bqUgwvUq5AZ5jPmEsGqDBWJH4ruS2GbMoZQht6RFbrK2tiGmBL
L2BUy9aiwrYEan84HEL9Zd9iK2QPgh7zmDXt38DHa6fR55R7x4sE
L2BZrDDpU6rBAdfx1cCGGWf6Y15xADJ66arLKA7fLdt7Qy342zkF
L2ccva8GhyARznFJrGWYhukHaz5Rn3UuoH5aGrv59erNUrRWFyxp
L2cgxLXZWw6TdBMEwx65p5AVo97rMvryTnsw1pJQ5VPERUFJEr1X
L2D1tMoPenewYuhES3JrgpEYPLe17jKN5DTs7CMesiefqNfqj2a1
L2dArTfxqu51J71YFtoYmBSgnsZY4uUJRnG1SLPmDNzcMoP6PyJy
L2DBdJQbxvKwsKPtz52JQDjDrh9FD4TLszhwZDQwJJz3zvhvez3E
L2dMfYc3j4iRT6i1N2NMQsQXPrGkYwFen8mnHM9XenyQbkKJ3eGS
L2doNTGYjmNYnN4DegN1o4a7AV4cWP6qCRCSbZPF9vK1zBtRJGrB
L2dopvfgK72FSCCDi5oRiCzJyiPP6mSVH4Z62wW1LC2LtXh9oLFF
L2dq8nJmiXLwnSweDHYbH7J9wBssvtToS2AzMpx9PtsiUFbMg9cK
L2DZnmPtrgyNGuCQS97nARjpQGVdTU58dVJbYTcytZWa2rgH4vZB
L2E9k4VM4KCueJd299wompe2AVqrpLFr6xzi3LJWVftpkmp7LyAE
L2EjCc1sT48RuzZ9moQSnBGvJK1eDCMp9AMDnx8oTTB2Jqk9bp2S
L2Ek3Fkp7BsroqYkxM7gXRdg2DvcUELfaL1FACf5twFVyTVhNSMv
L2eUzNFpcGC7whdLFF9UXHUmustKWYiadnVkExM8Qd9AezTej598
L2eYfT9eDAhV14b9sTMwUH1xuqx1ZtvXTutmm3tDDEqQWNVeKxiK
L2fL2UyeoLX7HtgbgMVsU4bdtTAN8iMXWvmKWkK9GxqmwDGU8yXG
L2fmV6zFYLiCVzZMp6MQ6dF7uSeyn2rsqR8mBU7nicdvPWhnPFGT
L2G4ch3UaNs76NRRnPYSm4U3oE53chaBsotVR7k8yV1GnRkStGYJ
L2g5NW83X4sKmnsPZAAZcrm3XzqKZaJKgFMRiJAy8y5yGd4prxHe
L2GBvprrt9Qd2wKthzBFJL6yWvECgwLGurAN39dZxSAhiSG7XRrS
L2gjnFSX4Ji84Hz31TQMXVSF8VFgnk9Nshv8uwHTGEUih4UE4LNS
L2gnmwZqj8cSHxLJhS14p2TYyqyeQHrahPy3rS3djyZxXZ62Gcoy
L2gw3RYnT4CS3u4qS9JyxcLKH3yEAKkyx6zUdaiWFZRrjvmWzmh2
L2HhHthagp7LNy36kenM4QtUoFoZJwy4Xzm6D7ZyesWc39WBYmG9
L2Hn2bS5oMDKkqok4P8kMjAob2uZooSndyjzHJFze8wBt2YXEz7f
L2jE4BBEzsrjFk4uZxEpjNjiuHLrAfTRWxZsX4yjfA9vnHr5WjCF
L2jhywKPRF1DVsJnub79vHVEa3qHkMkPRGNAWMoHLvYxY57P1PuM
L2JK9F2NAsrkx3feeWboKfH8xPn32YFsNwKBrD8yKN6pywyGPCrw
L2JKCLDRjvKP84BTeJ9PgiZQ2XAYaKTZ6RBddH345AePFFAqUHm7
L2kaWTqjGbtcCoZooYq47pAWGsdBFCkAiyeRr4unqNpSU4s2DqXk
L2KuepTxq87VZSBGQrkpDHaESiqohFuMTd4egnZC2TAFkMiN9kUC
L2kWZ6RVvEnKiVYytvBWkvdbbL7oaJ9zKxCsEK2waP5UGKuHFLVx
L2kxcDgpJvJBkpF553H1o5UWxUpGixbrgMt9vBBZd94MKCiDHRy1
L2LXSuYCT5FXfMMKSoEM5kKME5EgoF3uqizHonNe8Zrot2gnVvg5
L2maMVrguEif9eDvehWD9mJZZaowf61oRrRsMBhepUFGfiJiWqPT
L2mBJBtqF7UXn5YH5x37zVPgQt6MBoebBwUdngtBQYgbydzPNNUS
L2MBpLecQe3awW8t372dehVhxNaopHAjFrEcymYCuB5HUfW3nh5j
L2MiffV8utLGcVjsD8esRoWq3nLDuN6AZuUNjnesa37xxQP3ADsY
L2mQhShPua4yH9b6Ec5VfogfCZrcQtNAjwekJMciCZfUm2ycf6v6
L2msNJ4GCkB7zM7EFDWM42KvCZfkqFFvntdPadiSxCWDsZEjAP2N
L2mtRNt9B4PehoLvrdHo4AsLeiKC8C56yWC5PK7L2UQrCa4NpkKi
L2N3uz2QRgr3r7SsWj2GkrFGjLQrmcAFtZ9yg4txhHJGR8t8wy5W
L2nbJKQ4A9ZXXRT2zqe6q4X5NxR7AKXt1P5iCh1DaHe996xQBuoY
L2nKbA1MAuPp2eb3PMbfbmjZ9aZJSp4TqcFSopvXwkkSTD4sMPMw
L2NP8cDZcwhau4Z1AJhB7X9N5tAjSUJc1qKts6hRbrWiDEuSfwhX
L2p49PnZvWKLwMe1wrDr1tXpEVLgMGGFwYfo5eGP1p9cAEYpjhrS
L2P6SP7wtwWSiGaxT4EshQqf15J1n5RaKMe1NmM2UJHRmY3PppzT
L2p8Gfs2Q8hCSJQuq1crhsCHE7t6Y3cNF7HHCtZAeNqSnkYUYkGR
L2PCfjH13oAMzhvyZYT5UGoMsKTGHibTVCL7y5XgZUgou3FB5wWD
L2pCZK1XXqo4z6dVwEfLQdwsonAx66MQJSzz95SwHQvBNockUQGt
L2pDMusVv2uCz5yYvYVqVD2XbCQsqm4xdv4sNNhTfFygQzvr6fbN
L2pnGBycNBVXYzuUQzN3kGYJWYMDcGjtCvrZkRRgriZRe5Avhhfg
L2pqVSG6pRW4oLidL41ubKa6yDWRwekd3gLfpbAd8adWxJ9q1DTL
L2PyigJUXEm9K9obkACRP8cehvpC3ZpyHjWJs16cz92HVKmyBjs7
L2q1Qm4infSjQm7VLohprFS9iDLHzuQW4hKkFCDLRz4Z2vRC1mPk
L2qL8amX6Btu8H2ceUYEfR5rPExk9XA4uFzMZCvhGvrZx66KSySc
L2QQeV4Jx3usrUNgnvZSsxMzGDBvQyXqTn86iSywEeVJDJ6TMt1c
L2RpzcmYuBGfk3siqUiPmaAxxQuLCUwKjwdSNZhiaoTGK91A5XcA
L2RTMMzcYUfqdSpVr31RyNed2KqAjLyfFLAzmXKJKot6ZVBzRBDg
L2RwFzuJvfg14gLTMrxTFDTixVZSAmafGsLCzXBcTNoytyjKudW5
L2s6DUb7hQQwDXzZPp6PZmfVhYktufqTDFQyYZ7U1B2Ac8iaYyHX
L2sd5FGs4J6rFYAfuTwCcERNVNMkJpzZ7vQTcmicnmcBounbDSz2
L2SGTtx7t81WpUBBeMsCBCnyYfanmYrGgbJpszPyCijeUShzMp7T
L2skSmBmWWBQkpZVcStmey7NkMcoRsqbpVBRcdNbAaCAUZDFxCiM
L2SnomNpCnJSWND76YiWzFJ3Dtsu3zQPddk55NnCM5JpJziAF9Hb
L2SpoJgHMgBieBwWyrmNcriZEtdHPjt8ncr1jzCk9sVSdvM3ekB5
L2sZYgA5YV5QYbtyfkWSLjKDhGDV6NuseSSnifUzSMfGL7nqQVRc
L2TD3LbeGoaAyMzbKxpUn5Z3T48f2XTHoW4gAWvngr3FoLHKm1Ry
L2Tj65nJ6YSVVhUgk63fuz6YCSgjXeqaHPahqbx6XPUrbqcXVQUM
L2Tw653mk3Hqn9usDrU9oEoRZuzuuJEqM1inR3MTiDLreSN4sJjs
L2Tyoh168dYovuTnSztRKSqhPV8udBjKmReBZd2EXu1Fx2stF6WU
L2tZr7vzdqzKUThGf4DXQ9qBTMi8pjPpDtQmVB1msuGBYyBKZ6wh
L2U3aNFRhEepzKEvzAzZdwXtrum6b2hMG8ZKB1WyjCPhiXR2naFd
L2U9GCbRSuqh7rnorMEGF1mVE2s1Guxe9qWeGayFM5ucgFHFiYJK
L2uASTMutWa9JXLLPXTpV7ajwdihvW5f4LBpc8i1KNspuLNZ5H6D
L2usfDc5xT5TZWtM7c7xhF7iSPC67ZcppDg59t1sMoEE3txX9KfP
L2vFDmktLofS1hGyw3ZvAxjwvfTUt4FcLn1zVDFLkNjAQLhrEmpH
L2vL4TjwcWcghx3gq3Ww3a8GagqdqdibyFzpv49yijN41R4By7Xf
L2vok2ND9GZpqKpM49Hfnair5iAvWD3DvzitBkrzY7xkEhtLHJYM
L2vok6Dec5bq1y3Ld53neFu1TGcY6RJ8Xufyidhy4gNwGoj8Y2Ay
L2vXNjkqF73PWXuvP29QADUy45t77CeNh8VCdDSyfGKozq3Sxbqk
L2WoRyATq6oVnaJNs8w99XkaRv5CvrbxiVgugkMijxJvP3S5xYdP
L2x9gLn2qSpZpPWdY694t5R1hUdV7nFWUZBXP3ckSkfTRm1tg58M
L2XD16B66p4T5kMsTGGVuoEnxAwKAU4MSMqhFCoQcNinXGkgkpfc
L2xfg4LKncxk5q2ASdr3M56joLQUAhKhWWBeXkPoVYwv9HjBe5n7
L2Y8j3Rxof8GxfpvjJ61Yiv6EWb9zCAxqrbPKkzaEegkfUTaA9v1
L2YEE7PR5TbGKkTqttKzcodqNxs8p6yj77FjMs2rXyXdMpB9QL2f
L2YLpqmEW8AFJicZTT63AyrH1aDtotpeTc9g1E18V5RYavkvpj2C
L2YVJH8AjPoRJfguPzqn9HY3jGemHKKzuz39z39kryRcnns65NYm
L2yZTYUrvixdadKEKtQKkYsmX1mFNfWWpzwAiFuqw5DSwwyEJUmr
L2zFoVyhX6tSXBM4fQEpcGd9xRMTYTWnPU65rtaJFjWppVtwAiwM
L2zHkJFKQF2ZmErqTk4eit6Y4P4Qp2tyVpiLt74msoyYcHFxmjS5
L2zoKiDo2retms3Js9GvFxmmy18BCzu5mib6BTHmDfHt4M4dk8Fa
L2zpeHd8jqKpTzmwcomWHSopkFRJb3T4CoFVHCvzFtDrLZC4GVoS
L2zXVnkeMwpoR59cBdFgRpymxXesJuB1BRCcVYGrF81HxhDtSSSZ
L316HBfXHt95B1NUWRPdgTQcqyhxBsv6aypRYe1DG4xpuRmgw6mK
L31DUpjqPzz2d94uD7tkxz84oqf8iRG7Azb6MUn8RVTAuwUUt6aM
L31gPN9BvaH2y1QhWAKcvjzrw4UT1GZtqdXxD1gwW9QEWUMQCgTz
L31tJCeYWvmFiWs1MnGKcGHJh4kneWAvvCnRaj8UthpTgYduoyF8
L31Ytd4UWiTszuxxMHy61DgrZ6xSwms58YfKuknjF8BvKLRmaUPc
L32F9cNce75TWcPNiht5eLr1LawwqMXgJqSYDDH7rqvN89TvxSKh
L32FR2NJoudHohcFiB7ef8WKdPHrUcxi131b6dpHzD2x7SQU76X9
L32qGuQKcWXR1y7JVLrVtzPtedHhwqrmDqRrsM9jaK77f535r1tn
L33Mz9rzrgeCSHM8jwVCL5eNd7mzYwd5QAkenhrv2CHVoSx4YVTh
L33PN55sk2sA8qxjYQSjUywmvU4MYkVSVWJ8ZcUopjXY7eCRkBty
L33qYLd5Fa8o9DT4nRwcxCGH7TqZpma6fm68QLTzyZ1eiiDozs2Y
L33SJdeFqFiPo6ARFrcKKKM9ppPeddJMczAavtVjaeoUDiQmocAa
L33WitkRMXrXyksQyvYETatJL1XM3jMRSX8MmcivRwgoCLsb1reQ
L341siAAP63GSRpT58B1JiuHtfSLuU42gyKnQzisZgTdV2LNV7sV
L34dEq6wc69FwR718x1pTxjeYn7DuFZWcer7PNTWUiYqbTWqnrZK
L34FUywaNGg97smM3mLoLdZtyTtbZ1Ew9tejaMhjYm8H6Hf3eCu5
L34v4z7VEDMzDprJMYPLxvuLskQUxPg94Tj6v6d6dPU3AVqJEMAP
L35f6WqCsX8QTWP13vHjHH4A9hFaXAus4TpZ8sErBJd9mTMfFTCn
L363J7pzkFyepfahxckEFMu2Bi2WKE4bDkL7ZsAseUbHn3EKA6Zp
L36bMnDUXPysegjaCBN4RRFJdPVddNu26uGmRWtxYACx3MAAm3bs
L36hd8e4HbFUXLuNBJF7bYmtZDAuiRtxJZMr3QjK5Pbai64jPkKq
L36hmVfq4jaxx792bJNQ7A2Eg3iejsceogxYspYMRSXSwui37j3D
L36SVBLB8UoakqbZtNVyxk3j7W6J4qKg2fZK2ADZ92tFcJ4zajaQ
L391i2pheX88Kkre9ZcqsKNm74wmKhXrmW6Uhgo1aybYsUXwrotW
L39E7JCptqBNF57wjcbSpGSqeSyjAony1f8rLqhyGGLCrMkuwhmv
L39gd3P4EwkkTSR1sBNLNxETheLa7TrXwJNkPmEFpSg8rwQ9W7u5
L3abNWJHznjQp4rGKM9N9c3FDqoqBQMxBnnFVNGSDkg8H3RgtDMT
L3adystaYbMBnm7jEafCKonf6X3qMQjpHEbX8PtrvoLJ4XSRR2Zz
L3Ae7LEMxk5ubSYpwACj6VbBsR9DtHhZPrmYBDsNZiV2XMMko1y8
L3AmiesP3zRzsorqfsNvEFRfsCGnBa5iHieYYwyCHndjWXtmnVHg
L3b2eiAe2DizjfTJYhhBSbfW2kR5watoxMTjL5ezLQ3S8oNmnGF1
L3BAkJuZxvDfdUfpwtB3tXTDw6c2VN78tC2FKPDMU6nvkM7DnS7Z
L3bcXSWwe5SXJ8uEU7jbg655DUaf4W2sduG36giSURyy4c55ZwWq
L3BPZyG2G71jrkAcLwZqEhoDzDc6ryzUvBvEg6W8bcWgPR8Nf6is
L3bqt5nAHcL9sJhhMvuhavztT3bNe1tcvuZyHeztbVVMCfSyySYZ
L3bzB7Ti2DfLw8WBsw9AZPoab7sUhBNuW1J45k4pPvKUiMzWJNgh
L3C5i3pwPk3DVDZkSz7CaJekb8MLk6cqRnj83dsd6Z7pGMK1iwvN
L3cF8YSq31Zc2JMs8BYknrmGrPkqCPWJZJaExq7wjWPowKPWyv7q
L3Cg2g7pLUKscMwhspUFsExKdRi1f22FX2X1nYRRSaeFPDezR8rw
L3co5eQMeNSAK76PRWvoQkvK7RWHCLzBUr5tbAEQgAW89LMfReeq
L3CoeQ4VbZV7wsy6R5EZqT15Drj6Ae3sR3usUfqq2ZGSDPstxvd4
L3CrUasKJJbE7ydVVEtFXpsaardqWs7deJAyhPf9ju2RomofCELj
L3dKMXgPPD6Moc7i9vJdxq2FLopngy8BTkzWZUYY7pXp7kE7ZDaX
L3DQRG7jfmbT7tVDDkm1WpKWGauJWH82kuSnEtxCFCnaqgVayCCi
L3DScBkyDELiLKmmxMbL4BAKZt69emGVgRVZyhV4hCW4RAx5mKFw
L3EJA7DmE6axZwS4PWoQbGx37DgJeDA1AF7jMyBFLXBT2qmg74CG
L3EKyje9RM4fJUvFaDtTMpV63vfBu1inYuE5biEie31kipar5zfV
L3FA4mDcznazmxp2DTRgUN7NeXySmGCw6UFgDeScGK4h6hoEvb5T
L3FcmZU7iZjCrAK9yz6EuMfthvngrxyNqACuUPb21g8kH8n6oXD4
L3FHVQBmxuckVpKCnrVY4omGu8gThvrNFuV2m4SaLUM2nGFQ6DEF
L3fwLmsCgJTsadiC3qeKau1RAP5RQi1cjQrt7NzwZGCxpTiPwP3N
L3gnmvAdrNDY4LnFW8vk92wZZrBqgKX45gQrA1chYVxntH71wCpc
L3h3sYts3brzWTJjY956jdd2CmLnDYA3ziu5B7MGjrgZDH7zmzcX
L3h9zorgYK3qK68ohAw58PVCK5cpiKJkNpGqUL9gsdroZVyA6D8v
L3irtPkuvujWjKJCumLEh44uwcj16UszLw2jKyVGbgoR86EnAgs7
L3iuV28Lu3v37g2RUro3WpfNLyxeQUD4DCrXJdvQSEUg4a39s8r9
L3jE1NRyVgunD3kdZbKuYyeqYWHtfVUweDK5oeh8Rgto2NB11ZHH
L3jjiNzriYiqFA2q1m1t7cqE4L2atggFBociDwxsFCC4oD7Njj4N
L3JSQJuEud1rNjN2A9xGsiG2URN83gd51dgoGvkNpTnu5AbC6aUe
L3KFDBAczcZTYxWV18F9o7mDR3FRfL29GNGK6nVCDpNAkASgftC4
L3kiBnQuQFtFdaoov2BznP4EAadRRhyixwjXE9PBbRKu55sxcnoN
L3KYKAGCfjVNDFDhL6tS1ucubc96K8kWwpAKJmzBKzEfTEE7xts3
L3LbXSkSA873Rkq3vYHMSVwfJ2Q4QQ8uZ6uRaG2aALBWG1sp5p25
L3LSaWGmBafGvmebsV3qqY8Prvyp322M9LmEQMthyuCLMPNVXtss
L3M733LPhrBtWbxULioEht5oruQBP7xapNapMkW6sxck8E5Ty5ks
L3mcCaUkZsofj1akvHESxXk2xdyy128TXncXAnUyXrmbxREYYEy5
L3MjipseF3rCSNATn182hXK3yuSrDDMGGHbaUH99oiPZSyG6Zqnm
L3n23u6vKm5RFRpa5UyPWJHmVvNu7uLGeDyL5jVfMcSdfwQhT3bw
L3NHURH7SdLAeh7Snmocfeo2JgUsiT9X4c49QMUDftBqi2ji5Akq
L3nkKpar82v9DSBv11Q8PpqGeEoKZhXMw7Te3E5gzpUJHaiP4oo9
L3nUou47hLS63nqDy6JQozQv4zmPU2WGMD86NNAdUbvcBpgYvmXp
L3ocvsVKeZQirj2vTD5WqcvDXxsN8DhmaVYfRirZ8a8NrXpbcF4R
L3oJwc6nGkttAAT3BCZWnia5Ta3rgDTRW9tjrtJusPTpSaD9uQnK
L3pYRGaLtgYZuJA91aQ8S6zAqagdg5KXtx1cVLBudmxbDwV5EJ3z
L3q3hhDRBnfpKQCVhapiqBAWBSzFrxjxwiLUrTjV7TersTDtdPtW
L3Qnr5M1kMfd2JHqUBX4WBJScsyoFiRQAeeN9Xe3pKCSjJKrM3xd
L3qRGJmJnUEuUJU8Qm36aikZPCSZce7QQoSu74wCouzHqgeJmkbb
L3QU4abvWxMAbpJC7VbHFcsBVuKpfrmtjE8c7r7qcVph6KtCYAG3
L3RfPjAPdpp7yS3LHBNWsoUZ4W55be3wqb2Lfgwp29oniozzWxQi
L3RqpAnTtRk1gxB5qcvvm3vdmpxzPAbNyrSxSWoYuBjiD68MPfJ1
L3rW4d1VFond7vGSKePw48si4RQSaKHSixB7rgBQGxGtBQwi5yqt
L3SeCA7SUdYdQ5ykUtm3j2ZppqNYfkyYczt5e5CU9dBaAfoAbXzU
L3sRbboUwXSZNDDSUXuCUsDfznNbDNQN7DQZScuYSdGbgXdWP7Ut
L3swTqDFCBkaJMvzgrJsLoQCxV5dnFzCNX3ywCh9ZLha7Dz8i8WF
L3T2P6qy2apeA48SVfQZ1Py4cSr8V8Kmn4AYfzS5gC754okVYiQk
L3TKkFPD5Fr5WGKAKtcEkZtpmCdpw81hogKhWeAH9Ccgk7EdwC5b
L3TMLjhAa9eBcB6nBxpDnf4fiuZTZhdcSbyuTvnm5EpuPodD2MEg
L3TNhqUsRAXFB34XCDo79e2TpnQE7WTbwNyPDjU9MBLNAN3diRHp
L3TQhpuvGrWJJ2YLWbfzYngbKQ4irX6MLFutnonKR5L8u4oagviF
L3UcFNDJ35pYb4iUYCrh4QxTezYMpHAtNeJMVX2PfQhigwtiS7iY
L3Uf1o1uiyyYLhchKPgteG2TZQwTHVJGpHi7coSUiyMLeoAWC4N9
L3Uh8v2Lv5bxkukrEW1G256LhpPuukUHYc1xLk2p6F5rEuZ23qQ7
L3Uje82U728BjxtQQ4tsBMfbtJ5V4pdam1ySNZ1mSsppUJVjG2dF
L3unNiBDnVB4BhsWUgk85b4tHmo5UZgkizXnwWNEM4Xd2dXSr4KW
L3UruNmKeL9nPhMJjCGQxVQvDEfequ2S6GsgpQ66pwaSt4kdejPL
L3uS6DT8RQYL2xKmRtBHmPsXkvh8nNerrAYwwL8Lt8WNDMuy97jK
L3vBSUnuxonNW3TLUXXctQfewmqZi74pj7eMhDXHHmKzNTVyJH9T
L3VDdHuZKxAGJTaLNwNDToR4d1RAiEnWqHxCys28fn7f5BXY6wHa
L3VFwhp7Vopr3U4hUixdDsCX7zcYC53PDjxh3dQnqsoYGw2YANWU
L3Vh1hW4fBtazg7pRYrzaBquet6ZWBszAGZYceUSWMZSfsd3ps8d
L3VhbcPPd1w6qtEvHnw74Ggr2UHN4Pxynm7oGay5bfGU6oWuhNR9
L3Vi9bomsKc2ZnnyHd9y3t2zEYwG6bpz2G4jBxEf4Pd44sytrsb9
L3vk6thSNjhJxy63XYybeqgGhyrc62jhJCJZDwdBwDWm2Ep5qheJ
L3vo8MSLpyUye4VnWm2YuVdfyZyFHHJqScb17YUty43u6Pi3nXZF
L3vq3uArAjRjcUt5DdueTWhVLvv87L6T8J76UU8pjL3YqLq4qeyP
L3W91VFYqLWokuxQfsTz4Ka4kzv4T5vVLXTCNeoKDDhqpzFGQdfm
L3wAu7RV64S3FQec5wcqoKFYJYcDY6ysoqwk8ML3SWd2CSeDSp8r
L3WCTqPhMvTq6xvod4KerYU8596CVo5WmBdRQd9PCrPMWBF3K1ge
L3WHoqd6x7CsTHeMZ9DmYjdoMN176qtCc4B3Yv21wfi3zwmbppwZ
L3wng2RaKiqzeeULwChE1t8FGRnhLhMPSHvmqJECKdqYum2MccPp
L3wUEKubEwqSM82Y9gqcrCkdxypJnkB3yeKiWfkzR66mcTLJUyXX
L3WysHiSG8hwyZJLP6HfQ72yRf6R3XsGvzG52kNX8Vgcb9gdwKH7
L3xasejfmPAi8CF7gbDatFsh2ySwffgW6V6VrJAZari8gnQtRGSn
L3XGHgSUDSmkTeQjQE3GqGtrQwtNtCBdAfrDENbMZQPP1iC1WzYV
L3xj72EAr8QYHE767Ehv59sFFZtoX6t8tXpUS1way6KcsERkgzpr
L3XmCBh2uU8Sa86gT5HuyifUysHvWtVeN7GtssVUGrNndf12KcgR
L3Y4nz84djd77vUoR8aH3QRBMiWf9VXrQFi24ze9Nw9sSEzuMe2u
L3Y8XdtMd6QCQE29dprtGCDLmHtWaA3rhsiYFEXtUixWBwrF4oqJ
L3yiA8rHs1qXDmeGJ6PkomHB5rcS2xwCK8X14zdWDqxtYbLPfmN8
L3ywBtmugwc5J4Rh1YQEEk6NiG3QXgoszmjkdp3zeRQvQ5ndiE5P
L3z9X27TMWRcKbm5dvwaemvdPAJDyRL4vxhWoNA2UrRRq47drwup
L3zC5cfqvkvkQkMBiBuQSxs6ZNBRWw2JJ8HdCXewQWhgtakxp7s2
L41e9z7qbwE9FdzaGQUQw2T73dB9sNbMqDeaq3rHbJ2yHyc5Duwy
L42oT3Zew665wa8WyU9eo51728bC1jHwUbSBaM4Hx1uX7NGA3DVs
L42PrD1kPVE6qXhaw5675yMjwuBDo9xu16fdeoJfqT9x9YMRVAXS
L42zFWj3XinnYXDvzo9qzsZtXwdQaULHLcfTGMWGWT9JspruHXFx
L43a5Gmz29m1RLTbGipgPG2PtSfo7D1oM23NSMDxaCUzboETs3Y2
L43KhzPCDbMZoebBnj1EfJA5rJzQeqqUBBGusBAX2NBXS7RjACSV
L44ggEttE4YswfYKbuNdwMd1iPDRpkzovQaCkGUMMNxyZBQKrbbw
L457HJe5k1MPSaQ8CQqVg4j26VWSYchFGttjYou14Y1cLowM7Rnd
L466qs35wJMYiaAmRpUv7BerC6rAEkhvBwFLB1B65BLMMpZYU6vU
L47Gksmq2d26FAUgix1S1whDvQTq9Vqg8KwJrTu4BsqncmnozhYd
L47wzt7xnNbKSogv9RS2qnE3RPqpkAsgiuS4eSrw6SwGHVirEVzn
L48TFVWTegzuWx63yKvXcxQWndAeJdqJoyJcNZLJEkB55nE569dE
L48WLSAKRZuFjFwT5Qot2XRSimZFiSm3GPGE9ku2t5775dbGFw3W
L494NXijLnCXmKkTQhEWt987qPpG3YYNi4K7dxGxZ3rXEXD5XpMG
L4ae6KM7HBwT2g1CCBRZBzZz5dKf5soUSTFBVYqouLjYzdKV61zZ
L4AehrGAjeXfmxRSp6qDWA7hz5VL9t2tQ8UYTeM2YCJB8N5idTSt
L4aeNVLb17Gad2c25vCfe4CXm91q8cjQi9ukHYGaHqDoMd6fgoci
L4AeTi1QX5y9Hz9QhLLi4Dcagr92gSSjYQ3JF4yCDsXP3h5SAwo3
L4airh4ZjER4i857u5P7MNAD9ibr7JTzEELfnZZuRZ4YxAY6uZuo
L4B1PToJpPsuvGATCXjDLjADWTZoC8k2pXt73tBdiPyNbJam8CcR
L4BDEvogqFaNTbfxQTJmCdHEPpTyCcCjAfzff8hY8U8mPB8CbatM
L4bJzBbkKJ1iLNV4nsBdEGdVpHZ6s3QkU59HzQB41rrxVoqXAmcz
L4bKrR9XJ24d9X1gSrgZ8uTarF8bGF5Y396BnsYsCy4jjK7jNUDC
L4BuB8M7ZFbKLvH44HXHQTRr1r2jjAK27Xi7Cf4yyiPungUaiFUT
L4bV7SAP5dCrwNtavxxN7gwrPBwGJ7QF6n1BJjr1n32Di8n6PQKU
L4BYmQBt5Kz3J98wayAd2AzAULtuoyoaE8v3Z1CJWJsZQE7mmnmm
L4dFULT1BJNvaUeggoUufdVFSk9CHsmBpAuaRAbtAWXJ8Lg4p55c
L4Ds4LZCXadSPTU2RskjDKY1nD4zJA8NqjvTq3qFAVv4kx2AVRea
L4DsaMZoZgzcMrFCiMvruuPGtSqGituyg8bBxWqb6msezTbSPzzU
L4DTCMjaEmbvqpvkgqQZDiH1ShdbZhRrrcHH5xHgwHVcRtDho8Xh
L4E1pcgNwLrzUzrRXqXepW6aZMn9f8jQg19nvzzZ3oJaYEtAnfQy
L4e59QcHefb5wPCKgSDPAVJzcaCnYmTvGKuXgViXWLG4txB1B2uK
L4EamTbinSodkx6zLFRoZ9AMrKbphnAKA6v1q7y5XA6arSUUyrJa
L4eB11iT9uvVpzRsNhWMMY6QiJN543m14QnC9RRhijAkQnqyhNvy
L4Efb7tUypdAngPCea557jhVnMmFiXvtFH4yVdPKzRF2VDr69UoT
L4eHZ26cQh3DPEbmAgkzJfnhxApajG17ck69jYcSfCdzyQykyM6A
L4ERcaCF67Chbmm46jMrihGNpHczF9DhcVPrLjhn9ws7QGe5HsxA
L4FecSWQcMYL7vsEMKjxkwx9enFD9rRth3TgvqzDhTeYsXck3vNF
L4fjrKjfHe8oRvQe38Ra7BrywZEZtjFVrE9AHW8nt8d1aBc6zebW
L4FNFGqzGGLBZnV7txQy822r7NC29gP141NW1LezvSjYrmTVioMR
L4FVLQ6VVn3ahNXvnisWa6Qi5DhVuU8fC1gdydZDEBAfez2AJ9eK
L4fZ1Kfr6Qw8dpaanWVvxaNkJRmbSqpDF5zzJmUmDQK9j5grwU6b
L4gMPHFCCPxtDrEDS3gb6uSs5ex3d16sq4JAsS13TpNajYsULTaL
L4GN7kCSM5V3JdzpbuoSXkjMWfQdD2Xf4tXQw2eLsUJSTAwcKrpT
L4gt8v3CRPy3v4Kwj9jPcmF5tRaVGHifM8C7pDm4cdLWBLTBsCXt
L4h5NTJhChnk7oG2f5mthu4CKsLGb2JWT4pRcnMz2H8JG4tgYL78
L4h9nLJdSyBGjksqpZtQSxfs67nDi7ZCJLxX1kw4JWF7rNx9SeTj
L4HA1dAGaTPQVT2kJyLpBcebgEcrjcPWczMPHXMR5tftLBBrD36w
L4hgiEBpoVUyc1gHpjWUqXmmkV4F1dngkQG57ZkQdWHV2UxcxVVP
L4hnEuvq6FUYfaEbwg3PgKERKwycQurPbTcu3zhFA7V2UMyEc9VH
L4HwnxGfTsFW95UgHv4kJJ5AD2hPp1vDaKAh7F1gRKjxrEagkwK1
L4HwWtepySi2FcmAz5N56tcQC44MTrgehqwvdReDUgeGxrhT2wKG
L4iMPaKNKL4gkQg4VBZ2TEghLXhaQixne3hDvpD3j2D4Tzs4FXDi
L4imXZZ7sRVpCb63EqMt3vdxo4ezJG6YDWi8qp7VxCFBefFXutDJ
L4J4nkmWGiWfQ9Y4Wg4gjMauYjudf4ZNiniCc5i5UhNoLSE4CiKT
L4JBAoJSArPgTuuAoRSTdMfK9Fx8RJocVmmSTr1MHkxVGFar7Tc1
L4JmzPj2jt6ef9Y9UqrmAtpts2KmjaNGWgB5Q7o6GZB4AL1pcH22
L4JnXGY1bAdsc3tGdMrxncuRN5dfxJq7wmD1fTSXyq5fSiHQcZBT
L4JVuZJK6yyGdCNJ5jKmh3bCwDTFDha8nB2tZtVGumzkb9u3HbQ9
L4kBN8LtsSvevJNzxFXgAWPnbuWXQWiZjd7VCKMTz7FUeDauUXQb
L4kGayCxXf2nwhSSshhbKRihKcjKAChVcGxFb5KWhU7EvQ11fJd4
L4kpXAYtRP5SuEfp3hd6FnridFQZnstFzC4UUjcBwGgMdsfvyCk3
L4kwTK5c2ea7ZX4V43qPbRDccr1myLWpVgzuhCu1S8HJi3Ffknsi
L4KXe5RBL3XdfMxrVWmKuNLP9wWsfApWsyeS3TohS9sKcdisLshZ
L4MNHa52iwVfTE75QYNXiCm95ZnHj2XCtvRpiVYZfJujHZTvSTXV
L4MYYJxWiXiCFBoyUTfBF2FG1Uj4HFdxuyAbqBftDLe3CFWhNHdt
L4n48ZVJbGUKHwjBuRuPT2pbH6FHkt13jczcYwbN2WZxnoxe7G2U
L4NG41JqM6ebEKozXFTZsmd6Qr5uQwy1eqRKbGKDXMqvzpffHff3
L4nmozjXCtsyVFQCmSSkJ8BUNzUfYzUYp54yYLe5d21j4Nch3yHs
L4oaQ6vJXMpqhTrRUQh983PhrVWhjRL9fqaAxVzTvVyBW1jjfgQX
L4oCoY5kXdpiW9cb9n5ijfEac7JPZJjNtfBGmf2h6vxTzU56U3pb
L4oju15L83u7Nj8oNiw6721emrW6WdyGQ9VnPSVxiBymsBuTeRHX
L4pKkAhhFv96szmd6LJKTg38fcsUxKo9MbNEY8MpGHDTyRECBd9b
L4PNF3XjkqYtTxFDeYTbL5ChjZbJwcf9E2BUUe3457gJaMPkJgXv
L4Q7kt1mb8Kjg6sYZvkYG4SPzWsxSfCkTXbmyijHy3S2VXcTrjcq
L4q7NpYtHMVAWYdhyWbE4TCt5rgvx8i4SGQUDbNFsRGkg5ELEKXh
L4QQpnkqi3fX2awhE5ehzDStk4WcEGEEUrirYZL8ihr4qGAyfV4g
L4rGDVSbTk58XKUvEwLJaPPVWw27dFtSWQ414zXvot5PCdvXJeyZ
L4RL68Kb8p1eiWBmLjE12tNaCbCmtkvB6fYr9VoL9GAdAMHZ3wKG
L4RrtqqdYZrmVgV4eEhquyfKZiagx3mPt45e7yCr6jP1Hnv2TZ1v
L4rzMchbhCC7scz3Qp3oqKwjgLe7QUYWu1j9ADz8bBCjLmqAUt8C
L4sgd8buG63AVGHci4zH32FQgPwTcyvtSBXYBsahgX1ebCPWQFkj
L4SL26ozChDPrSKLdiFXd2C2aeU1X99qVqwTJwhxxTXaKNvys17Q
L4SQnDN7GaqB7CwCvXU3BkKSkDk9sGvKn1N9PCG4h5H683Ne3PC2
L4sXuY8EJT8Yn5uWhpSuJo5wckqckeD8MuDUne6SdfYDuZZ5ZZ9T
L4sZ5C6uS2VR4g9Z6MwiXnRz2ptdEU8ubmdzo4kk9Z2UrtHVe5zR
L4T9RKum1pA82perD62HWN5j5gyamNyZSFU8xME78Td3zoUFzCNT
L4tEYZJ7yvenTgDpZzJyEKWL2JtgnUjXi8bSuShf4VoVBtMd9qBW
L4TfvJcKmLoyBL84dM7TgkJaRvPKP8tMMMvmVX4BBRG6xoe3vuYH
L4tQJhmhEBEGjZfk4NzXmNcRgXoYqLFMWmyK6AfZAC6hSfpcibFc
L4u7AfqVC5kF15s8JW4dAyEmnxy8r8h88eo1M9LhJKKfCaTjhrtw
L4uB5SZ8nRWeqRdxhpKZvFUZhAw1N6YvMTQgtJCJySb2gTrKVR3f
L4UvVDev6oXq2LbEgH3q4R4ytM2fJi1xrFsxdUntQ1j23JZTse5U
L4VBB4rLViLWuBVCUzuMHGjcv2HmvfNhYiQ8DvPgg1eGQSa9kqfZ
L4vEgvnFJyBWjoVTcb8P1cgW9jqERoHF5MKQtoqsintirmAY37z5
L4VG91JifzUSS9ZRHNwwaBfmphomfEFVbnPQsXvniTN4XZgSPyyt
L4W43kVSewwHZ8q88hWQdkfBcCRJGApCsjD5SP3usdS6T8XxUFVk
L4w4m9SkuSHrrNERmomwDEmtXnxAZ37ZtnUWWvHuZ8prnSno8sKN
L4WHPhkixWfkSiotpRK8ecdycz6iEmWFm76RP4vpSaXpANHEJism
L4wi78BkFUCgiFPrKBCGTvvooJPaybtoPDq2ywtSGdgYxNzrgcja
L4wLjKBjVtTpLSWBa6Pecui8n4AzeX28uaASvr58A8cA6W82goAQ
L4WN6HBwttB75CdbHiryGtx4NyuH6hHz1zaMgHMhCNvEV1Xj8Huv
L4WRDwmijyn9MsNYvvR39n5AhwgWt2KdAQYwvv5ab9DyRFNhF7B5
L4xQtYr4HWaRxJ5zDoXpMV7FTQVmDVUs6UmgE7iaFHBQbKABBLL5
L4XyRmtzGxwAdiz6NXLDLoDdoU4Yis3mzgKHuwRxLsT6AMbGAVC3
L4Y17eX51k5pcaRwpmPHQ5GD3qcfqqi5zETnfBTKjJqnzAUhuzCb
L4yd9c4djdE65uZDjs8i6JuKMR9e6vg15f7zNJZ3maqjfVdsDwKA
L4zvubRR8rAVnKBYAjP9ghqz49rQxgufC2sXE2Z8u2nsxmPWW1WE
L51pAJFD6pL9xJW4jS1ySSXfKGWmQ3h9cZAS9jz5sUrUCdhPosXB
L51szbuxsAuopoBDzHMfXFNdUxHLYwqDNT7iSPxikcMUk26cw9y5
L529SRf8gN5pcNDZeYDcpNuY56Exr27cX3Xp2RA8wxwxwGAZk2pK
L52fRrpPJr8xRf1p3eTm7zVgqdDGRfzwKrMzzWiQw7Dqko37CNWF
L52pfNH1gTAGsLGSRJVZVFNGyMapxSVzvYSPpmdsSweXfPiZfHGy
L53r4jJ3AgveUokPET3eAzHFKhudDxd6Jdc2P4gchRrJdvdZyyQL
L53TdZRdxjN8hGDvnVCVD89ebW7UKuZBzfm3vVYEc6HvfxYLC5hb
L53X1FqWDRxP4zCf39nrsjRGoB3e3R31fsHSK5o4bzCWj4vnH6ZA
L54grZnVimKG8VpqBf4ZHXaVSnKvQbmTHSoR9YAJigw22A6a9sMY
L54KXD27ACwMdeLmxjxna861ZmaJ77b56zEirk6155ahHSfMw4PE
L54xRTiNUsr94Wy5ifne1FWcmrurw9ADP6MuFSxxeW2VBCcEaGZ5
L55qFXcCmnhGDuRCUKzApFvaHuhq6rXLEomixvkwucuJMZz4DCoe
L563TZgiLUtuF6gYWS6ERK3aaQHiVU9BMHxgtmZvb2527Jm9B8YW
L56dPXkdmxPdFzzFBXwHP82sn9K1WQGwKzLRPnAbxvnGa98NTpfA
L57o4fsaf7LSELHWGyn768z3ShvkZuvy4aSSnH7ESdFqofpcs9F1
L57QvYGvoJqHxfiagj8CSD22QzKeBErwWikN85ikYXpVQxwPQJNH
L57wV5Yjr69eHJUDSqYwY5t7w7HC93LpJjkudBkWPYv9EkJBGuMj
L58mpZ1CXMLFwU7ogt5WfS9BXeVSGRa524DPozmtLL8JL5qAyzTH
L59MZHDEfPwrQbTf8tKERJ7VpJcuksSDVG9AUyRAeyY4gpWnwZ8H
L5a3BMuBvwMHoVCZTWLSUE5QmTWjTca6BynWhWjHf3wsSPbLDHYt
L5aM1NK48pAD4t9tbkXsvC2VSmtK4uuv8jxN5zpKQoCi4m15w9CD
L5bdbRTx9tqq9gGVnBTJSTzj1jH76PyY6EGbHcxGf7RyWBgheN29
L5BFf5tNu53TY7jC2ouL1oFzZizsQzzonkjoRVZTGLL6Xbx9oKG1
L5bqsNJ328bBBHgkfdLSXkiLsNM21beXuCRVcCcQcAuFT4jGB822
L5C4qHFwFVTnF2jbGye3GrRF6UXLGfzjkSRzd2MqKRddhUJHy3Hx
L5CH6K9MWkb6P6coFuq5mabzHohqktccqELgfJR5kabCVP2RFbED
L5CQwMxpvPStHgdsbs5WxRLyrR4BHZTMJje6bpLTf2emK6qTVdgs
L5cTTVRjcu3yrjdjnush4ygukTSfisX8XiuYpgR4JYJiRvZV8yFj
L5CwQPx78Azu6d6wj81nYCKN8hyLtkHc57DNVnDfJ4g6VpNhVnVs
L5dT5Pd3dLdNvAkYgKfRm9wy7xLaTSTCStJB5gXdDaZ6e64B34nB
L5dyP4aLbRvRmxnKmCm5CFaFWHeiboyZK7DBFQfUUJe8CmL26iPo
L5FRWbEdbuPzqx7gYxi5tR4eTj7KhXjqQuNJ6N85XXXW4itTLnoM
L5g3GdxuJs3mBUPs2LrdoVC4PNmLczH7DXxhWh5HJjvCis9idpw5
L5GDQeYx7WtKnxYj6npTth2cXshvqfCzu64kQFrpQi344xigQYUb
L5Gg7as7V7fGjbDH5nxmy3RGHcDj9xfU8JoGpmNUKms2Fruxnhfj
L5gJaEFgGfyubnLDTiMHhuGohSb6ymbYQ7fji3PPoip5ysVaoimb
L5GQ4LavnfRfmBFVXJoTPc4N6nUqnf7Z1psVBF2zYiZ1Sy1zY8DA
L5GSNFzue2hPy3w23hkMNeCJkaEyvf5Wa1a1EhbwHLsu8bbZguoA
L5h46WsKnQhsKaFqNXS3vkXX2dAsi1x65y72AD96N6MkpxUXw4so
L5H93zVFZrw21S5HfTqCWtEijboowvBYgWYfwQTu71J93wFhrpAy
L5HEqmE1Xh7JVck241L87rXCYjMKJ2cSGFta3zENiecvdnoPhV3a
L5hGAwkFNmcYq3qp11p44UyM7NcQW2qoxKedip9MUdZBus1wQ4t3
L5HKauy3Yqnxc8YSRMkRzFQb7turRvRYunwX1rAJJhM954Pq7kch
L5HnXsTNy8gjT9crx6kdSJVVLiEwoMsDYSDNjcVN114GHaQ1SpHD
L5HqtRNumBfTH5fFgwv515JR2Gt1QNzSfiZQuhWqU1qNx9GgL6mb
L5hr5mvsrCwWrf4RJkc8KSe29JA57AaX3B4ENSfa76H1hrWxt3x2
L5igJf7XSZAzGjGdSgM2fz8ko6gkCsusdSfphCpeRT1wbNZogdSX
L5iHvMnUf6HYy7E8gnL8RURKDcMYnUxBwWQ4Wqqyw9FMn887Kyfn
L5iHxKBA78uHJrpUEBQFeoq6NBPR4rjmW9J8PozXiUe8U2X57gGB
L5j2Lmpfj9rzbYvoXZyjGtEhUvhnk5oXgEvYkbZzGVjnWwtSzZ6Z
L5JDzZjZLPE3B3n2hzWLaFxvjkjU2FpSNQrdCCcXu1CecSHZ8Bi7
L5JEFpJPHYyuAvshqxviQpuUmYcPEcA3PF3EqnKonktSP9CuekyE
L5jYkAETwGs31Qeqji6qbLZSWYmxW8q2TCsb21ZABLPMQftrQxHj
L5k94E8ZkJSKdEpB5BsZ8tPbyscKSwDmimQrXfpDcNGTYX9bp5pF
L5kPSoAyeWqHTrBmWHe2zabYkbYxy2C5jVyby2BuBGWccd6Q5YkQ
L5LmDhhF2kdeHCcsNiDbDrqMcLnfTUvrkReUESBKzvXzwmEpgEBv
L5LxKGkj6Q4USBPb7QE2ToY8xGKkcq1UjnWSa8wuoMWyfXUVajj5
L5MidWcGbnEk89GDXb2vTyZyKnc5jzQ2m3GFhyMu68JP6i6cBb7M
L5Mjrinps6jGhHbTFCrnghNh3kLfFjpPhQEdCJxW5pmrCoPRKbpg
L5mvQtQ9XgZxBmvU3o9jk1qgS7LWsg6cb4dPnRVgMJmjVjPcfvMn
L5NC1BKtCCkmmf6FwYqhvUnJzz6agYUkXsFMcNp2hwxqTQPG3DRr
L5NfU6BbTPVSzQBQUMf152PCkm1Xp5mqJ2sSXShrG3gVnKLecVGv
L5nKsq2xWHDJnuy2gonE6EtGb2YxLT8uKE58Pb1pzXVNT79pfBsL
L5Nr2y28dHAWmkbNT9sXvwqR4eGUB8NWHek5Q9gqqPyr6RBToeer
L5NU3sEh5TrvXWaHHZkz2NJ2XZPgaapVX8cDySVVk23fNK7Fp5LC
L5nuWSH2EBf9emef6zo4gD8R7MDqio9m7TG8p633L4vx5JPuK7gQ
L5NwcQGyR7KmwEfcCCbA9H9wmFL1CbfCjKvYUGxab2Yku9EGYW8p
L5nWibhzVPBLQeSYimEAdTnS8d5ib127eqPEBkTAMxP58iHZpHmE
L5QcSPVbDcdiBvLj9GAuVeYv2banv9ps4vGXALBcT9SVqtq1mrnL
L5QpXz68TWFunWdCvKXndzZaRWzRzyAKzyQegFRT8sb1t5Ex7TX5
L5Qx5kAYaeTnVzxRovaCtkmJfnMxFHxgSfpam15YGruxYU3wDhXj
L5Ru6sHX7u9FGkWrxJEc1Sf8MJE9qfRjyJNhecxxZfZLeaJAjARk
L5Sast7bXa9jaywjuRUnubvYGA23dDmEqDyc2ZfV5Rr5argbcY2k
L5Tex3inAyNHYCepTLeqkES4oUstwpxQmGVehxNFYTSr4T3k6jnf
L5TkVG3CUnky6znMN2R9yTTyAjJEez7pKUgCH7JfnG2N3XBLDgVR
L5UqVmSa1kw69JLbpEvujzHCrxtKK3JZ6yeKSnZdzfkUYbsaap6H
L5VasC1w3Jt3s63EBbvvH4oxrqUFTJzu5NkmjGuTbji45nYWBGLt
L5VCkPw7zdQq47dwmCcP2yXqCoUVqiFH6LYon7FRx3g7Ehom7nZg
L5Vp12REm55xNjF7AiKUFMV3XMCAzSp8yDLycaYwfWcmsP3R2rnN
L5XGQDZpLV1UGA78wV9WkWx1SEptWZoxRzQa4A1WzTGB3XqdPmkY
L5XMu1sStLLBkHenNfrYKns3WPQEJiN5SgifZ8LnBHuMtQUkDpfW
L5XNBeqte1yWK8HTob8rqeihGtg3jZ4zsRWrjYFZt2LtSumHePc7
L5Xpz8XZiB9QjoCuijHjyg9TY5Pt99KhRy1zNYAKFHdg7pBYhgcc
L5Y3V6MPtgPXiarTTwNtgPd9yQ3UBW26QfRbqMgYPeLzYC6vMd46
L5YAr1WeAtAptjqJwkfsjRFsJAe29B3hFWsse2v3pJWcX78bSJJA
L5YejQ96j4kXgV8cPtQ33i51rXn7aKyToPuSrEX5pc43oh6WUGbN
L5ZSTwHKNX3wSRb3CaD75WcWvhRn5RetgmxjV55NpbKtsz2uiiVh
member
Activity: 348
Merit: 34
bro you know how this series genrated and what logic used behind this formula.
                         

                                          1
                                        11
                                      111
                                    1000
                                  10101
                                110001
                              1001100
                            11100000
           




not really I'm not very experienced in Python ..
are these the keys which were found for this puzzle? if yes please let me know.

geenrate use crunch with two digit 0 and 1 and length as your required
jr. member
Activity: 184
Merit: 3
https://bitcointalksearch.org/topic/m.56623671 in the continuation of the devilry in which the devil breaks his head...

if it jumps from "sets" then our number itself is included in this "set" (from 2^60.* to 2^70.*)

only 3 comes out within 20 characters

2^62.72867377327342883206 7642094328016050713
2^63.72867377327342883206 15284188656032101427
2^64.72867377327342883206 30568377312064202854
2^65.72867377327342883206 61136754624128405709
2^66.72867377327342883206 122273509248256811419



   64.72867377327342883206 72867377327342883206   15284188656032101427      30568377312064202854         61136754624128405709
0 65.98190686841514498777 98190686841514498777 ['18216844331835720801', '36433688663671441603', '72867377327342883206', '14573475465468576641', '29146950930937153282', '58293901861874306564', '11658780372374861312', '23317560744749722625']
1 66.41221999761644313519 41221999761644313519 ['12273835855189312347', '24547671710378624694', '49095343420757249388', '98190686841514498777', '19638137368302899755', '39276274736605799510', '78552549473211599021', '15710509894642319804']
2 65.16004829745627751891 16004829745627751891 ['10305499940411078379', '20610999880822156759', '41221999761644313519', '82443999523288627037', '16488799904657725407', '32977599809315450815', '65955199618630901630', '13191039923726180326']
3 63.79514113288646090322 79514113288646090322 ['16004829745627751891', '32009659491255503782', '64019318982511007564', '12803863796502201512', '25607727593004403025', '51215455186008806051', '10243091037201761210', '20486182074403522420']
4 66.10784475589133269856 10784475589133269856 ['19878528322161522580', '39757056644323045160', '79514113288646090321', '15902822657729218064', '31805645315458436128', '63611290630916872257', '12722258126183374451']
5 63.22558982791169991994 22558982791169991994 ['10784475589133269855', '21568951178266539711', '43137902356533079423', '86275804713066158847', '17255160942613231769', '34510321885226463539', '69020643770452927078', '13804128754090585415']
6 64.29033581939002283438 29033581939002283438 ['11279491395584995996', '22558982791169991993', '45117965582339983987', '90235931164679967975', '18047186232935993595', '36094372465871987190', '72188744931743974380', '14437748986348794876']
7 64.65435637437148496233 65435637437148496233 ['14516790969501141719', '29033581939002283438', '58067163878004566876', '11613432775600913375', '23226865551201826750', '46453731102403653500', '92907462204807307001', '18581492440961461400']
8 65.82671037055289160231 82671037055289160231 ['16358909359287124058', '32717818718574248116', '65435637437148496232', '13087127487429699246', '26174254974859398493', '52348509949718796986', '10469701989943759397', '20939403979887518794']
9 66.16401578745271144384 16401578745271144384 ['10333879631911145028', '20667759263822290057', '41335518527644580115', '82671037055289160230', '16534207411057832046', '33068414822115664092', '66136829644231328184', '13227365928846265636']


where could it be theoretically

546  63.72838869180307975688 72838869180307975688 ['15281168746503495439', '30562337493006990878', '61124674986013981756', '12224934997202796351', '24449869994405592702', '48899739988811185404', '97799479977622370809', '19559895995524474161']
1726 65.05051704633589806037 05051704633589806037 ['19104112579657908258', '38208225159315816516', '76416450318631633033', '15283290063726326606', '30566580127452653213', '61133160254905306427', '12226632050981061285']
4088 65.05063077104366318521 05063077104366318521 ['19105618577247210060', '38211237154494420121', '76422474308988840242', '15284494861797768048', '30568989723595536096', '61137979447191072193', '12227595889438214438']
5998 66.05062246865788236741 05062246865788236741 ['19105508629021772898', '38211017258043545796', '76422034516087091592', '15284406903217418318', '30568813806434836636', '61137627612869673273', '12227525522573934654']


previous beginnings on...

x ≈ 57,47260929829303108225 pz 2^x=199976667976342049
x ≈ 58,86528843817681578662 pz 2^x=525070384258266191
x ≈ 59,97745056466928248097 pz 2^x=1135041350219496382
x ≈ 60,30646472899272860766 pz 2^x=1425787542618654982                      
x ≈ 61,76127369820932032912 pz 2^x=3908372542507822062                 
x ≈ 62,96354506567706003068 pz 2^x=8993229949524469768
x ≈ 63,???                     
x ≈ 64,72867377327342883206 pz 2^x=30568377312064202855              

now it is necessary to look at what options can be, which are not.

The required starts with 63.* and it is unlikely that after the decimal point it will start with 9 (63,96...) or like the next 7 (63,72...)

i.e. for example it suits us in a set for pz 63.

546  63.72838869180307975688 72838869180307975688 ['15281168746503495439', '30562337493006990878', '61124674986013981756', '12224934997202796351', '24449869994405592702', '48899739988811185404', '97799479977622370809', '19559895995524474161']
it starts at 63,72 2^63.72838869180307975688=15281168746503495439 then it disappears, next in set  2^64.72838869180307975688 = 30562337493006990878 "almost" what you need
for pz 63 2^66.72838869180307975688=12224934997202796351 disappears, starts on 2^66 (we can drop everything? starting with 12 122 1222)


1726 65.05051704633589806037 05051704633589806037 ['19104112579657908258', '38208225159315816516', '76416450318631633033', '15283290063726326606', '30566580127452653213', '61133160254905306427', '12226632050981061285']
4088 65.05063077104366318521 05063077104366318521 ['19105618577247210060', '38211237154494420121', '76422474308988840242', '15284494861797768048', '30568989723595536096', '61137979447191072193', '12227595889438214438']
5998 66.05062246865788236741 05062246865788236741 ['19105508629021772898', '38211017258043545796', '76422034516087091592', '15284406903217418318', '30568813806434836636', '61137627612869673273', '12227525522573934654']


they start with 65.* 66.* i.e. 2^64.05051704633589806037=19104112579657908258, 2^68.05051704633589806037=30566580127452653213, it seems like it fits, but it starts with 2^68. (need 2^63.).
2^70.05062246865788236741 = 1222752552257393465474 (we can drop everything? starting with 12 122 1222)


need to look at what's in the "sets" with 63,6***, 63,5***, 63,4***,..

Quote

from mpmath import *

mp.dps = 22; mp.pretty = True

n = "30568377312064202855" #3056 8377 3120 6420 2855

A=[]
B=[]

def func(n):
    a = log(n, 2)
    b = str(a)[3:]
    B.append(a)
    return b

def func2(n):
    a = log(n, 2)
    b = str(a)[3:]
    B.append(a)
    return a

#print(log(16401578745271144384,2))
print("2 ^ x =",n)
print("")
a1 = func(n)
A.append(a1)
print(func2(n),a1)

for x in range(0,50):
    for elem in A:
        f = func(elem)
        A=[]
        #print(f,len(f))
        if len(f) <= 20:
            h = 20 - len(f)
            g = "0" * h
            #print(g)
            ff = f+g
            for elem1 in B:
                if ff in str(elem1):
                    mp.dps = 22
                    F=[]

                    i = 60
                    while i <= 70:
                        n1 = str(i)
                        n2="."
                        n3=ff
                        nn = n1+n2+n3
                        #print(nn)

                        b = power(2,nn)
                        bb = str(b)[:20]
                        if "." not in bb:
                            F.append(bb)
                            #print(i,bb,len(bb))
                        #print("")
                        i=i+1

                    #print(F)
                    #F=[]

                    print(x,elem1,ff,F)
                    F=[]
                    mp.dps = 22; mp.pretty = True
            A.append(ff)
        #print(A)
        #A=[]    

    


print("")


full member
Activity: 706
Merit: 111
It will take a good while for the remaining bits of this puzzle to get solve.
member
Activity: 406
Merit: 47
Has anyone solved this puzzle yet?

Total 160 puzzle

puzzle #1 to #63 solve

many puzzle #64 to #160 not yet solve

now still have 86 puzzle

check update list in this thread

https://bitcointalksearch.org/topic/bitcoin-challenge-transaction-1000-btc-total-bounty-to-solvers-updated-5218972

puzzle not easy to solve all
full member
Activity: 310
Merit: 100
https://eloncity.io/
So old thread never ended up what could be the reason for that does anyone actually solve this riddle
newbie
Activity: 44
Merit: 0
Has anyone solved this puzzle yet?
hero member
Activity: 1330
Merit: 533

CODE #2
Code:
from bitcoin import privtoaddr
i = 18446744073709551616
while i >= 9223372036854775808:
    i -= 1
    y = privtoaddr(i)
    if y == '16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN':
        print(hex(i))
        break
I try to play around a lot with CODE #2, but still getting the same results.
Any suggestions to make it run faster or recommending faster tools are appreciated.
Thanks in advance.


The addresses your code generates are uncompressed. the address you need to find is compressed.


python library bitcoin give uncompressed address because hash from uncompressed public key

try change to use library bit
library bit has from compressed public key give compressed address

I am not sure not yet try run code
Code:
from bit import Key
i = 18446744073709551616
while i >= 9223372036854775808:
    i -= 1
    key = Key.from_int(i)
    y = key.address
    if y == '16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN':
        print(hex(i))
        break

Code:
# -- codeng: utf-8 --
# !/usr/bin/python
import secrets
from bitcoin import *
import secrets



import os
import time


import os, binascii, hashlib, base58, ecdsa
import random
import bitcoin
import os
import time
import utils

import requests

from ecdsa import SigningKey, SECP256k1
from secrets import token_bytes
from coincurve import PublicKey


def ripemd160(x):
    d = hashlib.new('ripemd160')
    d.update(x)
    return d
dosya1 = open("addresslist.txt", "r")
i = 1
a=100000000
c=59896944618658997711785492594343953926634992332820982019728792003955524819966
nDecimal=0x000000000000000000000000000000000000000000000001000000000009FD97
start = time.time()
while (i <= a):
       
        zaman = time.time() - start
       

        #private_key ="{:064x}".format(secrets.randbits(110))
        private_key ="{:064x}".format(c)
        # generate private key , uncompressed WIF starts with "5"
       
        def generar_HEX(nDecimal):
            aHex = hex(nDecimal)
            aHex = aHex[2:].upper()
            aHex = ((64-len(aHex)) * '0') + aHex
            return aHex

        nDecimal = nDecimal + 1
        private_key = generar_HEX(nDecimal)
        pub = privtopub(private_key)
        addr = pubtoaddr(pub)
        wif = encode_privkey(private_key, 'wif')
   
        compressed_private_key = private_key + '01'
        wif1 = bitcoin.encode_privkey(bitcoin.decode_privkey(private_key, 'hex'), \
        'wif_compressed')
        pub1 = private_key + '01'
        pub1 = privtopub(pub1)
        addr1 = pubtoaddr(pub1)

   
        dosya1.seek(0)
        aranan_varmı = dosya1.read().find(addr1)

        if aranan_varmı != -1:
            dosya2 = open("eslesme.txt", "a")
            dosya2.write(private_key + " " + addr1 + "\n")
            dosya2.close()
            print("----------BULUNDU----------")
            print("Private Key    : " + private_key)
            print("Address    : " + addr1)

            time.sleep(5)
        else:
            print("Private key =",private_key+ " "+"Address =",addr1+ '\t'+ str(i))
          #  print (amount)


dosya1.close()
print("Total Tİme = %s saniye " % zaman)
legendary
Activity: 1568
Merit: 6660
bitcoincleanup.com / bitmixlist.org
There's plenty of addresses with hundreds or even thousands of transactions on them, so what you're saying is that bitcoin isn't secure enough and those addresses are more at risk?

For now, and for the foreseeable future, those kind of addresses are very safe because nobody's been able to crack private keys in the full 2^256 range, or even half that length.
member
Activity: 406
Merit: 47
I think one of the take home messages here might be that due to this difference in effort and other factors having to do with privacy and the fungiblity of Bitcoin in general:  do not reuse Bitcoin addresses.  Bitcoin addresses should be used exactly twice:  once to fund them and once to spend them - then never used again.
There's plenty of addresses with hundreds or even thousands of transactions on them, so what you're saying is that bitcoin isn't secure enough and those addresses are more at risk?

bitcoin address design for use one time is correct

I remember first time don't know about bitcoin  I look at bitcoin address I think may be bitcoin is cashless copy idea from RFID code, RFID wristband for use on event and activity ticket payment (cashless) by use one time and thrown away , and it use same thing RFID is better and Easy use bitcoin address is not easy to use require to print out and not easy to scan (I think bitcoin is cashless same RFID cashless system)

newbie
Activity: 12
Merit: 0
I think one of the take home messages here might be that due to this difference in effort and other factors having to do with privacy and the fungiblity of Bitcoin in general:  do not reuse Bitcoin addresses.  Bitcoin addresses should be used exactly twice:  once to fund them and once to spend them - then never used again.
There's plenty of addresses with hundreds or even thousands of transactions on them, so what you're saying is that bitcoin isn't secure enough and those addresses are more at risk?
Jump to: