Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 280. (Read 242897 times)

member
Activity: 158
Merit: 39
jr. member
Activity: 31
Merit: 4
I bought your code but There is a password ?

    Tongue
jr. member
Activity: 184
Merit: 3
WanderingPhilospher, math09183 Ok. Ie it makes no sense? How long does it take to mix (sort of "shuffling" or "random") 20 parts to find the desired result on gpu less than a second? You have the opportunity to check the search time from 20,30,40 parts? (if gpu searches by random mixing only 1000 numbers per second then this is a problem. and how then BitCrack works, what's the difference for him to step by step or mix.)

we have a set from 00 to 99. of them we need 10 necessary ones (for 20 dec pz lenght), but increasing the sample (10,20,30 ...) for mixing we increase the chance of catching the right one from the set from 00 to 99.  

sample 50/50 (throw a coin)


I would have to see this in action to fully understand it all. Program? How to implement the mixing? How do you go from mixing to checking the keys? Use one program to mix and then another to check the keys??
Well, this is already a question of writing a program, in theory, gpu acceleration is enough only for check the keys. And depending on which programming language your, libraries or ready-made scripts should be on the internet. You wrote that gpu works for you, you created the program yourself or use some of the puzzle theme (bitcrack or kangaroo)? what prevents you if you created the program yourself, add on top (before checking the gpu keys) a ready-made script from the Internet mixing (random shuffle function) in C ++ or OpenCl/Gl gpu cuda.  

In general, let's find at least 1 pz and pay brichard19 he will write to us as needed  Grin


I have taken programs developed, Kangaroo, VS, BitCrack (not using bitcrack anymore) and have tinkered with them along with python and batch scripts to do what I want it to do. Doesn't mean my ideas are the best, just I wanted to do something and set out to do it. I am not a programmer but I can study code and make some changes.  I was/am still trying to figure out your mixing. Can you explain via an example?

For the #64, how would the mixing work, mix what, and do what?
There is nothing special to understand)). I already wrote once.

We're searching for a number, let's say it 30568377312064202855

break it into pieces of 2 digits 30 56 83 77 31 20 64 20 28 55

We just swap them and get the number you need. python  random shuffle uses something of Fisher–Yates https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle (will gpu speed it up?)

Quote

import random
import time

Nn =['30', '56', '83', '77', '31', '20', '64', '20', '28', '55']
nnn = Nn # *1 *10000000
print ("set lenght",len(Nn),Nn)

count = 0

#while True:
j=1
while j<=50000000:

    d = ''.join(random.sample(Nn,len(Nn)))
    dd = (d)[0:20]
    #print(dd)
    a = int(dd)
    if a == 30568377312064202855:
        count += 1
        print(count,"find..............................",a)
        time.sleep(60.0)
        break
    else:
        count += 1
        #print(a)
        pass

    j=j+1


Quote
77203164833020285655
55832064312030567728
20772856302055316483
20283077315556208364
28305664208320773155
20558364282056307731
55286483203056317720
56303155837728202064
56308377202831206455
28567720643031552083
30312056206483772855
56643155778320202830
30205531772064832856
83316430205528562077
83203120566430552877
77835628306420553120
20552083642856303177
83552028775631206430
77566428208331552030
83645620282077305531
20553128567764208330
83302831647720565520
...

2175109 find.............................. 30568377312064202855

2175109 mileage permutation steps.

we can increase the number of parts to 15-20-30 ['30', '56', '83', '77', '31', '20', '64', '20', '28', '55'] > ['30', '56', '83', '77', '31', '20', '64', '20', '28', '55', '30', '56', '83', '77', '31', '20', '64', '20', '28', '55'] this will increase the search time but will increase the dropout of the parts we need to compose the desired number.


in other words, we need to find "abc" from the set "abcdef"

we choose from "abcdef" any letters and mix them

"cde"

dec
ecd
edc
...

did not find we take others

"bdf"
fdb
dbf
fbd
...

we can take all the letters and mix them (cutting to the length we need)
"abcdef"

defabc > def
bcdaef > bcd
abcdef > abc find!

How mixing itself works in python libraries should be seen in the documentation (https://docs.python.org/3/library/random.html) or in the scripts libraries (or come up with your own version).

our puzzle numbers consist of numbers

    ['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']

we can randomly choose 10-20-30 parts from them and mix them in search of the number we need (looking for 10 needed out of a 100 or search for several puzzles at once 10 11 12 13... trimming the length we need programmatically).


full member
Activity: 431
Merit: 105
    Tongue

hi

sharing is caring,

what is that the app, from satoshidisk
full member
Activity: 1232
Merit: 242
Shooters Shoot...
WanderingPhilospher, math09183 Ok. Ie it makes no sense? How long does it take to mix (sort of "shuffling" or "random") 20 parts to find the desired result on gpu less than a second? You have the opportunity to check the search time from 20,30,40 parts? (if gpu searches by random mixing only 1000 numbers per second then this is a problem. and how then BitCrack works, what's the difference for him to step by step or mix.)

we have a set from 00 to 99. of them we need 10 necessary ones (for 20 dec pz lenght), but increasing the sample (10,20,30 ...) for mixing we increase the chance of catching the right one from the set from 00 to 99.  

sample 50/50 (throw a coin)


I would have to see this in action to fully understand it all. Program? How to implement the mixing? How do you go from mixing to checking the keys? Use one program to mix and then another to check the keys??
Well, this is already a question of writing a program, in theory, gpu acceleration is enough only for check the keys. And depending on which programming language your, libraries or ready-made scripts should be on the internet. You wrote that gpu works for you, you created the program yourself or use some of the puzzle theme (bitcrack or kangaroo)? what prevents you if you created the program yourself, add on top (before checking the gpu keys) a ready-made script from the Internet mixing (random shuffle function) in C ++ or OpenCl/Gl gpu cuda. 

In general, let's find at least 1 pz and pay brichard19 he will write to us as needed  Grin


I have taken programs developed, Kangaroo, VS, BitCrack (not using bitcrack anymore) and have tinkered with them along with python and batch scripts to do what I want it to do. Doesn't mean my ideas are the best, just I wanted to do something and set out to do it. I am not a programmer but I can study code and make some changes.  I was/am still trying to figure out your mixing. Can you explain via an example?

For the #64, how would the mixing work, mix what, and do what?
jr. member
Activity: 184
Merit: 3
WanderingPhilospher, math09183 Ok. Ie it makes no sense? How long does it take to mix (sort of "shuffling" or "random") 20 parts to find the desired result on gpu less than a second? You have the opportunity to check the search time from 20,30,40 parts? (if gpu searches by random mixing only 1000 numbers per second then this is a problem. and how then BitCrack works, what's the difference for him to step by step or mix.)

we have a set from 00 to 99. of them we need 10 necessary ones (for 20 dec pz lenght), but increasing the sample (10,20,30 ...) for mixing we increase the chance of catching the right one from the set from 00 to 99.  

sample 50/50 (throw a coin)


I would have to see this in action to fully understand it all. Program? How to implement the mixing? How do you go from mixing to checking the keys? Use one program to mix and then another to check the keys??
Well, this is already a question of writing a program, in theory, gpu acceleration is enough only for check the keys. And depending on which programming language your, libraries or ready-made scripts should be on the internet. You wrote that gpu works for you, you created the program yourself or use some of the puzzle theme (bitcrack or kangaroo)? what prevents you if you created the program yourself, add on top (before checking the gpu keys) a ready-made script from the Internet mixing (random shuffle function) in C ++ or OpenCl/Gl gpu cuda. 

In general, let's find at least 1 pz and pay brichard19 he will write to us as needed  Grin

member
Activity: 158
Merit: 39
Technical question - can somebody point out how author created this puzzle with deterministic wallet, not shure how masking could be done (and with what deterministic wallet in early 2015)?
"It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty)."

Thnx and good luck for fighters!
full member
Activity: 1232
Merit: 242
Shooters Shoot...
WanderingPhilospher, math09183 Ok. Ie it makes no sense? How long does it take to mix (sort of "shuffling" or "random") 20 parts to find the desired result on gpu less than a second? You have the opportunity to check the search time from 20,30,40 parts? (if gpu searches by random mixing only 1000 numbers per second then this is a problem. and how then BitCrack works, what's the difference for him to step by step or mix.)

we have a set from 00 to 99. of them we need 10 necessary ones (for 20 dec pz lenght), but increasing the sample (10,20,30 ...) for mixing we increase the chance of catching the right one from the set from 00 to 99.  

sample 50/50 (throw a coin)


I would have to see this in action to fully understand it all. Program? How to implement the mixing? How do you go from mixing to checking the keys? Use one program to mix and then another to check the keys??
jr. member
Activity: 102
Merit: 6
https://satoshidisk.com/pay/CBd7TZ
The public key of the Bitcoin wallet from Puzzle 64 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. I can't crack the private key with Kangaroo Sad


The public key of this address has not been exposed, nobody but the owner of the puzzle can give it to you.
I guess you've been scammed.


I used the site https://iancoleman.io/bitcoin-key-compression/, if you enter this public key, the compression address appears 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. However, I am using Kangaroo and it doesn't find anything. Perhaps the hex range is incorrect?

i am using gtx 970 and win10, how can i use kangaroo, i tried but can be run the kangaroo, can you help me?
jr. member
Activity: 184
Merit: 3
WanderingPhilospher, math09183 Ok. Ie it makes no sense? How long does it take to mix (sort of "shuffling" or "random") 20 parts to find the desired result on gpu less than a second? You have the opportunity to check the search time from 20,30,40 parts? (if gpu searches by random mixing only 1000 numbers per second then this is a problem. and how then BitCrack works, what's the difference for him to step by step or mix.)

we have a set from 00 to 99. of them we need 10 necessary ones (for 20 dec pz lenght), but increasing the sample (10,20,30 ...) for mixing we increase the chance of catching the right one from the set from 00 to 99.  

sample 50/50 (throw a coin)

Quote
2696 huuuuuuuuuurraaaaaaaaaa... ['20', '30', '82', '11', '96', '74', '35', '16', '60', '31', '82', '65', '23', '55', '12', '89', '53', '83', '68', '34', '56', '02', '27', '08', '98', '35', '21', '89', '28', '91', '18', '84', '97', '64', '77', '41', '08', '06', '37', '19', '36', '33', '34', '13', '68', '79', '66', '75', '51', '57']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
7581 huuuuuuuuuurraaaaaaaaaa... ['75', '76', '11', '66', '51', '93', '61', '41', '28', '91', '31', '23', '12', '30', '73', '83', '41', '56', '83', '16', '93', '50', '52', '96', '20', '89', '24', '35', '65', '45', '05', '66', '72', '47', '72', '57', '63', '38', '08', '02', '67', '03', '56', '51', '64', '78', '06', '77', '50', '79']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
8981 huuuuuuuuuurraaaaaaaaaa... ['44', '96', '51', '64', '67', '05', '10', '83', '07', '05', '36', '19', '20', '43', '68', '80', '16', '98', '44', '94', '70', '52', '91', '39', '56', '83', '58', '36', '64', '76', '03', '99', '77', '43', '77', '09', '69', '31', '23', '62', '96', '88', '26', '01', '04', '55', '82', '30', '28', '97']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
10217 huuuuuuuuuurraaaaaaaaaa... ['87', '56', '64', '45', '90', '76', '62', '31', '00', '78', '73', '30', '62', '04', '66', '05', '77', '28', '54', '36', '10', '82', '98', '27', '32', '20', '17', '73', '93', '87', '40', '54', '27', '12', '89', '37', '11', '42', '90', '14', '49', '95', '81', '61', '18', '11', '19', '90', '47', '83']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
10472 huuuuuuuuuurraaaaaaaaaa... ['14', '98', '91', '66', '93', '02', '29', '20', '47', '98', '10', '08', '67', '60', '46', '92', '74', '30', '12', '63', '21', '99', '28', '60', '17', '85', '58', '32', '77', '67', '56', '74', '37', '39', '46', '20', '34', '45', '64', '31', '08', '72', '13', '83', '71', '83', '26', '37', '88', '36']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
11929 huuuuuuuuuurraaaaaaaaaa... ['32', '83', '31', '56', '23', '12', '73', '06', '53', '87', '77', '20', '55', '01', '06', '85', '30', '24', '79', '58', '55', '49', '98', '94', '53', '99', '36', '95', '64', '83', '94', '96', '42', '26', '04', '43', '82', '98', '12', '86', '82', '14', '28', '89', '54', '26', '04', '63', '21', '66']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
12405 huuuuuuuuuurraaaaaaaaaa... ['39', '56', '86', '28', '18', '28', '04', '21', '48', '21', '53', '87', '67', '29', '60', '59', '95', '91', '80', '12', '64', '99', '56', '30', '29', '92', '23', '25', '61', '28', '94', '31', '42', '15', '92', '40', '74', '18', '54', '08', '51', '70', '87', '20', '00', '83', '40', '77', '72', '12']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
14336 huuuuuuuuuurraaaaaaaaaa... ['86', '56', '30', '79', '47', '75', '21', '92', '31', '84', '97', '19', '45', '72', '94', '20', '95', '92', '10', '64', '80', '03', '66', '75', '65', '09', '20', '07', '36', '52', '48', '37', '21', '66', '51', '54', '38', '81', '51', '83', '39', '20', '37', '16', '43', '77', '30', '28', '98', '36']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
16351 huuuuuuuuuurraaaaaaaaaa... ['19', '59', '88', '17', '46', '28', '12', '47', '08', '77', '65', '76', '50', '13', '61', '48', '83', '30', '67', '44', '31', '67', '37', '99', '98', '74', '08', '71', '04', '43', '29', '20', '74', '14', '76', '99', '13', '74', '64', '09', '56', '47', '63', '91', '82', '93', '21', '04', '40', '66']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
21001 huuuuuuuuuurraaaaaaaaaa... ['57', '87', '71', '56', '25', '75', '12', '68', '54', '20', '68', '54', '17', '68', '92', '88', '23', '66', '31', '00', '16', '58', '84', '30', '03', '28', '55', '48', '85', '45', '25', '92', '87', '82', '83', '94', '04', '24', '83', '07', '45', '80', '02', '58', '02', '37', '77', '64', '32', '54']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
21959 huuuuuuuuuurraaaaaaaaaa... ['29', '09', '77', '59', '20', '56', '97', '21', '99', '01', '30', '83', '41', '55', '84', '53', '36', '85', '98', '36', '28', '95', '00', '31', '39', '36', '73', '95', '21', '34', '64', '00', '72', '33', '78', '04', '68', '24', '01', '29', '32', '92', '32', '29', '29', '35', '38', '27', '04', '27']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
22643 huuuuuuuuuurraaaaaaaaaa... ['81', '51', '73', '57', '37', '56', '27', '72', '42', '72', '01', '88', '16', '72', '72', '59', '64', '82', '00', '48', '55', '97', '77', '78', '27', '19', '38', '59', '57', '88', '18', '40', '31', '28', '30', '20', '99', '87', '83', '52', '10', '28', '56', '85', '41', '14', '99', '89', '28', '96']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
25722 huuuuuuuuuurraaaaaaaaaa... ['89', '28', '44', '40', '51', '33', '85', '38', '52', '11', '22', '45', '30', '27', '64', '74', '77', '36', '14', '51', '41', '34', '04', '20', '55', '12', '20', '40', '67', '65', '83', '31', '34', '84', '59', '92', '61', '44', '01', '18', '15', '73', '80', '24', '45', '56', '18', '48', '31', '94']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
27243 huuuuuuuuuurraaaaaaaaaa... ['30', '46', '11', '24', '96', '41', '11', '31', '67', '10', '53', '45', '50', '09', '00', '33', '58', '97', '08', '94', '89', '29', '89', '44', '91', '60', '83', '28', '77', '68', '03', '81', '07', '80', '38', '74', '16', '86', '91', '67', '83', '64', '25', '46', '20', '43', '56', '04', '39', '47']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
27607 huuuuuuuuuurraaaaaaaaaa... ['09', '20', '32', '62', '50', '09', '34', '31', '56', '80', '91', '64', '74', '79', '77', '41', '30', '19', '33', '98', '13', '47', '32', '68', '75', '22', '12', '48', '56', '62', '33', '67', '83', '28', '85', '51', '12', '32', '55', '51', '63', '88', '40', '54', '06', '62', '47', '66', '15', '41']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
27931 huuuuuuuuuurraaaaaaaaaa... ['65', '72', '65', '03', '91', '18', '04', '78', '30', '77', '98', '85', '06', '50', '49', '82', '49', '20', '16', '89', '81', '50', '59', '71', '83', '16', '55', '64', '07', '83', '85', '28', '25', '87', '14', '40', '31', '53', '50', '45', '12', '83', '97', '48', '56', '52', '81', '54', '67', '55']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
30111 huuuuuuuuuurraaaaaaaaaa... ['30', '99', '97', '72', '20', '64', '45', '97', '36', '99', '74', '84', '83', '14', '40', '18', '56', '36', '42', '59', '58', '93', '75', '41', '51', '69', '96', '27', '97', '64', '09', '87', '74', '77', '76', '44', '73', '67', '19', '12', '74', '63', '33', '81', '16', '84', '54', '28', '48', '31']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
[/size]

gpu shuffles a set of 20 in a second, we have 50 here (we don't know how much it will interfere with 30,40,50 in sec) let's say 1 second too.

2696 first coin toss implies what the 2696 seconds (44 minutes,0.7 hours) we mixed a set of 50 and found what we needed. (threw a coin once, mixed it, etc.)

***

reduce the sample to 30 (throw a coin)

Quote
26938 huuuuuuuuuurraaaaaaaaaa... ['93', '13', '28', '53', '83', '40', '77', '41', '22', '43', '44', '15', '01', '95', '75', '82', '02', '30', '17', '45', '53', '64', '01', '56', '20', '58', '76', '85', '12', '31']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
59027 huuuuuuuuuurraaaaaaaaaa... ['76', '37', '77', '83', '64', '20', '20', '62', '07', '04', '57', '68', '31', '36', '49', '54', '30', '33', '42', '97', '81', '28', '74', '69', '44', '56', '41', '41', '95', '68']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
111859 huuuuuuuuuurraaaaaaaaaa... ['95', '71', '75', '88', '88', '65', '48', '76', '83', '64', '29', '21', '79', '79', '88', '30', '52', '39', '20', '28', '66', '72', '56', '19', '62', '44', '31', '77', '38', '59']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
157022 huuuuuuuuuurraaaaaaaaaa... ['89', '20', '61', '54', '83', '46', '56', '11', '77', '35', '10', '52', '64', '23', '05', '94', '28', '19', '00', '51', '31', '95', '77', '82', '76', '96', '30', '68', '37', '61']     ['30'] ['56'] ['83'] ['77'] ['31'] ['20'] ['64'] ['20'] ['30'] ['28']
[/size]

increase the sampling time from the 00-99 set but decrease the time for mixing from 50 to 30 particles. but the end time is still within the available.
26938 coin toss implies what the 26938 seconds (448 minutes, 7 hours) we mixed a set of 30 and found what we needed.

I think mixing 20-30 particles for gpu in one, two seconds is quite achievable to find the next 3-6 puzzles.

p.s.
at first glance, this seems elementary.  Grin
member
Activity: 170
Merit: 58
Not a bad btc price for finding a puzzle, but need to change method.  MeBender if you can write for gpu try doing this.


Dude, but why?
Do not you think it all makes no sense? How it is better than consecutive search? Why do you want to overcomplicate things?
full member
Activity: 1232
Merit: 242
Shooters Shoot...
Quote
              A                              B                     20    26
    ['00', '01', '02', '03', '04',   '05', '06', '07', '08', '09',  A 3   A 6
     '10', '11', '12', '13', '14',   '15', '16', '17', '18', '19',  B 1   B 2
     '20', '21', '22', '23', '24',   '25', '26', '27', '28', '29',  C 2   C 3
     '30', '31', '32', '33', '34',   '35', '36', '37', '38', '39',  D 3   D 2
     '40', '41', '42', '43', '44',   '45', '46', '47', '48', '49',

                   C                              D
     '50', '51', '52', '53', '54',   '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64',   '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74',   '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84',   '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94',   '95', '96', '97', '98', '99']




          A             B             C             D             E
    ['00', '01',   '02', '03',   '04', '05',   '06', '07',   '08', '09',  A,D,B,D,A,A,C,A,E,C
     '10', '11',   '12', '13',   '14', '15',   '16', '17',   '18', '19',  A 4,D 2,B 1,C 2,E 1    
     '20', '21',   '22', '23',   '24', '25',   '26', '27',   '28', '29',  20    26
     '30', '31',   '32', '33',   '34', '35',   '36', '37',   '38', '39',  A 4  A 5
     '40', '41',   '42', '43',   '44', '45',   '46', '47',   '48', '49',  B 1  B 2
     '50', '51',   '52', '53',   '54', '55',   '56', '57',   '58', '59',  C 2  C 3
     '60', '61',   '62', '63',   '64', '65',   '66', '67',   '68', '69',  D 2  D 1
     '70', '71',   '72', '73',   '74', '75',   '76', '77',   '78', '79',  E 1  E 2
     '80', '81',   '82', '83',   '84', '85',   '86', '87',   '88', '89',  
     '90', '91',   '92', '93',   '94', '95',   '96', '97',   '98', '99']  

***

or think (although they have already thought of everything) how to speed up the selection of "nonce" or speed up sha256

What exactly is all this? A sort of "shuffling" or "random" generator to target certain bits in the puzzle? Seems complex to select bits or ranges. I've ran a random generator through the 64 bit range many times and came up with nothing. From random every 7 seconds to every 5 minutes and let it run for days. Nada...
I currently have 6 GPUs working in every sub 40 bit range in the larger 64 bit range, from 8000000000000000 to FFFFFFFFFFFFFFFF. This means I am processing keys across the entire 64 bit range, broken down into 40 bit ranges. The thought is to basically, hopefully get lucky and the key is somewhere not to far out of reach from the beginning of one of the sub 40 bit ranges. Each subrange is being searched at a Speed of 807 key/s per second...that's why it needs to be in the lower range of one of the subranges...each subrange contains roughly 1,099,511,627,776 keys. AT current speed of 807 key/s it will only take 43 years to go through each 40 bit subrange (entire 64 bit range). So far, each GPU has checked roughly 2^45.5 keys (298,549,297,149,645 total keys) in about 9 hours of run time. Maybe luck will be on my side. Because I am a Wanderer...a Tinkerer...I will get bored after so long and switch to another, better idea (not really, but I will switch to something else.) I have other GPUs still running randomly through the 64 bit range. I search (sequentially) each sub 52 bit range, and generate random keys within that range. Range 1 = 8000000000000000 range 2 = 8010000000000000 range 3 = 8020000000000000, etc. and 1,572,864 random keys/starting points are created in each range , per GPU. I let GPUs run through each range for 67 seconds and then it's on to the next subrange.  This is more of a hobby and a challenge. Learning different things and coding techniques, etc.
I enjoy reading and learning about different ways to "try" and attack this challenge, and I am just not sure what your code/ideas really are.
jr. member
Activity: 184
Merit: 3
Not a bad btc price for finding a puzzle, but need to change method.  MeBender if you can write for gpu try doing this.

Quote
import random
from bit import Key
#from bit.format import bytes_to_wif
#from PyRandLib import *
#rand = FastRand63()
#random.seed(rand())

import time

list = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9",
        "1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ","19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF",
        "1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU","1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR","12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4",
        "1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF","1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE",
        "15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb","1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8","15qsCm78whspNQFydGJQk5rexzxTQopnHZ",
        "13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC","14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2","1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D",
        "1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK","1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq","16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf",
        "19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt","1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74","1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5",
        "17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad","1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL","15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b",
        "18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8","1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX","1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL"]

Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']


K = print(len(Nn),"set 00-99 length...")

def func():
    DDD = random.choice(RRR)
    return DDD


#def func2():
#    DDD = random.choice(RRR2)
#    return DDD

RRR = []
#RRR2 = []

while True:

    for RR in range(15): # set 00-99 screening out length
        DDD = random.choice(Nn)
        RRR.append(DDD)

#    for RR2 in range(11): # set 00-99 screening out length
#        DDD2 = random.choice(RRR)
#        RRR2.append(DDD2)

    print(Nn)
    print("screening out...")
    print(RRR)
#    print(RRR2)
    time.sleep(3.0)
    print("loop start...")
    count = 0

    #Nn =['123', '099', '444', '996', '001', '911', '422']
    #nnn = Nn*1 # *1 *10000000
    #print (nnn)

    i=1
    while i <= 30000000: #20000000
        
        d = ''.join(random.sample(RRR,len(RRR)))
        
        #count += 1
        #print(count,d,RRR)
        
        ii = 20
        while ii <= 30:
            
            time.sleep(0.02)
            
            dd = (d)[0:ii]
            ran = int(dd)
            key1 = Key.from_int(ran)
            
            addr1 = key1.address
            
            if addr1 in list:

                print (ran,"found!!!")

                s5 = str(ran)
                f=open(u"C:/a.txt","a")
                f.write(s5 + '\n')
                f.close()

                break

            else:
                
                #pass
                                                                                                #pass
                count += 1
                print(count,ran,addr1,RRR) #(ran,baba,addr1,addr2," ",ed,"   ",k1,k2,k3,k4,k5,k6,k7)
                
            ii=ii+1

        i=i+1
        
    RRR=[]
    count = 0
    #RRR2=[]
    print("loop end...")
    time.sleep(3.0)
    pass    

 
[/size]


Quote
100 set 00-99 length...
257 ['31', '58', '41', '78', '47', '46', '32', '39', '08', '47', '14', '19', '70', '01', '73', '75', '81', '57', '06', '53', '99', '69', '33', '12', '81', '12', '80', '78', '91', '51', '68', '01', '58', '26', '25', '92', '79', '87', '2'] 39
screening out...
['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58']
loop start...
1 26813353995141475846 13hkQcNz4Nv6APYPrNy5C9EuApe49UV7zE ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
2 268133539951414758468 16N5NZxYcYhMVRA6XTkHVNvQHb32WmtVMg ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
3 2681335399514147584680 16L1RhJFxSYFqPAvdXeqLuNzuzqJn2xsgr ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
4 26813353995141475846801 1GXBN8JiZnXy6LtedNuifMUqyHnKGJt7Hn ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
5 268133539951414758468012 1EGZPijwLQGLAR7N9U67KpwprE26VBtXSx ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
6 2681335399514147584680121 12KfYPzuYJ5uuLsf5HbBx8mmZeFp7VTNmE ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
7 26813353995141475846801214 1AF56PHS5GyaCzFS6w4fAkVJJs3pbi1upy ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
8 268133539951414758468012143 177ZLvt82d2xDcwJGQViT6gpGkDJ4xwhgf ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
9 2681335399514147584680121433 1BPXWi1SD1pju3YDA144ye1c8tkJcq1Cge ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
10 26813353995141475846801214335 1BZyY7xxV9nnDxBtZ84hftyoxojHEd1nk5 ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
11 268133539951414758468012143358 1MfFu95nuDXeAh7T7nYTA3tEjVjC6D1AFb ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
12 26463353803312144199 1LHRPzPS5J8PcTLXiGm9gtNr3BJMstvDDV ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
13 264633538033121441994 1AUqrp3STju2de3VszHysu66yxuN8Pjtge ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
14 2646335380331214419947 17Y9JDrBL5AtjCNw94ZEC5jhUano8Bubjj ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
15 26463353803312144199475 16hNwi5xScda1Bj3guFmT7A9DpatEYn1gk ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
16 264633538033121441994751 1LrVgqEb8FbjQVPTQbwGgk9XrAkijURzim ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
17 2646335380331214419947518 19AMVYYthrDapNZt2ztXNinzdTvZmQdjrn ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
18 26463353803312144199475181 1CHW4FKFHet8hraNzWhRe1y7mdp8N1R94d ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
19 264633538033121441994751815 1KB5RBCAq42mhw1dUCioYMwR7Sj4acgFXq ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
20 2646335380331214419947518158 1CRD4b46b3jMHYMGDvRLNVRpRfV33smmUu ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
21 26463353803312144199475181585 1J8ApJLqJ34fTFcZRGbMDwwTDqXqRxrpLb ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
22 264633538033121441994751815858 1LaaPJzZng9tZXgHuwmFmJPHynLnDUGLan ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
23 41582633335880518114 1D37SDnLpEZUzWbdUL84kT9Qp5aw9Tr57P ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
24 415826333358805181145 1RjpYRX9xj5pRgKoaoUMHkrRAqN5N5o5p ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
25 4158263333588051811453 1Nft5DHaB7EHAbgFVqxxfQaWHf4efsJA98 ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
26 41582633335880518114534 17RMp5MERvHeehpRogJeL6Rpj2qWzRQao ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
27 415826333358805181145347 1GFFYqTrGyGxLvUxkgmQxUQ18CqbYKqXSR ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
28 4158263333588051811453474 19LLbLMTXfAgPyE5n1uG9gHfzE5MGfJLJV ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
29 41582633335880518114534746 1N62yeahFqKSxdchNKS8nVvihNHzMk7z5P ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
30 415826333358805181145347469 1APrbNpptEBLQPb3oSXKf5tYAyUCg339RC ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
31 4158263333588051811453474699 15jpCb4uGBPnrhWeFrxSKsgTtFQEKkov1C ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
32 41582633335880518114534746991 1cn2YQ7cdnHBqR6DNCryWG4b11bsrJEKK ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
33 415826333358805181145347469912 1D68tTuPVnhZFmfHsNUgznTd6cRUGT6syu ['51', '26', '99', '80', '47', '46', '12', '58', '53', '81', '41', '14', '33', '33', '58'] 257
[/size]

takes set from 00 to 99 , selects 15 parts from it (can sample up to 20 instead of 15, but you need to mix longer) and shuffles them from 20 lenght to 30 (usually 15,000,000 mixing runs are enough to find) but on pc slowly, so I slowed it down specifically to run 600 copies at the same time (16 core pc can do more). although in order to drop the necessary parts from a set of 20, about a million samples are needed.

Quote
import random
import time


Nn =['00', '01', '02', '03', '04', '05', '06', '07', '08', '09',
     '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
     '20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
     '30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
     '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
     '50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']


RRR = []

count = 0

#for A in range (10000000):
i = 1
while i <= 10000000:
    
    count += 1
    
    for RR in range(20): # set 000-999 screening out length
        DDD = random.choice(Nn)
        RRR.append(DDD)    

    Nn1 =['30']
    Nn2 =['56']
    Nn3 =['83']
    Nn4 =['77']
    Nn5 =['31']
    Nn6 =['20']
    Nn7 =['64']
    Nn8 =['20']
    Nn9 =['30']
    Nn10 =['28']
    
    
    
    for elem1 in Nn1:
        if elem1 in RRR:
            
            for elem2 in Nn2:
                if elem2 in RRR:
                    
                    for elem3 in Nn3:
                        if elem3 in RRR:
                    
                            for elem4 in Nn4:
                                if elem4 in RRR:
                    
                                    for elem5 in Nn5:
                                        if elem5 in RRR:
                    
                                            for elem6 in Nn6:
                                                if elem6 in RRR:
                    
                                                    for elem7 in Nn7:
                                                        if elem7 in RRR:
                    
                                                            for elem8 in Nn8:
                                                                if elem8 in RRR:
                    
                                                                    for elem9 in Nn9:
                                                                        if elem9 in RRR:
                    
                                                                            for elem10 in Nn10:
                                                                                if elem10 in RRR:



                                                                                    print(count,"huuuuuuuuuurraaaaaaaaaa...",RRR,"   ",Nn1,Nn2,Nn3,Nn4,Nn5,Nn6,Nn7,Nn8,Nn9,Nn10)
                                                                                    break
    #print(RRR)                                            
    RRR = []
    
    #print(RRR)
    i=i+1
[/size]


can also be smart with a sample by dividing the set into parts

numer >   3   1   3   3   1   3   2   2   2   0   30 56 83 77 31 20 64 20 28 55                    20 4,1,2,2
numer >   5   1   1   2   3   1   2   2   1   3   97 04 36 97 40 05 02 36 90 48 1
numer >   1   0   6   6   1   1   1   1   4   2   22 53 83 23 24 09 89 82 38 23 36 7
numer >   4   2   2   3   3   4   1   1   2   3   11 05 52 00 30 58 92 34 48 79 39 45 6
numer >   4   5   3   1   4   2   4   1   0   2   21 09 03 15 76 64 11 50 61 44 42 69 20           26 6,2,3,2
numer >   3   4   3   1   3   1   3   3   4   2   86 80 12 19 04 17 72 64 02 71 95 48 86 3
numer >   1   6   4   3   3   4   3   2   2   1   25 52 58 31 95 66 44 11 36 17 01 37 48 21 2
numer >   1   3   5   6   3   0   3   1   5   3   86 82 21 23 36 89 32 64 98 34 03 79 18 31 42     30 7,2,2,4
numer >   4   3   4   3   4   3   1   2   4   4   29 08 32 30 14 49 18 04 57 06 78 85 29 19 24 35  32 5,8,0,3


                   A                              B                     20    26
    ['00', '01', '02', '03', '04',   '05', '06', '07', '08', '09',  A 3   A 6
     '10', '11', '12', '13', '14',   '15', '16', '17', '18', '19',  B 1   B 2
     '20', '21', '22', '23', '24',   '25', '26', '27', '28', '29',  C 2   C 3
     '30', '31', '32', '33', '34',   '35', '36', '37', '38', '39',  D 3   D 2
     '40', '41', '42', '43', '44',   '45', '46', '47', '48', '49',

                   C                              D
     '50', '51', '52', '53', '54',   '55', '56', '57', '58', '59',
     '60', '61', '62', '63', '64',   '65', '66', '67', '68', '69',
     '70', '71', '72', '73', '74',   '75', '76', '77', '78', '79',
     '80', '81', '82', '83', '84',   '85', '86', '87', '88', '89',
     '90', '91', '92', '93', '94',   '95', '96', '97', '98', '99']




          A             B             C             D             E
    ['00', '01',   '02', '03',   '04', '05',   '06', '07',   '08', '09',  A,D,B,D,A,A,C,A,E,C
     '10', '11',   '12', '13',   '14', '15',   '16', '17',   '18', '19',  A 4,D 2,B 1,C 2,E 1     
     '20', '21',   '22', '23',   '24', '25',   '26', '27',   '28', '29',  20    26
     '30', '31',   '32', '33',   '34', '35',   '36', '37',   '38', '39',  A 4  A 5
     '40', '41',   '42', '43',   '44', '45',   '46', '47',   '48', '49',  B 1  B 2
     '50', '51',   '52', '53',   '54', '55',   '56', '57',   '58', '59',  C 2  C 3
     '60', '61',   '62', '63',   '64', '65',   '66', '67',   '68', '69',  D 2  D 1
     '70', '71',   '72', '73',   '74', '75',   '76', '77',   '78', '79',  E 1  E 2
     '80', '81',   '82', '83',   '84', '85',   '86', '87',   '88', '89',  
     '90', '91',   '92', '93',   '94', '95',   '96', '97',   '98', '99']  

***

or think (although they have already thought of everything) how to speed up the selection of "nonce" or speed up sha256...  Grin
member
Activity: 170
Merit: 58
I used the site https://iancoleman.io/bitcoin-key-compression/, if you enter this public key, the compression address appears 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. However, I am using Kangaroo and it doesn't find anything. Perhaps the hex range is incorrect?

How did you find that public key?
If it is proper, kangaroo should work.
legendary
Activity: 1988
Merit: 1077
Honey badger just does not care
https://satoshidisk.com/pay/CBd7TZ
The public key of the Bitcoin wallet from Puzzle 64 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. I can't crack the private key with Kangaroo Sad


The public key of this address has not been exposed, nobody but the owner of the puzzle can give it to you.
I guess you've been scammed.


I used the site https://iancoleman.io/bitcoin-key-compression/, if you enter this public key, the compression address appears 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. However, I am using Kangaroo and it doesn't find anything. Perhaps the hex range is incorrect?

16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN is not the public key, it is the address.

There is no way of finding the public key from the address until the coins are spent.

Someone (you?) has been scammed.
newbie
Activity: 1
Merit: 0
https://satoshidisk.com/pay/CBd7TZ
The public key of the Bitcoin wallet from Puzzle 64 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. I can't crack the private key with Kangaroo Sad


The public key of this address has not been exposed, nobody but the owner of the puzzle can give it to you.
I guess you've been scammed.


I used the site https://iancoleman.io/bitcoin-key-compression/, if you enter this public key, the compression address appears 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. However, I am using Kangaroo and it doesn't find anything. Perhaps the hex range is incorrect?
jr. member
Activity: 114
Merit: 5
This seems very fishy...
It doesn't even seem to be that complicated but the prize is very high. Huh

Yeah its only 21,575,147,362,539,733,087 addresses that need to be checked pfff couldn't be that hard Roll Eyes  Cheesy
hero member
Activity: 1330
Merit: 533
https://satoshidisk.com/pay/CBd7TZ
The public key of the Bitcoin wallet from Puzzle 64 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN. I can't crack the private key with Kangaroo Sad


The public key of this address has not been exposed, nobody but the owner of the puzzle can give it to you.
I guess you've been scammed.
jr. member
Activity: 114
Merit: 5
hey so I decided to upgrade BitCrack to CUDA 11.2 to see if it would improve my performance but nope, originally I was getting 216Mkey/s but after compiling for CUDA 11.2 it was drastically lower 4.2Mkey/s lol

Here's the forked code upgraded to CUDA 11.2 if anyone wants it: https://github.com/GonzoTheDev/BitCrack
member
Activity: 259
Merit: 47
Quote
Reason no one is excited is simple: It's a scam.


yes scam 158LUYbF38KGu8rRRWPDL6gxe8GrozF862    -) Grin
update: 12bXbfa4rjh1uwbgs25JGPWjPCpaz6VK8e  Tongue
Who know privat?
Jump to: