Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 286. (Read 253799 times)

full member
Activity: 1232
Merit: 242
Shooters Shoot...
Quote
I do not believe, this is a scam nothing is easy, a huge amount of money can hit our greed to carry out their scam, you need to think transparently because I it's definitely one of the scams or this is one of a number of unusual transactions possibly money laundering or some kind of insider trading. I recommend staying away from scammers and chances are when you join they will make you pay part of the fee and then evaporate with the money you joined.

This user was obviously in the sauce, drinking when posting this...reading is hard, real hard.

Please read all about puzzle/challenge before posting crazy talk.
member
Activity: 174
Merit: 12
I do not believe, this is a scam nothing is easy, a huge amount of money can hit our greed to carry out their scam, you need to think transparently because I it's definitely one of the scams or this is one of a number of unusual transactions possibly money laundering or some kind of insider trading. I recommend staying away from scammers and chances are when you join they will make you pay part of the fee and then evaporate with the money you joined.

Code:
  .-'---`-.
,'          `.
|             \
|              \
\           _  \
,\  _    ,'-,/-)\
( * \ \,' ,' ,'-)
 `._,)     -',-')
   \/         ''/
    )        / /
   /       ,'-'
*scam scam scam*
member
Activity: 139
Merit: 10
Hi guys,

In continuation to this thread: https://bitcointalksearch.org/topic/brute-force-on-bitcoin-addresses-video-of-the-action-1305887

While playing around with my bot, I found out this mysterious transaction:

https://blockchain.info/tx/08389f34c98c606322740c0be6a7125d9860bb8d5cb182c02f98461e5fa6cd15

those 32.896 BTC were sent to multiple addresses, all the private keys of those addresses seem to be generated by some kind of formula.

For example:

Address 2:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU74sHUHy8S
1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb
Biginteger PVK value: 3
Hex PVK value: 3

Address 3:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU76rnZwVdz
19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA
Biginteger PVK value: 7
Hex PVK value: 7

Address 4:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU77MfhviY5
1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e
Biginteger PVK value: 8
Hex PVK value: 8

Address 5:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU7Dq8Au4Pv
1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k
Biginteger PVK value: 21
Hex PVK value: 15

Address 6:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU7Tmu6qHxS
1PitScNLyp2HCygzadCh7FveTnfmpPbfp8
Biginteger PVK value: 49
Hex PVK value: 31

Address 7:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU7hDgvu64y
1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC
Biginteger PVK value: 76
Hex PVK value: 4C

Address 8:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU8xvGK1zpm
1M92tSqNmQLYw33fuBvjmeadirh1ysMBxK
Biginteger PVK value: 224
Hex PVK value: E0

Address 9:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUB3vfDKcxZ
1CQFwcjw1dwhtkVWBttNLDtqL7ivBonGPV
Biginteger PVK value: 467
Hex PVK value: 1d3

Address 10:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUBTL67V6dE
1LeBZP5QCwwgXRtmVUvTVrraqPUokyLHqe
Biginteger PVK value: 514
Hex PVK value: 202

Address 11:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUGxXgtm63M
1PgQVLmst3Z314JrQn5TNiys8Hc38TcXJu
Biginteger PVK value: 1155
Hex PVK value: 483

Address 12:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUW5RtS2JN1
1DBaumZxUkM4qMQRt2LVWyFJq5kDtSZQot
Biginteger PVK value: 2683
Hex PVK value: a7b

Address 13:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFUspniiQZds
1Pie8JkxBT6MGPz9Nvi3fsPkr2D8q3GBc1
Biginteger PVK value: 5216
Hex PVK value: 1460

Address 14:

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFVfZyiN5iEG
1ErZWg5cFCe4Vw5BzgfzB74VNLaXEiEkhk
Biginteger PVK value: 10544
Hex PVK value: 2930

and so on...

until the addresses 50 (1MEzite4ReNuWaL5Ds17ePKt2dCxWEofwk) it was already cracked by someone.

Any ideas what's the formula behind the generation of these addresses?

Address 2, pvk decimal value: 3
Address 3, pvk decimal value: 7
Address 4, pvk decimal value: 8
Address 5, pvk decimal value: 21
Address 6, pvk decimal value: 49
Address 7, pvk decimal value: 76
Address 8, pvk decimal value: 224
Address 9, pvk decimal value: 467
Address 10, pvk decimal value: 514
Address 11, pvk decimal value: 1155
Address 12, pvk decimal value: 2683
Address 13, pvk decimal value: 5216
Address 14, pvk decimal value: 10544
Address 15 and after, pvk decimal value: ?

The prize would be ~32 BTC Smiley

EDIT: If you find the solution feel free to leave a tip Smiley 1DPUhjHvd2K4ZkycVHEJiN6wba79j5V1u3
I do not believe, this is a scam nothing is easy, a huge amount of money can hit our greed to carry out their scam, you need to think transparently because I it's definitely one of the scams or this is one of a number of unusual transactions possibly money laundering or some kind of insider trading. I recommend staying away from scammers and chances are when you join they will make you pay part of the fee and then evaporate with the money you joined.
newbie
Activity: 17
Merit: 0
DID YOU ALL GIVE UP ? SHOULD I TAKE IT ALL FOR MYSELF?…..
legendary
Activity: 1568
Merit: 6660
bitcoincleanup.com / bitmixlist.org
I can send you a tip if you have a private key for any of these

These are the addresses for #161-256.

If you look carefully at https://www.blockchain.com/btc/tx/5d45587cfd1d5b0fb826805541da7d94c61fe432259e68ee26f4a04544384164 you will see that the owner has moved the balances in these addresses to #53-#160 respectively.

Some of these private keys have already been found, namely: 53 to 63, 65, 70, 75 ... up to 115 and zielar has listed them in his thread.
legendary
Activity: 1568
Merit: 6660
bitcoincleanup.com / bitmixlist.org
DOES ANY ONE HAVE KEY FOR ANY OF THESE SOLVED ADDRESSES
~

Why would you want the empty private keys unless you wanted to analyze their distribution in the range (since the private keys are random numbers that are generated in a range)?
member
Activity: 174
Merit: 12
I use -k 3250 on my main rig but your results may vary
How much RAM do you have?
jr. member
Activity: 50
Merit: 7
With 256 GB ram I get speed about 22000 Gkeys/sec

What value are you using for the -k parameter?

play around with it, it will tell you how much ram is needed. I use -k 3250 on my main rig but your results may vary
member
Activity: 174
Merit: 12
With 256 GB ram I get speed about 22000 Gkeys/sec

What value are you using for the -k parameter?
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
@Andzhig - great work ! Thank you very mach

Fastest CPU privkeykey finder is a KEYHUNT https://github.com/albertobsd/keyhunt - speed calculates in gigagheshe  on simple CPU with  4 cores and 8 GB RAM. With 256 GB ram I get speed about 22000 Gkeys/sec, this is mach faster then JeanLucKangaroo

Great work like yours, mast have access to a great soft  Grin

Continue your work please - very interesting reading.

Regards !
jr. member
Activity: 184
Merit: 3
collision test for pz 20

2^20 1048576, 20 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum | 863317

(24!/12!/12!)/2^20 2,578884124755859375
1048576 2^20
2704156 step
2 collisions, finds only 1 for some reason

(28!/14!/14!)/2^20 38,25817108154296875
1048576 2^20
40116600 step
38 collisions, why is it 43...

step 565214   seed 0000011001110101101110001110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 1269043  seed 0000101111000101110001110011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 1816300  seed 0000111100111010110010100101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 2886941  seed 0001011011010100110001100111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 3376293  seed 0001100111100010001011111100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 4307993  seed 0001111100011000111000110110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 5007146  seed 0010010010001011010111001111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 5488783  seed 0010011101100101001111110000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 6365709  seed 0010110010111101010100101001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 7330410  seed 0011001010001111010100011101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 8876578  seed 0011101100101011000110011001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 8937380  seed 0011101110000010110101011100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 9402193  seed 0011111000110001011110011000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 9785819  seed 0100000110000011101011011111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 10747091 seed 0100011110110000101110110010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 11895627 seed 0100111010000100011101011101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 11905033 seed 0100111010010000011001111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 12211211 seed 0101000010010111100111010101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 12277674 seed 0101000011111100111001000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 14709359 seed 0101111011001011001111000000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 15764971 seed 0110010101111111101000100000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 15843680 seed 0110010111100110101001011000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 15900143 seed 0110011000111110010011000110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 17155504 seed 0110110101001000010110111010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 17858310 seed 0111000110101101110010010010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 21522266 seed 1000101000111001001110001111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 23500878 seed 1001010110110010100110000111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 23833593 seed 1001011110000011100111000011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 24985276 seed 1001111000011011000101111000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 25327445 seed 1010000010101101110011010011 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 26246246 seed 1010010111101001010111000001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 26556823 seed 1010011110011010110001101000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 28067683 seed 1011000010101110001101110010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 28359337 seed 1011001001000000110011111101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 28899884 seed 1011010100111100010011110000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 32201625 seed 1100101000111000110100110110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 32409102 seed 1100101101001110011100110000 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 33586060 seed 1101001001100011001100001111 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 33958451 seed 1101010001111011000100100101 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 36614769 seed 1110010101010100011111000100 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 36700341 seed 1110010111010100010111000010 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 36918609 seed 1110011100101011000010100110 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
step 37574368 seed 1110101100111010100010010001 bit 11010010110001010101 dec 863317 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum



Quote
import random
from bit import Key

list = ["1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum"] # pz 20 > dec 863317

def lexico_permute_string(s):
    a = sorted(s)
    n = len(a) - 1
    while True:
        yield ''.join(a)
        for j in range(n-1, -1, -1):
            if a[j] < a[j + 1]:
                break
        else:
            return
        v = a[j]
        for k in range(n, j, -1):
            if v < a[k]:
                break
        a[j], a[k] = a[k], a[j]
        a[j+1:] = a[j+1:][::-1]

a1="1"*14
a2="0"*14
a3=a1+a2 # seed str
    
s = a3 # seed str 000000000000000111111111111111
sv = lexico_permute_string(s)

count0 = 0

for line1 in sv:
        
    s = line1#[0:30]
        
    count0 += 1
    random.seed(s)

    Nn = "0","1"

    RRR = [] #func()

    for RR in range(20): # "bit" set
        DDD = random.choice(Nn)
        RRR.append(DDD)

    d = ''.join(RRR)
    b = int(d,2)
    if b >= 1:
        key = Key.from_int(b)
        addr = key.address
        if addr in list:
            print ("found...........","seed step from 000000000000111111111111 to 111111111111000000000000","step",count0,"seed",s,"bit",d,"dec",b,addr)
            #s1 = str(b)
            #s2 = addr
            #f=open("a.txt","a")
            #f.write(s1)
            #f.write(s2)      
            #f.close()
            pass
        else:
            pass
            #print ("step",count0,"seed",s,"bit",d,"dec",b,addr) #print (X,sv,len(sv),dd,len(dd),b,addr)

print("pz end")
input() #"pause"
 

for 64 ...

(188!/94!/94!)/2^64 1235956206315626091331338051467874028
18446744073709551616 2^64
22799367824217315491046998779230288685596678611381812000
1235956206315626091331338051467874028 collisions
                                    
(168!/84!/84!)/2^64 1246690648845973918331482456337
18446744073709551616 2^64
22997383338348585032434609379579328145757058837400 168!/84!/84!
1246690648845973918331482456337 collisions
                              
(148!/74!/74!)/2^64 1266470970702566355349691
18446744073709551616 2^64
23362265873332749085315221863910685052043000 148!/74!/74!
1266470970702566355349691 collisions
                        
(128!/64!/64!)/2^64 1298394228608800905,709 collisions
18446744073709551616 2^64
23951146041928082866135587776380551750 128!/64!/64!  
1298394228608800905 collisions
                  
(100!/50!/50!)/2^64 5469330747,064212325444
18446744073709551616 2^64
100891344545564193334812497256 100!/50!/50!
5469330747 collisions
          
(80!/40!/40!)/2^64 5827,977463326783892683
18446744073709551616 2^64
107507208733336176461620 80!/40!/40!
5827 collisions

(70!/35!/35!)/2^64 6,081630306594410506193
18446744073709551616 2^64
112186277816662845432 70!/35!/35!
6 collisions

(68!/34!/34!)/2^64 1,542442469063799766063
18446744073709551616 2^64
28453041475240576740 68!/34!/34!
1 collisions

the best option? (128!/64!/64!)/2^64

because 1 (68!/34!/34!)/2^64 may not exist, how to search 6? (70!/35!/35!)/2^64

112186277816662845432/6 = 18697712969443807572 (~ 2^64)

take the first step randomly and add to it 5 times dec 2^64...

or looking for "mathematical expectation" yeah monkeys are writing a book

it is not clear why because 256 bits can be different

bit to character sampling ratio

1111 11111111 1111111111111111 11111111111111111111111111111111...

Quote
import random

def lexico_permute_string(s):
    a = sorted(s)
    n = len(a) - 1
    while True:
        yield ''.join(a)
        for j in range(n-1, -1, -1):
            if a[j] < a[j + 1]:
                break
        else:
            return
        v = a[j]
        for k in range(n, j, -1):
            if v < a[k]:
                break
        a[j], a[k] = a[k], a[j]
        a[j+1:] = a[j+1:][::-1]

a1="1"*300
a2="0"*300
a3=a1+a2
    
s = a3#"11100000000" #000000000000000111111111111111
sv = lexico_permute_string(s)

count0 = 0
count1 = 0
count2 = 0
count3 = 0
count4 = 0    
for line1 in sv:
        
    s = line1#[0:30]
        
    count0 += 1
    random.seed(s)

    Nn = "0","1"

    RRR = [] #func()

    for RR in range(256): # len bit set
        DDD = random.choice(Nn)
        RRR.append(DDD)

    d = ''.join(RRR)

    v1 = d[0:4]
    v2 = d[0:8]
    v3 = d[0:16]
    v4 = d[0:32]
    if v1 == "1111":
        count1 += 1
        #print(count0,count1,v1,s)
        if v2 == "11111111":
            count2 += 1
            #print(count0,count1,count2,v1,v2,s)
            if v3 == "1111111111111111":
                count3 += 1
                print(count0,count1,count2,count3,v1,v2,v3,s)
                #print("")
                if v4 == "11111111111111111111111111111111":
                    count4 += 1
                    print(count0,count1,count2,count3,count4,v1,v2,v3,v4,s)
                    #print("")
              

 

***

or take for each puzzle the same ratio of collisions to length (as far as possible), look at the graphs for the distribution of collisions and search in possible areas... although there is a freaking random and there is not much sense from this.
jr. member
Activity: 184
Merit: 3
@Andzhig And if we increase one more character of address 16jY7qLJn & 'x' then most binaries are started from '111'

few examples -

16jY7qLJnxLQQRYPX5BLuCtcBs6tvXz8BE   1110000000100110101001101101010100100011010011001000100000110110000   7013536A91A6441B0
16jY7qLJnX9uchnyf26t3QJnsUf78Xdikb   1110010000101000111010000001111110010000001011001101111011100000   E428E81F902CDEE0
16jY7qLJnX9eX8j612s8fnbn6uzR48xjua   1110100000001101111010110011001110101001011001111010000010001111   E80DEB33A967A08F
16jY7qLJnx2EZZumnYFke3GutCrRnHKs1M   111010110100110101001101101010111010101000110011101011001010110000   3AD3536AEA8CEB2B0
16jY7qLJnx2ixrxCnTLSraerkgyB3YYAiT   1110110111111001110011010110000000110101011011011100110000011001   EDF9CD60356DCC19
16jY7qLJnxHBp3dqwV2kzYq1LucfZzgxsH   1110111010111001101010110011001101001101111100100111011100001101   EEB9AB334DF2770D
16jY7qLJnX2cZXJ78wV1ef42e7cLAZJ1Vn   1111111000101000011001011100011011011011111111101100001110000011   FE2865C6DBFEC383


Could this also be some logic?

it is difficult to say that experiments are needed, but soon there is none. otherwise it's too easy.

16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN base58 , 58 characters 123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz "x" we know. 2 after "x" and 24 after

how many possible addresses after "x" 2×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58×58 = 4200508241814704971052461011661183822856192 (2^141)

***

Quote
How many characters are in the private key in binary?

we have 64 bit address 2^64 , 64 characters 1 and 0 randomly located (which are not known to us)

***

collisions and with such spreads slip

__1111111111_1100000000_0_0_00', ',_, >', 6, '001111111111011000000001010100 1111111100000000
1_111_111111_11000000_0_0_0000', ',_, >', 6, '101110111111011000000101010000 0000000011111111
11_1111_111111_000000_00_0_000', ',_, >', 6, '110111101111110000000100101000 1111111111111111
1111_1_1111_1110000_000_0_0000', ',_, >', 6, '111101011110111000010001010000 0000000011111111
11111_111_111_1_0_0000_0000000', ',_, >', 6, '111110111011101101000010000000 1111111111111111
111111111_1_11_000000_0_0_0000', ',_, >', 6, '111111111010110000000101010000 0000000011111111

000000000_000___1111111111__11', ',_, >', 6, '000000000100011011111111110011 0000000000000000
00000000__000_0111_1111111_11_', ',_, >', 6, '000000001100010111011111110110 1111111100000000
0000000_000_0_0111111111__111_', ',_, >', 6, '000000010001010111111111001110 1111111100000000
00000_0_0000_00111111_111_111_', ',_, >', 6, '000001010000100111111011101110 0000000011111111
0000_000000000_111111_11111_11', ',_, >', 4, '000010000000001111111011111011 0000000000000000
0000_0000_0_0001_111_1111_1111', ',_, >', 6, '000010000101000101110111101111 0000000000000000
0_000000_00000_111111_11111__1', ',_, >', 6, '010000001000001111111011111001 1111111100000000
_00_0000000_00011_1111111_1_11', ',_, >', 6, '100100000001000110111111101011 1111111111111111

i.e. 3 there 3 here (and 2 1 times)

but the whole enumeration of their 4 parts is too long

111111111111000 all permut 455 000000000000111 all permut 455, (15x15 = 30 seed, 455x455 = 207025) 207025×207025×207025×207025 = 1836923935996687890625 step

but can this be repeated when seed 78 len (1 seed for 64).

39 x 39 - 78
000000000000000000000000000000000000111 all permut 9139  111111111111111111111111111111111111000 all permut 9139, 9139 x 9139 = 83521321

still need to see if instead of 16 to 8, take (8x8) whether the chance of random catching increases.

***

1 by 2 ran empy, by 3 runs...

000000000000000000000000000100000001010101111011111111111111111111111111111110 78 1101011100110011010001001001010010000011111101100110011111110010 64 15506813346626562034 14rydssuUnBn2bDeDRwjRxn546iuYq5s8n
000000000000000000000000000100000001010101111011111111111111111111111111111011 78 1110110010100000011011001101111010011011010110010100100010100111 64 17050747892569557159 13kzS77Upy2EqPtSybbGmoYzZMXtAGtkVm
000000000000000000000000000100000001010101111011111111111111111111111111110111 78 1011000001001110010110100111110101011101010011101101111100000101 64 12704191093341609733 1FEDNb3vX4pkfHboWWuodggQdRSW5jA3ey
000000000000000000000000000100000001010101111011111111111111111111111111101111 78 1010111101000001100001001110101111000001100011001011011100110110 64 12628520978222987062 152M84nqWb66tJpueESC2XaFUCPq9HcsW4
000000000000000000000000000100000001010101111011111111111111111111111111011111 78 1101011101001100001101011101101001101000011001100000101100011011 64 15513834028555176731 15gV7VfkWFg9LdLcaYE2iL7q1t923uM7Dc
000000000000000000000000000100000001010101111011111111111111111111111011111111 78 1111100011010101010100010001000001001000110110101000110100010101 64 17930326621829106965 1NMJUq3TfTzW3846bC9kijhF1r77K7UhWY
000000000000000000000000000100000001010101111011111111111111111111101111111111 78 1110111101110101001100010100110001010001111100100011111101100110 64 17254751751202029414 1NYCF4WV6aD1Mz9VmFs9jXTjb8CFgzV7G4
000000000000000000000000000100000001010101111011111111111111111110111111111111 78 1110111000101011001001001111111011101010110010101111000101100101 64 17161851482304868709 1BDBLPttExoSwJDw7LbNWAsZ1JKdkLwwmE
000000000000000000000000000100000001010101111011111111111111111101111111111111 78 1011000001001101110100111011000011000110110110100110010100111010 64 12704042880085943610 13uodKaP1yYG2qUGrdUFTLDnZoTPV3GDqY
000000000000000000000000000100000001010101111011111111111111111011111111111111 78 1011000110110111101001100111001001101000100000011111100000100111 64 12805887075761125415 1En1yWAp8bP8s5Wsi3LnRVx9tfN2ABtNV5
000000000000000000000000000100000001010101111011111111111111101111111111111111 78 1100010001000110101010110011011011101100110111011010111111100111 64 14143179932194156519 1BuXVR46gQXHbo1n4UpUajbpHsE3oYYfsM
000000000000000000000000000100000001010101111011111111111111011111111111111111 78 1001110011100000001100010100100011101111111010110100101101110100 64 11304089254032526196 1HAo6Xq4N4nsS2r3ESt7Gzxs68EK6sqKZM
000000000000000000000000000100000001010101111011111111111110111111111111111111 78 1100001110111000110010011000111001111101101110000101011111000100 64 14103243846942480324 1KVPGV3irrQK2fXy9xbB5k44GehXhAhmM9
000000000000000000000000000100000001010101111011111111111101111111111111111111 78 1001110111110111101110011001100100010011000111010000011001110110 64 11382770650304022134 1GB6gXhhUFhhebYEARknDXCFgk5XzXaaBb
000000000000000000000000000100000001010101111011111111101111111111111111111111 78 1110000101111010110101101100110100000000111110100010101001111000 64 16247534781665520248 1Gkuxy1DhJYzHxCxNrmYQxmGCHj8c4KWVt
000000000000000000000000000100000001010101111011111110111111111111111111111111 78 1100011011001110000111101000100001100011000011000110000101110101 64 14325421035838267765 1GuL9fLofPMNNeT7rqmUezpDAKKuBgvL1T
000000000000000000000000000100000001010101111011111011111111111111111111111111 78 1010001111101100100001011111000011001100000111001100001100110110 64 11811963191949050678 1Cq9nGaqmP8bUUBKBFQqkC5nQ1Q2tpuoNF
000000000000000000000000000100000001010101111011110111111111111111111111111111 78 1110100011101110101011100111101110101110000011111011101110000001 64 16784544707480894337 1FBSMs5GU6pkd5QSCXYecRqbxvAhpZuL5C
000000000000000000000000000100000001010101111011101111111111111111111111111111 78 1001111101001000000110000110010111100110000000100001101011000011 64 11477450476283370179 1CAPXky8N3AqJwgKnv1vN9McC112ZZdw8m
000000000000000000000000000100000001010101111010111111111111111111111111111111 78 1000011001100111100100010011111101011101011000111111000111110001 64 9684869225019339249 1LUHZkGEBqXVtaN5MuFnvUrdEHf5B928jY
000000000000000000000000000100000001010101111001111111111111111111111111111111 78 1011001110001111001110100001101110101100111100011100001000111000 64 12938624144998777400 1MJxoDoa9kYFn4pdKeAi7gA83ZoPqvic9x
000000000000000000000000000100000001010101110111111111111111111111111111111101 78 1011010110100010010011110000010010111011001100100110101011001011 64 13088110348831189707 1JXNK2J6trmBQRMHDKgB8K8FYe7XPaneHa
000000000000000000000000000100000001010101110111111111111111111111111111111011 78 1001100010001010100001100000001000101110101000101010011010110010 64 10991745184481584818 12RXgtZZpaKXs2fX6whvs2ojceDRRyDZwP
000000000000000000000000000100000001010101110111111111111111111111111111110111 78 1100011110010010111100000011101010111010110010100010101111011110 64 14380820695179996126 1D2pcWu62Y3SJfejsgHXEKtNsAtvZGNtWK
000000000000000000000000000100000001010101110111111111111111111111111111101111 78 1010000011000101010011101111000111001000101100101111000000001101 64 11584752416841723917 1DX6NzYW2grMLGCUft1LBbFxm39nqEA9Ae
000000000000000000000000000100000001010101110111111111111111111111111110111111 78 1011000101010010010001111101000100010010101011100010011100111010 64 12777354056090658618 1N3Ku5oR3C88xVgm6VVquNs7JfnSk2xvZk
000000000000000000000000000100000001010101110111111111111111111111111101111111 78 1000010011001011110100110010011010001001101100110111111100011100 64 9568973995751210780 1NwpUf69nR9CTuNcWgKFXY7EuewSqTAtTS
000000000000000000000000000100000001010101110111111111111111111111111011111111 78 1101001001100011101001100110111010001001011110001010101001111100 64 15160143764342221436 19wQikrohsLzKDnwX8F4Ag6NCTxQ2fEpGE
000000000000000000000000000100000001010101110111111111111111111110111111111111 78 1000001111100101011101100100100000001010100111001100000111101000 64 9504132640423068136 1GmLqntzgCukjzF7xTzfjXLN8oDunwChkk
000000000000000000000000000100000001010101110111111111111111111101111111111111 78 1011011100101001000011011101000011111001011100010000110011111110 64 13198095374175243518 18zhvaSdwVmcAhorEYtfpHTGG8wB8jdWKV
000000000000000000000000000100000001010101110111111111111111110111111111111111 78 1001101111000001000000110011011111011101111110100011100001000110 64 11223255284866234438 19mCEpHUanT1J7hDbdyMgqCZUHLWeSb5xU
000000000000000000000000000100000001010101110111111111111111101111111111111111 78 1111001000011010100011100111011110011101001000001110101000000101 64 17445412750961469957 18VcFdKicFFqjKAXWRqd8zGXi43S4Rq2NM
000000000000000000000000000100000001010101110111111111111111011111111111111111 78 1000111001111000000010111100000111001111010111010001000011011000 64 10265968277626622168 1cTZzdVCNg8NG4a9xoQXgkWD4muJkppGa
000000000000000000000000000100000001010101110111111111111110111111111111111111 78 1001001001011111111110100101000110110001011001100000001011001110 64 10547424081100538574 1PZgpSVPtZDen8bBAMSrJ5gxcqUyFAqsQ4
000000000000000000000000000100000001010101110111111110111111111111111111111111 78 1000000000110101101000110110111101111010110001010101111100110111 64 9238469909816893239 19osC5SyTMdPY18sbjLuYuT44HppxXT28k
000000000000000000000000000100000001010101110111011111111111111111111111111111 78 1001111100000011000110001000001101001100110001110000100001101011 64 11458028829168568427 1HqH8xuq3WqsJxTE7QAu6iBDsPENzMJt6H
000000000000000000000000000100000001010101110101111111111111111111111111111111 78 1111000111100111110011001111011100111011001010111100011111001011 64 17431126244982507467 1BUVWY4UkZ39ZSZmiwe9fAPTwvZ3n6osK7
000000000000000000000000000100000001010101110011111111111111111111111111111111 78 1111111110111001001101110011011100111010000011000000000011001001 64 18426820060699689161 1Eqc7UPgWRPJidsvt3EhKZ6jNWkfdMFKrN

Quote
from os import system
system("title "+__file__)
import random
from bit import Key


def Permute(string):
    if len(string) == 0:
        return ['']
    prevList = Permute(string[1:len(string)])
    nextList = []
    for i in range(0,len(prevList)):
        for j in range(0,len(string)):
            newString = prevList[0:j]+string[0]+prevList[j:len(string)-1]
            if newString not in nextList:
                nextList.append(newString)
    return nextList

def Permute2(string2):
    if len(string2) == 0:
        return ['']
    prevList = Permute(string2[1:len(string2)])
    nextList = []
    for i in range(0,len(prevList)):
        for j in range(0,len(string2)):
            newString = prevList[0:j]+string2[0]+prevList[j:len(string2)-1]
            if newString not in nextList:
                nextList.append(newString)
    return nextList


list = ["16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN"]


for X in range(0,1,1):
    
    random.seed() # seed initiation () random or (X)
    
    string = "000000000000000000000000000000000000111" # initiation seed len
    sv = Permute(string) #''.join(random.sample(s,len(s)))
    string2 ="111111111111111111111111111111111111000" # initiation seed len
    sv2 = Permute2(string2)    
    for elem in sv:
        for elem1 in sv2:
            sv3 = elem+elem1
            
  
            random.seed(sv3) #string

            Nn = "0","1" #"0","1"
            RRR = []

            for RR in range(64): # pz bit range
                DDD = random.choice(Nn)
                RRR.append(DDD)

            d = ''.join(RRR)
            #print(d,len(d))
            
                
            b = int(d,2)
            if b >= 9223372036854775807:
                key = Key.from_int(b)
                addr = key.address
                if addr in list:
                    print ("found!!!",b,addr)
                    s1 = str(b)
                    s2 = addr
                    f=open("a.txt","a")
                    f.write(s1)
                    f.write(s2)      
                    f.close()
                    pass
                else:
                    #print (X,"seed mask len",len(string),string,",","64 bit pz",dd,",",b,addr)
                    print(sv3,len(sv3),d,len(d),b,addr) #print (X,sv,len(sv),dd,len(dd),b,addr)


***

can be 32 more out of 46

11111111111111111111000
00000000000000000000111 23+23 (1771×1771 = 3136441)

11111111111111110000000000000000 x2 32

3136441×3136441 = 9837262146481 steps ,for a long time

and it is problematic to analyze in a few hours only 3 seeds found

    steps                         32 bits                                                       seed
169382696 11111111111111110000000000000000 0110111111111111111110000000000000000100011010
244507506 11111111111111110000000000000000 1111000111111111111111100000000000000001100100
244854754 11111111111111110000000000000000 1111001001010111111111111111100000000000000000

***

crap may be if "111111111111000 all permut 455 000000000000111 all permut 455, (15x15 = 30 seed, 455x455 = 207025)" 207025 everyone crawls here from surplus (16 bit, from 000000000000000 to 1111111111111111) 65536 i.e. 455^2 > 2^16. and to get for 64 bits it is necessary to have more "000000000000000000000000000000000000111 all permut 9139  111111111111111111111111111111111111000 all permut 9139, 9139 x 9139 = 83521321" 9139^2 need such a number so that it is also more than a 64-bit puzzle. and these are huge numbers something around this 25000000000^2 = 625000000000000000000. but maybe it doesn't work that way.

***

all permutations are considered factorial

256!/128!/128! = 5768658823449206338089748357862286887740211701975162032608436567264518750790 2^251

30!/15!/15! = 155117520, all 4 by 4 permut 155117520^4 578953136014989894775911260160000 and they have 1000^4 provided that we all 4 pebble.

578953136014989894775911260160000
1000000000000

partially which also got here

"collisions and with such spreads slip"
__1111111111_1100000000_0_0_00', ',_, >', 6, '001111111111011000000001010100 1111111100000000
1_111_111111_11000000_0_0_0000', ',_, >', 6, '101110111111011000000101010000 0000000011111111
11_1111_111111_000000_00_0_000', ',_, >', 6, '110111101111110000000100101000 1111111111111111
1111_1_1111_1110000_000_0_0000', ',_, >', 6, '111101011110111000010001010000 0000000011111111
11111_111_111_1_0_0000_0000000', ',_, >', 6, '111110111011101101000010000000 1111111111111111
111111111_1_11_000000_0_0_0000', ',_, >', 6, '111111111010110000000101010000 0000000011111111

000000000_000___1111111111__11', ',_, >', 6, '000000000100011011111111110011 0000000000000000
00000000__000_0111_1111111_11_', ',_, >', 6, '000000001100010111011111110110 1111111100000000
0000000_000_0_0111111111__111_', ',_, >', 6, '000000010001010111111111001110 1111111100000000
00000_0_0000_00111111_111_111_', ',_, >', 6, '000001010000100111111011101110 0000000011111111
0000_000000000_111111_11111_11', ',_, >', 4, '000010000000001111111011111011 0000000000000000
0000_0000_0_0001_111_1111_1111', ',_, >', 6, '000010000101000101110111101111 0000000000000000
0_000000_00000_111111_11111__1', ',_, >', 6, '010000001000001111111011111001 1111111100000000
_00_0000000_00011_1111111_1_11', ',_, >', 6, '100100000001000110111111101011 1111111111111111


apparently because here "455x455 = 207025" < 65536 (2^16 all bit)

but if we take

84!/42!/42! 1678910486211891090247320 < 18446744073709551616 2^64 the puzzle fits here but will he end up in the desired area

42!/39!/3! = 11480, 11480x11480 (42+42= seed 84 > 64 bit) = 131790400 , 131790400 vs 18446744073709551616

option to increase the ratio to repeat the experience with 16 of 30

4000!/3997!/3!)^2 = 113607203534224000000 (207025 < 65536, 6 len vs 5 len) 21 len vs 20
or
(42!/28!/14!)^2 = 2794203818390077646400 (207025 < 65536, 6 len vs 5 len) 22 len vs 20

probably this is how it works... but maybe not)))

***

how many fits 4 out of 30

2^4 = 16 (from 0000 to 1111)

for each about 31000 seeds 30, and for all 16 approximately  16x31000 = 499114  (although if 30!/15!/15! = 155117520, 155117520 / 65536 = ~2366 should be for 16, x4 from 30, and 155117520/16 =9694845 for 4 x16 from 30)

if all 16 iterate over 1×2×3×4×56×7×8×9×10×11×12×13×14×15×16 = 39055874457600

a chance for good luck? 31000^16 = 727423121747185263828481000000000000000000000000000000000000000000000000

how to guess 16 parts in correct sequence from 31000^16 or 8 random to take the rest 8 to rearrange all combinations... with the same success, can simply duplicate everything from 0000 to 1111 and randomly choose))

blablabla
000000000000101111111111111001 0000
000000000000111111101011111011 0011
000000000001011101110111111110 1111
000000000001011101111110111101 0011
000000000001011111111011010111 0011
000000000001101001111111111101 0111
000000000001101011010111111111 1111
000000000001101111111111101100 1010
000000000001110011111011111011 0111
000000000001111100111011110111 0100
000000000001111111010111101110 0111
000000000001111111101111011001 1100
000000000010010111111101111110 0010
000000000010011101101111101111 1000
000000000010011111111011110011 0101
000000000010011111111100011111 0001
000000000010101110011111101111 1010
000000000010101110111001111111 1101
000000000010101111011101011111 0101
000000000010110110111110011111 1110
000000000010111100111111101101 1001
000000000010111111110100111101 1000
000000000011001011101110111111 1111
000000000011001011111111110110 0000
000000000011001110110111111011 0011
000000000011001110111110111101 0100
000000000011010011110101111111 0110
000000000011010111110111110110 0111
000000000011011010111001111111 0111
000000000011011010111110101111 1110
000000000011011101111011111100 1010
000000000011011101111110100111 0000
000000000011100011110111111101 1101
000000000011100101011011111111 1100
000000000011100110111111100111 0101
000000000011100111011101111011 0011
000000000011101001111111011110 0001
000000000011101010111101111101 1100
000000000011101011011101110111 1010
000000000011101101001111011111 0011
000000000011101101111111011100 0100
000000000011101110010111111011 1001
000000000011101110111011011110 0010
000000000011101110111101111100 0110
...
111111111100000000100111001000 1000
111111111100000001000000111010 1100
111111111100000001101000101000 1010
111111111100000001110000011000 1101
111111111100000010110010100000 1110
111111111100000100000100011100 0011
111111111100000100011000101000 1001
111111111100000100100100100001 0101
111111111100000101001000100010 0100
111111111100000101100100000001 1000
111111111100000110000100000110 1110
111111111100000110001100001000 1011
111111111100000110010100000001 0111
111111111100010000001100101000 0110
111111111100010011000000001001 1010
111111111100010011011000000000 1100
111111111100100001000001101000 0001
111111111100100010001000101000 1001
111111111100100110000100000100 0100
111111111100101000000100001100 1011
111111111100101000010010001000 0110
111111111100110000000100010100 1101
111111111101000001010000000110 1011
111111111101000010100100100000 0100
111111111101001000000000101100 1001
111111111101001000000010000011 1111
111111111101001000010010000001 1001
111111111101010000000010100100 1100
111111111110000000000100011100 0001
111111111110000000100001010100 0111
111111111110000001011010000000 0100
111111111110001000000110000001 1110
111111111110001010100010000000 0101
111111111110001100000000000011 0010
111111111110001110000000000100 1100
111111111110010000000000110001 1010
111111111110010000000010100100 1111
111111111110010000000100100001 1101
111111111110010011000000001000 0000
111111111111000000010001000010 0010
111111111111000001001000000010 1101
111111111111010010000010000000 1101


if not all 16 mix, then you need to guess 1 of the first 4 of 16 or just randomly beat all

in general, need to read Knuth's books, maybe there are some ideas...

and where "collisions" can be hidden

2^256 115792089237316195423570985008687907853269984665640564039457584007913129639936

280!/140!/140! 9254907226247087987824475869322170638984082742378874048534193150547106114131047 0440

300!/150!/150! 9375970277282745279319375443906408487923265570008135892047235271297517002183959 1675861424

600!300!/300! 600!/300!/300! 1351079419961942685144748779785045303972339454491934799259657217864741504080057 1696195048019827446981867333413136583724904390049076115159169530842704853694762 1976068789875968372656

65536!/32768!/32768!
6244451173709303839677735352736393808643926541430499952680244622304945024766277 7348251162415824434780833837869384615282491294253208186955690035235723070374467 4547331888238220028526071339188932518445883598263647876265467953874357843495195 2609291609751497259993259479390478830808924706942831021289260260274393594628484 5056896441270822212678895027372103914835658926543702135628990076488623868794509 1676041618986416584638240808113954858472321471228586928680407543030967081765605 5178073758957566613950687127038106584702532827680236501469260459526532972322245 7536423165518869006613233189617798562895781407747174750816140765117697238954400 0806284820988697277572181641368961081836496386013323385876280777020741824583294 0943627001064661727429599359224342815252518781202737797364649728386951411824995 2697857412291840197060142937787086514872614873117782753233929638085189306956633 5298714746876887058731821784595021357020768468301863908134826821764883742939355 1961704296048433347886148467375682317158459509192681335206391557812557340167584 0269845825325683896422234765075057614000395790045419995130894297966109932242925 0722160109241751756684865945983483884785875298631514063541613431202490323118412 3811246712095786897201651895766340378689843615323696697711789471017752066851747 6579073191467928423660555245869228576060405089735108103438699903219872786478608 0876560141311964969191570679496861478328596867536933134288866775792542625471786 1006024196039040785562214879850927924931403108762574519617145396029843070879526 9466790425482345125350690157357218473809567340636481289139633498415671867263639 8228066459889242946718197150793742060169613916749074824702391043501866264397460 7115428127603209487738958889196749783739042431621693157692404199837103708655989 9423983679353489127299174965402802532948561431977724870913964228120436365678597 6708140032340144230602290043540120952109151341981784322206484856082161650678411 4287274444913314050683463977234965591832114948844483158231720543864565722917256 8171404585792517641292933668504363860030951629985663000486219176214724742099051 6503710393613325647934942114299502595393632368802711150430057638139195487055452 2758446617798591394343391777313433835959852349559231805798461886409983764253042 9000517854226216328271022394434250772626807274287316949283568995031582667489458 6454651577123016722863434127233600245731629132901900402818790989706383170556203 6712520998074699060506426454664882562536053268393738879207937123122726879425991 4679792109181326479247614466303643013944127126443645085777262553879422568235639 2671544966999060986167305651013917834551295029450913949643835132830176343526752 1602215541438157717100313235321009127938122473998423197984739809346409730754287 7359338043604163727907869527036631661990403945682254367828136269511010335694208 2599027283413201384355430433534394905767658643729733568929071523757442069286246 1389498985141177936623655228718785683453323046829094861034619526634307003689436 1046096287843211464194302145985485527178930297993254947070524308964891713727428 3810158985858950127139366258118836629009311676983714092549117897421711225062835 3155289289633517777785508303170501999042341964824891257173416128138024143622867 4588283053953458459799380663048558976940415090485165209557260386983258038607655 2711373196821546688677311114097903886623233945355300552022845261926960461417644 7857606646918960544104167750054154902382083916925333869634028593607127565931607 7532218679940622790683146829703922622845851487423206680269112526578060799496003 8457559288867056763811481063822530900257027278441721621038501094026099974322840 5818130403932450642607696713971785728340998897093295807057081967311151909218817 3276707112268189706820195839872396610239060119842444683983660230336949551082594 2121916043204834281653924782437102266179368317481447977361503064739023250712240 4087334178294246355714099311367769655266431882414925743099900435650660307631056 7261427501989070964315695722034484896339719731353725801324298557301891779199796 9407508987480499863926998969216602695400700234393530241420466378805328142751592 0836429448587697876553093510774480791173803218861586074046305466955377402536514 7969098349884445031107632486398687330876394117455566664456846988353979166861660 2168322042775095812414800477947039015496832246902175004497324885784943877455480 4856020917686537888031907080190153246259716204031521011714753857134930326088089 1191134624459130659702431621823305276269590940610608062018399543299045702835499 1408710179744056281921292456248327927303695815182272728539322287308581069902228 6608819380318539114052534122453791597341196608792893908747771677165083955970327 3377453234181668039182785172382461272432987501949573618991542560257793180373318 6512006279662570034036422064292632970758859466498449972822334992922531121270232 7529704374028809174181717841593296819398550834797540715446846827236451222212067 2928879424422590607319012479963399043037016285225021272690831818614497103262501 2924853263058026865823571386421678424400915297719713185356231634997413654534345 4020287353855140684729006513805911471032301232721733251297669424833978780780640 7540817363599694802040042685908343884272005693646916852875835752961578679538692 2964651578129420921200526686887858990339452039836197158356638611618918796043744 5353881155405077495225991221301385359086968733735512270984824249476165954394806 1167750177610768693682609896679539917894515483870119153587421146987628007848151 7444446760418685780463440864483903850586250497223934318872796590377227164387909 3448349808037691921411651139041925885617020545441852728159406841462834090553630 3031271004428296336747286943939713348408485702947410337079131131329540726330724 3651096713701035806298642628470050779609206896342924457929499346973984911195100 8835415121080456977077782614671491546851628220164745151297222053286151249249048 2452343215441193636197986337803145450308568697988813896580373137718114450340189 4362612009945938364778657657333452792981683257500261507585272301504002195323428 4557891216169179358980034187010355394282963131337280104259317910912136102105604 8110455036107900131917611532377049605509880514816910416918542204324039173376225 3286488497108518986843037562813217073462202155852979324379220164532761969607798 8360953962219826862667919486881774665269105535630839444363767329525361377352878 8978815366231073151775322648085533291216219753027064758575444982103812736038404 2483305659694253939386267220871236945921311991888946104796945211592321158452872 2515954024233499684935588876541582125894974310591293248502240787334513485611255 1448132405009785208423367173450305465337688539559954565101159419765518273757074 6190130590898435832661812030320211683361472661390955517057524995577986560805386 0413494808398017434625373525174062228849253429869199698171910459179081127293881 2157912070411936650708934674533021837672644322590878807869539839941326704253093 5674639608594177856421522573245025164517324200066676578802403181032285288360694 6838579854722117159532164317092910745623922820821371340935216845132236038877665 7339418352276371684732436040321486657454388471939734084055758840535689131401651 7566673597351592980501750088559487724231387085963290339234918565001279513497675 0745036467376845179652017489466681764834338205566597214757966498864643507590301 6355111454405801057048032213775608223565327591367505087053980715569689515924870 7127233585220122572564796423067413932406675963079912410446565916168531236895779 8202727487715873679448199538835880601907354785712434134222808844571085910906499 0605047193313196378507049458543261063152155663268828565042264874128508179820866 5504332647457478752915376222250294253389734679623684267420691296098397586033317 6705577789676081841932654774537190372433541186239292847055037023502702232255870 6822968832060288251318439778826040182598858941920509914605048444622695138860877 1783425028084590953531345860000846283315312118203367999365673920409797877311032 2240279307855389977178577070047757444915398364355769670636329865970871844286799 4289002252782206060135096225911169402856615061098429267693603300206460733815318 8059246268661594895404105683963757323404136999878894676091029266484589308183395 3564282003370961593805061960886289318422037872535360029856738385677062674618175 3684318163299191377272021763233804350252330033819693119617938570635739374269085 0859884884609391965080584643737117940970456455374274665897980284526405758385358 0105661045949664643573809578908382655130075583942936415490897900898242601263339 7812631685346496468635114465918082247690413768547453319080049763916599426408179 5129871186730042486829776731810692564739599642285665911671321178155248524331441 1255807190498834709714446684555265549278032073199340637878479508267953956104169 5650403098933406767289952281867066972784457102058004869779474548714208815469973 6281276005682918310880313730846974765628433748039683625904154949205215237141500 6659591368186278626512117671667394607293575179564347988569355764803954546466941 1398561051557351917596382757288663999393873584398879214931725840445008255223919 3153013701993248427542479041182761822114273672116952646985292306125006160548687 7669711408825779579550268416207135766855369847493790803139998286911151172045224 5777839402549358447623411684719782087088940813527343761776240467314041923398777 6506410387665967645870782861692016097117488956266659289628763891694594814376094 8109685198650658113457434573361848746993545490084456864739793775920118050483997 6789916374540606482780908899044816969836558859091176241857742983087511493156520 8525445997696705585793948806706089127033911116118444489242826649424233546968779 5640498660765879891104094228756254396657143949991067997845544592751343358816678 2348027502850728183554275144839645910635079125209137019705922435780609242089233 5490238765846832840362051483491990778138538844417212451656239764460749091800410 0241225892338070704310472009856590092615157278718459512995907729091443167368432 5134425576833897053750999228408161185557344762605198173794559213050171007480479 1001981221807061249014009351834912840224944024493130779240675094729399467655289 7529506204287870735562383464347600439721184281702813181306189323342894117951931 4325628742715505876594735342366147065258554990342811991211128088903917418529892 3301888543886960119961776826916735148327005901964038776036107316595553217852644 3476705657296301122611421362719615107869366260176246107858937030521799156230696 7092907443770954668983815232983765289262441348650605406460713654819544319094195 7990990624499042032320223722876289547657506363127031356326687981678987200372736 0770377251590258571328868733257660906033881846506489622904132393195184169404109 4377853025584561224260622612319756726683055168484809809387802826809391865173025 7945591535873779977231529847452656019901621705178625268991249822154601912374013 7154968938420320948405805714965755371078409671455638975218379998917640436707618 8681942675795825722846648375909627081741770280239948089919943443011764542437966 9611910720964275659425642257816884674573888013893091922506812783156727721951364 5257203698271015668175729149756949615453627103126219752780605958929376282595388 5032440094709153676482677165344253896068507563794940023230122099574323858101707 2570638148874735932810469233330972002317534726941519125649637666763620593257555 2802013394057045075157710792960615959121895242708435936065181343607878987441938 5655280834775645798472734097704637039533870041496371720488837433422650649335827 5371193144219381208174409661775833038322297682715125848168967111372860342179508 7488372438891294449885066476545144800733814749554054078931881502641678145910398 3246327532471006856351793905877532813108036279001911079789082755757216953973412 3244552827769185644772631015769535344350463342409998981752825057947555244229830 4108243760825481465510575151923646496553431296094236786179150792387949042176564 5166277597924794139019145513081143449996099680927501018217130411318659342652609 8253551815999278407388477426741578553478442116968719891966369530173922040944217 6360104683234279124574092672826443331164161307788602979027055730469974864886565 2022907944611398204031424895450741784561212935032329051368946803429255167601491 8179585503794186031593318566003421039416019845629444638955916709920641725849230 8443999065042696219889504043385886397024924080855153015084273538838856193117366 5862182431955121295017785637274855777529357757291660830735207565514090646305995 3945189644297745493717127702862978407174584332394743193799724692341863926984692 1244847267231538753091535114812935922237572277246427770915848136234726946522964 2078874235893895838449951601815802327666952501956682635154917401313486877535689 5051514941873389530455430681479734480256174344142780947544192259464704239345761 5601042532302193891544319484551953698313254917964906522194131080913735962221900 9270135127956422700444996034706878829595876337587399113528151221484310339651969 0706970210982147196992421863868691600364222311506435015959980780297122481446433 2141918276849889008977461303807488090411862932833148905782888568497592921787244 1553355052010969069565075404057221920036010562005449568813877888079124769636221 9348161496531155026976529276021527916040665229743274290178727697374929074137857 2492032102947426897596336763682153349730754782258386716752288182408290534582610 4241411830721680711989755394616053020447403489830408035867621408322007807260783 7464564080712578137963222422256384238818738413419896706280486114787878469760287 6573138419904391216774170956196251985515026868429189603016811088332328853934618 5158497960049066647729843574376759140925609326714817792151729387351364769118371 1710439370397069478045886777967376729199441316921478878974773943341707704697649 2616954254680796135215948550812913828522302411217088506637071746100007202182358 5114824966333677561115985450847355372116949330800978107383794787109962765468892 2796299889301486091270920630015243432410927922263684015460897037542910495686438 0928265625218248874449839379265532544661237605748251709756266596450840222616406 2570367153491509500866931587256638179446682749881747535628012796468062508698161 7254266721638598668812438002837082173233219843036829767637642663015651220571258 3333956436466949532618689789656520037552479595010730617740131650473459920599765 5207733263734536758803439170867032666161617840065527811136501323037626190548296 5837357257175827758628167265745516473572310523810054154911913556500531628534991 1533873267296064206456775167919385017774068667423138197295910830524330780207066 1205983150219480099529006454391694686672910809589954621886279322280693509241386 5655034456989018764645011278896682291041466941556959313194069358483200826385927 7856345698657438375966996398091372172185583867892380254237733265820736983377810 1714312671874538181813971789484578992999356095202660393008867554315053087088689 7017442258847543304666533460441108384594231545005635357929807709258866453036851 6098665640976633716026365929546696886600024366911296090339622007436607255507928 7313142951362023841656353674276381018901590110883512341204578906629057720112812 5364406709708038699955668560695360412556991920660736124572200534037965034457110 8479020290126681726435885264114076977227695059848376226574022689270868333587319 4244368690583277618431615708421420058724417897127952652349278487289878843339556 3404521925163617802349798789317339897745587403348659861295223831190039982875633 5473031344532990715282895178258703229802746869935715993993326472742609243935989 9779810396391634871124747847851932796566286644729957224060326119857428758882035 0177206933283748581550916765228905592114017045336446274065947381912614446281006 7378399454639949542972383027154809890579644982044032492913268449414677690492107 6485574488587168191402762722491605020116201882923508240164393522829963771162912 2242800563279525606082168491459028145966658847893585099423621625917760206917247 5626452155975603705630235327738138242410691838381305120382512661502996135980431 6539367358098566150767806513518744245412665457500982615686747298500669515564717 4709638705314055982991570154738733936726844065720429748166601468071403913137256 5947409310042437572161393134647015994341909774486375414393481658130903102139157 2090894891488948011836268218440122912221919423551780592951803812335583525049371 2623410811045834716123979430168179365958613571509923667834923999890510139917094 0880905337387215436411627100547320991729730176911741387440617429807537638582298 6372095943075849358458791346133606381524011675241845080070138114770710672691089 6126491462898236851542169694661390231514014317922125142841841116199007367163624 7291637589468206011752010542550327269844347328892648660605995908630238827458747 5057549202872247241165092614595773471018609838922743784821637915774052170919453 4198012069859175795469519042107762080176370013133378082294542343852792412975624 9674407413645080359359104330108082856186772309839157759339197424534779278691292 4321071341100726062261684895004918806983404547460421189841201777432565267579415 8697738109256702509161280100955400038257604895744457291726076483436948301199847 8353533338734041756531416761265581804225457614433475269485977882197049869273368 3541986022710933145549909892456662325323420834723394183503882302294410893459873 9876414679523272327734810790136757735637294078163960853162109606016805967447679 0582570386343934845080124797659401709130579147039280407998759787902057592965547 8582937634578619751617710800726630557672478820381448129261203144066677335978913 0234413007237888073093318241914748739185546777280391099214158739185703403304995 1706491512630050114473113409569724488925083508684026371029313911523234222539669 3210968043611546302789334169384913173868224038140509375477916768053538002499680 8316002360142472578168489672443312094244237509385497975324662979624958181784357 6623336283867220867066956273104710086093850921377148690097981381786526258069723 1625597784158870765637811512612853325836992803770217252742015781501028753944295 9002621590394396621832133457855856489800575805611396297166196809301807867266190 2430894395662876725284176467075983553129068777176049450227823561954841348527867 6281689346770392381930033821328990934223201310725494100390927267583852007423808 6819069237891244710113660587196051868245342662877337534067611730491604096157035 0036794017284915247385720218004738305365598463158178381585122062137530152478737 5653186030673408489000147956634333900868671077157071849168106655621416780300759 7171705332401490575928467860191381228081262425952980998990337608689949047653112 6667259838330166326212928861143676396324732799203143249448954754997830206199314 2185188970986155163081455895222829479159483973682479422088999618728941584958548 0095010188820499631314574533565275538259261573473445232070673462746741441121728 9631778279135621909992198926459412370981765804138429449700861927408303669276022 5925593308433621961621744916321388403761291486400802954688905492281068006042683 7046008580042479868333140932317247339384992861799072109304090116202837778082975 1316646372073797493669750197485249952987735100352566658599758167586697057829286 9761657458799043829229539937366757581685426142964536866604502679454690051670354 5691523639714898960397775150944076237536601433281924431004953910474960706736223 7732596737481277100634850062654607918225721859000158655352316249488157653643894 6606372028220197015316239583528121934587597328045069273933689966874011867257067 6733729331608151899989646255160166488546208960556973235897050352490671107448591 4440675800707191124789192326507330077249237733260082767078570128436108125237227 1443969420582666229855359231399763088537617648375701867559234890795965719388521 7163315348210402464215481905945670589293529242503320703787242251821853985899188 9512815680103932319763515980764846569542231100329444778593302003414523100058620 5963810587290960912971650716517907073396007736249504411615371691043857316871426 6483349410368906128887060764124797835607270563333647531743803884503128088200802 4412266579349646633089008260789631840097698442447700550

***

example, total permutations of 1>10 and 0>10 = 20 11111111110000000000 = 20!/10!/10! 184756
means for each of 4 (2^4) 184756/2^4 = 11547 collisions
184756
11547

we can take this number of all permutations and use them as the initiating seed and they are almost completely enough to sort out all the permutations.

this is a search option in a larger number smaller

numbers can of course be converted into strings (str) it will not change the essence.

from 11547 collisions for "0000" (from 2^4 bit) from count 20!/10!/10! = 184756 (from 0 to 184756)

it is interesting that even secondary seeds repeat themselves initiated by different numbers first seed.

            seed 2                seed 1  4 bit                    
('00000110101010111101', 10580, '0000')
('00000110101010111101', 28894, '0000')
('00000110101010111101', 59931, '0000')
('00000110101010111101', 148666, '0000')

('01101000111110010100', 29195, '0000')
('01101000111110010100', 41692, '0000')
('01101000111110010100', 141462, '0000')
('01101000111110010100', 176562, '0000')

('01101001011001011010', 50482, '0000')
('01101001011001011010', 57288, '0000')
('01101001011001011010', 177912, '0000')
('01101001011001011010', 178529, '0000')

('01110011001011001010', 35976, '0000')
('01110011001011001010', 47548, '0000')
('01110011001011001010', 58853, '0000')
('01110011001011001010', 113112, '0000')
('01110011001011001010', 139744, '0000')

***

or filter the initiating seed by 4 > "1"

('00000001001111110111', 111185, '0010')
('00000011010100111111', 111017, '0010')
('00000011100111011110', 116511, '0110')
('00000011110001111101', 112811, '0011')
('00000011111101100101', 111451, '0011')
('00000100101111011011', 101119, '1001')
('00000101001110111011', 118181, '0110')
('00000101101101101101', 130111, '0100')
('00000101111010111001', 118611, '0000')
('00000110001110111110', 111417, '1001')
...
('11111100010000010101', 111189, '0000')
('11111100010101000100', 119116, '1010')
('11111101001010100000', 111166, '0011')
('11111101101000000100', 111671, '0101')
('11111110000101000010', 118141, '1100')
('11111110001001010000', 118118, '0101')
('11111110010001000001', 171181, '0000')

~800 can calculate similar techniques for attack pz

***

there are how many collisions

180!/90!/90! = 91012248672832285155575331798825309656983959185522800

91012248672832285155575331798825309656983959185522800/ pz 64 2^64 = 4933783886693786561852355929668775 collisions

91012248672832285155575331798825309656983959185522800/pz 160 2^160 = 62273 collisions

600!/300!/300!

1351079419961942685144748779785045303972339454491934799259657217864741504080057 1696195048019827446981867333413136583724904390049076115159169530842704853694762 1976068789875968372656

9244460529167650795540731674161791846040585150874740675211703275797841931797666 8404488686921898322882212568056295459139633654182256 2^160 collisions
7324216211615967328305946861026949927023153844181547075253885258466971658764981 4215996027965475907402114296086782480287591076169589308698251700422304548067593 59 2^64 collisions
1166814960211057090384486027721779669646648766821734965205742389473249903857269 571929430822183654654146 2^256 collisions    

how to catch them? for 1 pz 64 7324216211615967328305946861026949927023153844181547075253885258466971658764981 4215996027965475907402114296086782480287591076169589308698251700422304548067593 59 collisions from 600!/300!/300!  

is the probability of generating a collision in this way identical to the probability of guessing 64 puzzles by random?

in this way it is easier to fork "Isaacdelly/Plutus" to search for everything at once than just 1 64 pz

because of working with strings, the larger the string, the slower it works

65536!/32768!/32768! barely creeps

20000!/!10000/10000!  6019 len num, 6017 > 2, 2 > 4, 6019!/6017!/2! = 18111171, 6685588 ran in total in a day  

6685588 dec init seed > 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222422222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222422222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 2222222222222222222222222222222222222222222222222222222222222222222222222222222 222222222222222 0110101111100101101001101010010001110110001100011110000010000000111011010011101 0000100110010001101010010000010111001001100110110010011110001011001111010011010 0100110100001001101001110110010111101110101000110101011101000111110001101010000 0110011010101001100 bit len > 256 1,0 bit count > 124 132

***
algorithm, due to "Narayana Pandita" for permutations, the algorithm is normal and can write to the file immediately without loading memory (little who wants to experiment)

member
Activity: 174
Merit: 12
Have you tried to use this link yourself or just wrote it like that?
newbie
Activity: 12
Merit: 0
How many characters are in the private key in binary?

https://www.rapidtables.com/ convert/number/ binary-to-hex.html
member
Activity: 174
Merit: 12
How many characters are in the private key in binary?
member
Activity: 174
Merit: 12
How long does it take you to generate the 16jY7qLJn address with this script? It takes me over an hour to complete 16jY7.
member
Activity: 282
Merit: 20
the right steps towerds the goal
@Andzhig And if we increase one more character of address 16jY7qLJn & 'x' then most binaries are started from '111'

few examples -

16jY7qLJnxLQQRYPX5BLuCtcBs6tvXz8BE   1110000000100110101001101101010100100011010011001000100000110110000   7013536A91A6441B0
16jY7qLJnX9uchnyf26t3QJnsUf78Xdikb   1110010000101000111010000001111110010000001011001101111011100000   E428E81F902CDEE0
16jY7qLJnX9eX8j612s8fnbn6uzR48xjua   1110100000001101111010110011001110101001011001111010000010001111   E80DEB33A967A08F
16jY7qLJnx2EZZumnYFke3GutCrRnHKs1M   111010110100110101001101101010111010101000110011101011001010110000   3AD3536AEA8CEB2B0
16jY7qLJnx2ixrxCnTLSraerkgyB3YYAiT   1110110111111001110011010110000000110101011011011100110000011001   EDF9CD60356DCC19
16jY7qLJnxHBp3dqwV2kzYq1LucfZzgxsH   1110111010111001101010110011001101001101111100100111011100001101   EEB9AB334DF2770D
16jY7qLJnX2cZXJ78wV1ef42e7cLAZJ1Vn   1111111000101000011001011100011011011011111111101100001110000011   FE2865C6DBFEC383


Could this also be some logic?
jr. member
Activity: 184
Merit: 3
logic to find puzzle 64 and the rest  Grin

wrote above (with examples) how 16 "bits" (4x = 64) are obtained from seed 30 lenght

if all 4x permutations seed 30 "111111111111111000000000000000" give 1000^4 possible successful collisions, we need to find a way to catch these successful collisions in fewer steps.

for example, we take the first 9 and last 9 of 30, that is we take 18, 12 remain in the middle.

from ~ 4500 i got 385 and 6 full matches

  
001011011 001110110 001011011001010100011001110110 1111111111111111
001011011 110101100 001011011011001011000110101100 0000000000000000
001011011 001101110 001011011101000001101001101110 0000000011111111
001011011 011100101 001011011110011000100011100101 1111111100000000

100011011 010101011 100011011010000111001010101011 1111111111111111
100011011 101001011 100011011011100001001101001011 0000000011111111
100011011 010001111 100011011100100010110010001111 0000000000000000
100011011 101001011 100011011110010001100101001011 1111111100000000

100100111 101100101 100100111000110110010101100101 0000000000000000
100100111 011110001 100100111010110000110011110001 1111111111111111
100100111 101101001 100100111010110101000101101001 1111111100000000
100100111 111001100 100100111011001110000111001100 0000000011111111

110100101 100011110 110100101010011100001100011110 0000000011111111
110100101 010011011 110100101010100001101010011011 1111111111111111
110100101 100001111 110100101011010100010100001111 1111111100000000
110100101 010101011 110100101101000011001010101011 0000000000000000

110111000 100110110 110111000001101101000100110110 1111111100000000
110111000 011010101 110111000110001000011011010101 1111111111111111
110111000 001001111 110111000110101001000001001111 0000000000000000
110111000 101110010 110111000111000000110101110010 0000000011111111

111010100 001110110 111010100010011010001001110110 0000000011111111
111010100 101100101 111010100100011000101101100101 1111111111111111
111010100 010110110 111010100101000001110010110110 0000000000000000
111010100 110111000 111010100101010110000110111000 1111111100000000

the output is reduced to 16 characters

18
1>5, 0>4 9-9 1>5, 0>4
18 all permut from 111110000-000011111 = 126
 
12
1>5, 0>7
12 all permut from 111110000000-000000011111 = 792^4 (4x) = 393460125696

(18 for every 9 every 9, 126 x 126 = 15876) x 393460125696 = 6246572955549696 steps

***

the output is reduced to 15 characters

from ~ 4500 i got 493 and 1 full matches

0011100110 1101001001 001110011010000110111101001001 0000000011111111
0011100110 1010010101 001110011010111100001010010101 1111111100000000
0011100110 1100011010 001110011011000101101100011010 1111111111111111
0011100110 1010110010 001110011011100001101010110010 0000000000000000

20
1>10, 0>10 10-10 1>10, 0>10
20 all permut from 1111100000-0000011111 = 252

10
10 all permut from 1111100000-0000011111 = 252^4 (4x) = 4032758016

(20 for every 10 every 10, 252 × 252 = 63504) × 4032758016 = 256096265048064 steps

if i calculate correctly it seems that way...

in the middle of 10 and a passage begins for each of 4

1111100000
1111100000
1111100000
0000011111 252

1111100000
1111100000
1111000001
0000011111 252

1111100000
1111100000
1110000011
0000011111 252

and for each 10 by 10 in the front and in the back

252 × 252 = 63504

i.e.

1111100000 252
1111100000 252
1111100000 252
0000011111 252 x (252 × 252 = 63504)

1111100000 252
1111100000 252
1111000001 252
0000011111 252 x (252 × 252 = 63504)

1111100000 252
1111100000 252
1110000011 252
0000011111 252 x (252 × 252 = 63504)

for example, here we have 18 fixed positions for each of 4

100010110100110010100110010111 1111111100000000
100000110100110011100110010111 0000000011111111
110010011100110000100110110011 1111111111111111
100110110100010000101100110111 0000000000000000
1_0__0_1_100_100__10_1_0_10_11 these 12 are rearranged for each of 4 111111000000  (all permut 924)  (924 x 924 x 924 x 924 = 728933458176)

1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924

1_0__0_1_100_100__10_1_0_10_11 923
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924

1_0__0_1_100_100__10_1_0_10_11 922
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924

1_0__0_1_100_100__10_1_0_10_11 921
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924

1_0__0_1_100_100__10_1_0_10_11 0    
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924

these 12 turned out to be 18 to be rearranged

1_0__0_1_100_100__10_1_0_11_10 924
1_0__0_1_100_100__10_1_0_11_10 924
1_0__0_1_100_100__10_1_0_11_10 924
1_0__0_1_100_100__10_1_0_11_10 924

1_0__0_1_100_100__10_1_1_11_00 924
1_0__0_1_100_100__10_1_1_11_00 924
1_0__0_1_100_100__10_1_1_11_00 924
1_0__0_1_100_100__10_1_1_11_00 924

1_0__0_1_100_101__11_1_1_00_00 924
1_0__0_1_100_101__11_1_1_00_00 924
1_0__0_1_100_101__11_1_1_00_00 924
1_0__0_1_100_101__11_1_1_00_00 924

1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924
1_0__0_1_100_100__10_1_0_10_11 924

here they are not fixed, but they are moved step by step and all combinations pass including the same (fixed 10 instead of 18) for each of 4

1111100000 252
1111100000 252
1111100000 252
0000011111 252 x (252 × 252 = 63504)

when step by step, he will stand for example in such a position

1100000111 252
1100000111 252
1100000111 252
1100000111 252

that is, there are only 10 of all permutations 252 (1111100000-0000011111) in the center in 30, there are 4 of them and all their permutations (252 x 252 x 252 x 252) 252^4 = 4032758016

and for each of these permutations at the beginning and end 10(252)-10(4032758016)-10(252), all variants of permutations (252 × 252 = 63504) × 4032758016 = 256096265048064 steps

some kind of devilry  Grin

or there it is necessary to multiply at every step

1111100000 252
1111100000 252
1111100000 252
0000011111 252 x (252 × 252 = 63504)

252 x (252 × 252 = 63504) = 16003008
and already multiply this 4 times 16003008^4 = 65585296971568246764230148096 a piece of crap

***

more matches

011110110110000100110001010110 0000000011111111
110100110100100100111001011010 1111111111111111
110110110110000100110001011010 0000000000000000
110110110110100000110001101010 1111111100000000
_1_1_01101_0_00_0011_001____10                               19-11 11111100000

000010101111010101011001010101 1111111100000000
000010111111000111001001010101 1111111111111111
000010111111000111100001010011 0000000011111111
000011101011000111001001011101 0000000000000000
00001_1_1_110_01_1___00101___1                               19-11 11111000000

011001100011110111010000100101 1111111100000000
011101001011010110110000100011 0000000011111111
011101100011010110010000100111 0000000000000000
011101101011110000010000100111 1111111111111111
011_01_0_011_10____10000100__1                               20-10 1111110000

001010110111010000101100001111 1111111111111111
001010110111010010101010101010 1111111100000000
001010110111110010101000001011 0000000011111111
001010110111111000101000100011 0000000000000000
001010110111_1_0_0101__0_0__1_                               21-9 111100000

***

when looking for the maximum number of matches, you get this observation

for example this area of ​​collisions, only a few "bits" move

001010110111010000101100001111 1111111111111111
001010110111110010101000001011 0000000011111111
001110100110010010101010011011 1111111111111111
001110100111010010101100001011 1111111111111111
001110110111011010001000001011 1111111111111111
...
001010111000110110111000100011 0000000011111111
001110110000110100111010100011 1111111100000000
011110100000111100011010100011 0000000011111111
...
001010110111110010101000001011 0000000011111111
001110100111010010101100001011 1111111111111111
001110110111011010001000001011 1111111111111111
...
000111000101001000111101011011 0000000011111111
000111100001001001111001111010 1111111100000000
001111000101001000111001111010 1111111111111111
...
100100101110010101111010100100 0000000011111111
100100111110010100110011100100 0000000011111111
110101101110010101111000000100 1111111100000000
...
100110111001010011001110000110 0000000011111111
100111011101010011000100001110 1111111111111111
100111101001010011000110001110 0000000011111111
...
100011100011001100011101000111 1111111100000000
110001100010001100111011100101 1111111100000000
110010000011001100111001001111 1111111111111111
110011100010001100111001000111 1111111100000000
...
110001100111000010100101111010 1111111111111111
110010010011000110100111011010 1111111100000000
110011100001001010100111010011 1111111111111111
110011100011000010100111011010 0000000011111111

how can it be used? for example we generate (by permutation method) 4 random seeds (111111111111111000000000000000) and move them a little bit. It seems simple, but what kind of bits need to be moved and isn't it easier to move everything at once (and how many at a time does the random move).

Another way to use this to catch collisions is if we generate 64 bits from a 74-bit long seed. then we do the same and begin to move a few bits into a 74-length seed (or any length) collisions nearby (but it is not clear which bits to move).
member
Activity: 174
Merit: 12
I don’t understand your logic Smiley
But if you want to generate addresses, you need a faster program, since your script is very slow, only on one processor core.
jr. member
Activity: 184
Merit: 3
Does it just generate addresses in the specified range with the first characters specified? So does VanitySearch?
yes, linear step.

Quote
import os
import hashlib
import random
import datetime
from bitcoin import *

def _print(string, index):
    if index == len(string):
        binstr = ''.join(string)
#        resint = int(stringx,2)
        myhex = int(binstr,2)
        priv = myhex
        pub = privtopub(priv)
        pubkey1 = encode_pubkey(privtopub(priv), "bin_compressed")
        addr = pubtoaddr(pubkey1)
        n = addr
        if n.startswith ('16jY7'):
            file = open('linelowincgen64mask.txt','a+')
            print (addr, ";",hex(myhex), file=file)
            file.close()
        if n.startswith ('1'):
            print ( addr, ";",hex(myhex),binstr,int(binstr,2))
        return
    if string[index] == "_":
        string[index] = '0'
        _print(string, index + 1)
        string[index] = '1'
        _print(string, index + 1)
        string[index] = '_'
    else:
        _print(string, index + 1)


if __name__ == "__main__":
    print ("Start")
    string = "11_________________0____________________________________________"
             #11_________________0____________________________________________
    string = list(string)
    _print(string, 0)

need to be found using VanitySearch addresses starting with 16jY7qLJn and check if they start with 10... bits then this idea can be forgotten, if they all start with 11... then we can define what is below 13835058055282163712 there will be no key.

but judging by the rest of the addresses there and 11 and 10 will be at the beginning then can generate a bunch 16jY7qLJm and 16jY7qLJo and break through masks based on their bits.

16jY7qLJm 1110011001111011011011011101101110010000101101010110111000001101
16jY7qLJm 1011100101000100001110100100101011011110010001101100110101110110
16jY7qLJm 1101110000000000000001000011100000000110110100101110110110010100
16jY7qLJm 1110010001001101101000011010000011110101001011010111011101100111
16jY7qLJn 1101100110001100111001101110011110001011000110001000111011000011
16jY7qLJn 1100001100001110101011001111101101101010101011001010011110101011
16jY7qLJn 1110010001001101101000100001011110110100100000000001110101001100
16jY7qLJn 1101010101101100000001001110101110010010101001111101111100100111
16jY7qLJn 1111111000101000011001011100011011011011111111101100001110000011
16jY7qLJn 1111000111011111001010100100110100011001100001001000010010111011
16jY7qLJn 1111011101000101001010000010011011010011110111010110100010000011
16jY7qLJn 1101100000111111111011110101010000000110011010011000011110001000
16jY7qLJn 1100000100000000000001111110110111101100010111101001001011001111
16jY7qLJn 1100010010010110011000101110100011110111110100101101011010111011
16jY7qLJn 1101101001100110111001010001001011101000110101110001000000101000
16jY7qLJn 11_________________0____________________________________________
16jY7qLJo 1111011010011001100010011000010110001001110001110001001010101001
16jY7qLJo 1101111101100110100010110010100111011110101000001011010010010011
16jY7qLJo 1010001111001101010000100010111101001111010101000010111111110000
16jY7qLJo 1101111010100111001111010101110100010101001011101000010010111110

although even if we generate a billion 16jY7qLJm, billion 16jY7qLJo we can look not to generate the same bits for pz64, but this is how any others can be generated with the same goals. or look in dec format in which space it piles more (if the overall distribution is even) and look in those spaces where there are fewer 16jY7qLJn.



***

and when searching 16 by 16

"0000000000000000","0000000000000001","0000000000000010","0000000000000011",
"0000000000000100","0000000000000101","0000000000000110","0000000000000111",
"0000000000001000","0000000000001001","0000000000001010","0000000000001011",
"0000000000001100","0000000000001101","0000000000001110","0000000000001111"

i get 17687

000000000001111111110100111011 0000000000001010
000000000100011011111111110011 0000000000000000
000000000110100011111011101111 0000000000001001
000000000110111001111101110110 0000000000001001
000000000111110010101111101011 0000000000001001
000000001001001111101111100111 0000000000000100
000000001001101010110111101111 0000000000001001
000000001001110011111101111100 0000000000001101
000000001001111001111011111001 0000000000001100
000000001011010111100011101111 0000000000001000
000000001011011101101110011110 0000000000000011
000000001011100010011111111101 0000000000000110
000000001100110110101111100111 0000000000000111
000000001100111010111110100111 0000000000001110
000000001101010010111101110111 0000000000001111
000000001101101101111111110000 0000000000000011
000000001101111101101101010101 0000000000001111
000000001110011011111101000111 0000000000000011
000000001110110101101110111100 0000000000000110
000000001111011011011010110011 0000000000000010
000000001111011011111110101000 0000000000001011
000000001111100111101011000111 0000000000000111
000000010010011111111100110110 0000000000000101
000000010011011111100111001110 0000000000000101
000000010101000110011111111110 0000000000000001
000000010101111101011001111100 0000000000000111
000000010110011110111100011101 0000000000001111
000000010110111010101101110110 0000000000000011
000000010111001001110101111101 0000000000000010
000000010111001111101000101111 0000000000001100
000000010111011001111011101001 0000000000001111
000000010111011101110111000101 0000000000000000
000000010111011110110101101100 0000000000000101
000000010111110000011111110011 0000000000000011
000000011001100110110110111110 0000000000001000
000000011001101111100000111111 0000000000001110
000000011010100111001111110101 0000000000001100
000000011011010011101011111001 0000000000000000
000000011011011101101110110001 0000000000000000
000000011011100101111010011110 0000000000001000
000000011011100110001100111111 0000000000001011
000000011011100111011110110010 0000000000000011
000000011011101000011101111011 0000000000001100
000000011011110000110010111111 0000000000001000
000000011100111011111001010011 0000000000001111
000000011100111111011101010001 0000000000000110
000000011101001001011101101111 0000000000001111
000000011101001111001111011010 0000000000001110
000000011101011011101010101110 0000000000000110
000000011101100111010111100101 0000000000000111
...
111111100110000110001000100101 0000000000001010
111111100111001000000010110010 0000000000000001
111111100111001000100001000101 0000000000000101
111111101000000000110001110011 0000000000000101
111111101000001110101010000010 0000000000001101
111111101000010011000110100001 0000000000000010
111111101000100010001100010011 0000000000001001
111111101000100011011010010000 0000000000001101
111111101000101000100000110110 0000000000001100
111111101000101101010010000010 0000000000001100
111111101001000001000001011101 0000000000001011
111111101100000000001100111001 0000000000000100
111111101100011100101000000001 0000000000000100
111111101100101000101100100000 0000000000001100
111111101101000111000101000000 0000000000001100
111111101101100001001000100010 0000000000001101
111111101101100100100000010010 0000000000000001
111111101110101000010001100000 0000000000001000
111111110000000110010101000011 0000000000000100
111111110000010100010110101000 0000000000000000
111111110000100010010111000010 0000000000001011
111111110000101011100100000010 0000000000001000
111111110000110000100100101100 0000000000000111
111111110001000000001101000111 0000000000001100
111111110001011000000000101011 0000000000001000
111111110001011000011100000010 0000000000001010
111111110001100000010110100010 0000000000000110
111111110001101000001110000010 0000000000000101
111111110010010000000111100001 0000000000001001
111111110010010001000110100100 0000000000001110
111111110100010100001010001001 0000000000000110
111111111000000010010010101001 0000000000000010
111111111000100101100000010100 0000000000001100
111111111001001110001000001000 0000000000000101
111111111001101010000010000001 0000000000000101
111111111010000011000011000010 0000000000000010
111111111010000101010000100100 0000000000001011
111111111010001011000000010010 0000000000001101

for searching 256 bit keys we get whole 1000^16 1000000000000000000000000000000000000000000000000
and for example lost one million bitcoins

1000000 x 1000000000000000000000000000000000000000000000000 = 1000000000000000000000000000000000000000000000000000000 chances of catching something.

but here it is more difficult to sort out everything 16 by 16 (this is not necessary in principle), but also 18-12, it may not be.

can take the first 6 zeros, the remaining 15 ones, and mix 9 zeros

000000________________________

or if we imagine that the scheme works from 18-12
18 48620
12 924^16  282326431934901224620323472702091393242629144576
48620 x 282326431934901224620323472702091393242629144576 = 13726711120674897541040127242775683539456629009285120

1000^16 1000000000000000000000000000000000000000000000000
             13726711120674897541040127242775683539456629009285120

or

1000000 x 1000000000000000000000000000000000000000000000000 = 1000000000000000000000000000000000000000000000000000000

1000000000000000000000000000000000000000000000000000000
13726711120674897541040127242775683539456629009285120

this shit is not achievable, spaces 2^150-2^170+
Jump to: