62 2000000000000000 - 3FFFFFFFFFFFFFFF
63 4000000000000000 - 7FFFFFFFFFFFFFFF
64 8000000000000000- FFFFFFFFFFFFFFFF
If realy getting random number at privat key. And used previos statisks. When, no any numbers not found in previos 30 percent in own range.
Pos='01' Diff='0' Pos='0' Perc='100' Percent2='100'
Pos='02' Diff='2' Pos='2' Perc='100' Percent2='100'
Pos='03' Diff='5' Pos='5' Perc='100' Percent2='100'
Pos='04' Diff='11' Pos='4' Perc='36.36' Percent2='53.33'
Pos='05' Diff='23' Pos='13' Perc='56.52' Percent2='67.74'
Pos='06' Diff='47' Pos='33' Perc='70.21' Percent2='77.77'
Pos='07' Diff='95' Pos='44' Perc='46.31' Percent2='59.84'
Pos='08' Diff='191' Pos='160' Perc='83.76' Percent2='87.84'
Pos='09' Diff='383' Pos='339' Perc='88.51' Percent2='91.38'
Pos='10' Diff='767' Pos='258' Perc='33.63' Percent2='50.24'
Pos='11' Diff='1535' Pos='643' Perc='41.88' Percent2='56.42'
Pos='12' Diff='3071' Pos='1659' Perc='54.02' Percent2='65.51'
Pos='13' Diff='6143' Pos='3168' Perc='51.57' Percent2='63.67'
Pos='14' Diff='12287' Pos='6448' Perc='52.47' Percent2='64.35'
Pos='15' Diff='24575' Pos='18675' Perc='75.99' Percent2='81.99'
Pos='16' Diff='49151' Pos='35126' Perc='71.46' Percent2='78.59'
Pos='17' Diff='98303' Pos='63055' Perc='64.14' Percent2='73.1'
Pos='18' Diff='196607' Pos='133133' Perc='67.71' Percent2='75.78'
Pos='19' Diff='393215' Pos='226463' Perc='57.59' Percent2='68.19'
Pos='20' Diff='786431' Pos='601173' Perc='76.44' Percent2='82.33'
Pos='21' Diff='1572863' Pos='1287476' Perc='81.85' Percent2='86.39'
Pos='22' Diff='3145727' Pos='1958927' Perc='62.27' Percent2='71.7'
Pos='23' Diff='6291455' Pos='3501650' Perc='55.65' Percent2='66.74'
Pos='24' Diff='12582911' Pos='10234372' Perc='81.33' Percent2='86'
Pos='25' Diff='25165823' Pos='24796901' Perc='98.53' Percent2='98.9'
Pos='26' Diff='50331647' Pos='37761646' Perc='75.02' Percent2='81.26'
Pos='27' Diff='100663295' Pos='78395509' Perc='77.87' Percent2='83.4'
Pos='28' Diff='201326591' Pos='160525544' Perc='79.73' Percent2='84.8'
Pos='29' Diff='402653183' Pos='266491166' Perc='66.18' Percent2='74.63'
Pos='30' Diff='805306367' Pos='764726628' Perc='94.96' Percent2='96.22'
Pos='31' Diff='1610612735' Pos='1565517639' Perc='97.2' Percent2='97.9'
Pos='32' Diff='3221225471' Pos='2019730990' Perc='62.7' Percent2='72.02'
Pos='33' Diff='6442450943' Pos='4989954264' Perc='77.45' Percent2='83.09'
Pos='34' Diff='12884901887' Pos='9838104861' Perc='76.35' Percent2='82.26'
Pos='35' Diff='25769803775' Pos='11522937200' Perc='44.71' Percent2='58.53'
Pos='36' Diff='51539607551' Pos='25207900796' Perc='48.9' Percent2='61.68'
Pos='37' Diff='103079215103' Pos='65891822227' Perc='63.92' Percent2='72.94'
Pos='38' Diff='206158430207' Pos='78252059856' Perc='37.95' Percent2='53.46'
Pos='39' Diff='412316860415' Pos='186286015465' Perc='45.18' Percent2='58.88'
Pos='40' Diff='824633720831' Pos='728773506006' Perc='88.37' Percent2='91.28'
Pos='41' Diff='1649267441663' Pos='908496391259' Perc='55.08' Percent2='66.31'
Pos='42' Diff='3298534883327' Pos='1795862924687' Perc='54.44' Percent2='65.83'
Pos='43' Diff='6597069766655' Pos='5210787792273' Perc='78.98' Percent2='84.23'
Pos='44' Diff='13194139533311' Pos='11006715245967' Perc='83.42' Percent2='87.56'
Pos='45' Diff='26388279066623' Pos='11200370064389' Perc='42.44' Percent2='56.83'
Pos='46' Diff='52776558133247' Pos='33816484304196' Perc='64.07' Percent2='73.05'
Pos='47' Diff='105553116266495' Pos='84482287025338' Perc='80.03' Percent2='85.02'
Pos='48' Diff='211106232532991' Pos='120838230522779' Perc='57.24' Percent2='67.93'
Pos='49' Diff='422212465065983' Pos='268381416677197' Perc='63.56' Percent2='72.67'
Pos='50' Diff='844424930131967' Pos='329665519457108' Perc='39.04' Percent2='54.28'
Pos='51' Diff='1688849860263935' Pos='1495819561732564' Perc='88.57' Percent2='91.42'
Pos='52' Diff='3377699720527871' Pos='3090595732758076' Perc='91.5' Percent2='93.62'
Pos='53' Diff='6755399441055743' Pos='4511884157792876' Perc='66.78' Percent2='75.09'
Pos='54' Diff='13510798882111487' Pos='5470855617126211' Perc='40.49' Percent2='55.36'
Pos='55' Diff='27021597764222975' Pos='21038191237128468' Perc='77.85' Percent2='83.39'
Pos='56' Diff='54043195528445951' Pos='26204343783194591' Perc='48.48' Percent2='61.36'
Pos='57' Diff='108086391056891903' Pos='102216961891882524' Perc='94.56' Percent2='95.92'
Pos='58' Diff='216172782113783807' Pos='127919073938414113' Perc='59.17' Percent2='69.38'
Pos='59' Diff='432345564227567615' Pos='380955196182410319' Perc='88.11' Percent2='91.08'
Pos='60' Diff='864691128455135231' Pos='846810974067784638' Perc='97.93' Percent2='98.44'
Pos='61' Diff='1729382256910270463' Pos='849326790315231494' Perc='49.11' Percent2='61.83'
First percent in own range. Second in full range from 0 to own end.
It just happens that it is difficult (small chance) to get a large number of consecutive zeros.
And a very small chance that it will look like
10001... or
1001... or
101... or
11... and a very small chance that it will look like
1000000000.....But for some reason, this logic does not come to the end of the list. If we throw away very small ranges, then we see that there are a lot of keys in the range of 90 percent.
98.53, 94.96, 97.2, 91.5, 94.56, 97.93. By the way, this does not contradict logic.
Six out of
sixty is
10 percent. And from
90 to
99.99 is also
10 percent.
Sorted percentage
Percent='33.63' Count='1'
Percent='36.36' Count='1'
Percent='37.95' Count='1'
Percent='39.04' Count='1'
Percent='40.49' Count='1'
Percent='41.88' Count='1'
Percent='42.44' Count='1'
Percent='44.71' Count='1'
Percent='45.18' Count='1'
Percent='46.31' Count='1'
Percent='48.48' Count='1'
Percent='48.9' Count='1'
Percent='49.11' Count='1'
Percent='51.57' Count='1'
Percent='52.47' Count='1'
Percent='54.02' Count='1'
Percent='54.44' Count='1'
Percent='55.08' Count='1'
Percent='55.65' Count='1'
Percent='56.52' Count='1'
Percent='57.24' Count='1'
Percent='57.59' Count='1'
Percent='59.17' Count='1'
Percent='62.27' Count='1'
Percent='62.7' Count='1'
Percent='63.56' Count='1'
Percent='63.92' Count='1'
Percent='64.07' Count='1'
Percent='64.14' Count='1'
Percent='66.18' Count='1'
Percent='66.78' Count='1'
Percent='67.71' Count='1'
Percent='70.21' Count='1'
Percent='71.46' Count='1'
Percent='75.02' Count='1'
Percent='75.99' Count='1'
Percent='76.35' Count='1'
Percent='76.44' Count='1'
Percent='77.45' Count='1'
Percent='77.85' Count='1'
Percent='77.87' Count='1'
Percent='78.98' Count='1'
Percent='79.73' Count='1'
Percent='80.03' Count='1'
Percent='81.33' Count='1'
Percent='81.85' Count='1'
Percent='83.42' Count='1'
Percent='83.76' Count='1'
Percent='88.11' Count='1'
Percent='88.37' Count='1'
Percent='88.51' Count='1'
Percent='88.57' Count='1'
Percent='91.5' Count='1'
Percent='94.56' Count='1'
Percent='94.96' Count='1'
Percent='97.2' Count='1'
Percent='97.93' Count='1'
Percent='98.53' Count='1'
Percent='100' Count='3'
Based on this, we can conclude that in the key in the binary form there will be a small probability of long repetitions of zero or unity.
01 1 Max1:1 Max0:0 Min1:1 Min0:0 InStr: 1
02 11 Max1:2 Max0:0 Min1:2 Min0:0 InStr: 2
03 111 Max1:3 Max0:0 Min1:3 Min0:0 InStr: 3
04 1000 Max1:1 Max0:3 Min1:0 Min0:3 InStr: 13
05 10101 Max1:1 Max0:1 Min1:1 Min0:0 InStr: 11111
06 110001 Max1:2 Max0:3 Min1:1 Min0:0 InStr: 231
07 1001100 Max1:2 Max0:2 Min1:0 Min0:2 InStr: 1222
08 11100000 Max1:3 Max0:5 Min1:0 Min0:5 InStr: 35
09 111010011 Max1:3 Max0:2 Min1:1 Min0:0 InStr: 31122
10 1000000010 Max1:1 Max0:7 Min1:0 Min0:1 InStr: 1711
11 10010000011 Max1:2 Max0:5 Min1:1 Min0:0 InStr: 12152
12 101001111011 Max1:4 Max0:2 Min1:1 Min0:0 InStr: 1112412
13 1010001100000 Max1:2 Max0:5 Min1:0 Min0:1 InStr: 111325
14 10100100110000 Max1:2 Max0:4 Min1:0 Min0:1 InStr: 11121224
15 110100011110011 Max1:4 Max0:3 Min1:1 Min0:0 InStr: 2113422
16 1100100100110110 Max1:2 Max0:2 Min1:0 Min0:1 InStr: 2212122121
17 10111011001001111 Max1:4 Max0:2 Min1:1 Min0:0 InStr: 113122124
18 110000100000001101 Max1:2 Max0:7 Min1:1 Min0:0 InStr: 2417211
19 1010111010010011111 Max1:5 Max0:2 Min1:1 Min0:0 InStr: 11113112125
20 11010010110001010101 Max1:2 Max0:3 Min1:1 Min0:0 InStr: 211211231111111
21 110111010010100110100 Max1:3 Max0:2 Min1:0 Min0:1 InStr: 21311211122112
22 1011011110010000001111 Max1:4 Max0:6 Min1:1 Min0:0 InStr: 112142164
23 10101010110111001010010 Max1:3 Max0:2 Min1:0 Min0:1 InStr: 111111112132111211
24 110111000010101000000100 Max1:3 Max0:6 Min1:0 Min0:1 InStr: 213411111612
25 1111110100101111011100101 Max1:6 Max0:2 Min1:1 Min0:0 InStr: 6112114132111
26 11010000000011001001101110 Max1:3 Max0:8 Min1:0 Min0:1 InStr: 211822122131
27 110101011000011100001110101 Max1:3 Max0:4 Min1:1 Min0:0 InStr: 211111243431111
28 1101100100010110110011101000 Max1:3 Max0:3 Min1:0 Min0:1 InStr: 2122131121223113
29 10111111000100101010100011110 Max1:6 Max0:3 Min1:0 Min0:1 InStr: 1163121111111341
30 111101100101001100110101100100 Max1:4 Max0:2 Min1:0 Min0:1 InStr: 412211122221112212
31 1111101010011111110011101000111 Max1:7 Max0:3 Min1:1 Min0:0 InStr: 5111127231133
32 10111000011000101010011000101110 Max1:3 Max0:4 Min1:0 Min0:1 InStr: 113423111112231131
33 110101001011011001010100011011000 Max1:2 Max0:3 Min1:0 Min0:1 InStr: 2111121121221111132123
34 1101001010011001011001000100011101 Max1:3 Max0:3 Min1:1 Min0:0 InStr: 211211122211221313311
35 10010101110110100100001000101110000 Max1:3 Max0:4 Min1:0 Min0:1 InStr: 12111131211214131134
36 100111011110100000100000101001111100 Max1:5 Max0:5 Min1:0 Min0:1 InStr: 1231411515111252
37 1011101010111011101010110101010010011 Max1:3 Max0:2 Min1:1 Min0:0 InStr: 113111113131111121111112122
38 10001000111000001011111010110011010000 Max1:5 Max0:5 Min1:0 Min0:1 InStr: 131335115111222114
39 100101101011111100000110000001111101001 Max1:6 Max0:6 Min1:1 Min0:0 InStr: 12112111652651121
40 1110100110101110010010010011001111010110 Max1:4 Max0:2 Min1:0 Min0:1 InStr: 311221113212121222411121
41 10101001110000110100110101100110001011011 Max1:3 Max0:4 Min1:1 Min0:0 InStr: 1111123421122111222311212
42 101010001000100001110001011000110110001111 Max1:4 Max0:4 Min1:1 Min0:0 InStr: 111113131433112321234
43 1101011110100111011001001111100010110010001 Max1:5 Max0:3 Min1:1 Min0:0 InStr: 21114112312212531122131
44 11100000001010110011010110100011010110001111 Max1:4 Max0:7 Min1:1 Min0:0 InStr: 37111122211121132111234
45 100100010111111001010000101000011110000000101 Max1:6 Max0:7 Min1:1 Min0:0 InStr: 121311621114111447111
46 1011101100000110000011100010001101010101000100 Max1:3 Max0:5 Min1:0 Min0:1 InStr: 113125253313211111111312
47 11011001101011000010000101101010011110010111010 Max1:4 Max0:4 Min1:0 Min0:1 InStr: 2122211124141121111242113111
48 101011011110011011010111110011100011101110011011 Max1:5 Max0:3 Min1:1 Min0:0 InStr: 1111214221211152333132212
49 1011101000001011101101011000000010101111101001101 Max1:5 Max0:7 Min1:1 Min0:0 InStr: 113115113121112711115112211
50 10001010111101010000111100001011101001001101010100 Max1:4 Max0:4 Min1:0 Min0:1 InStr: 131111411114441131121221111112
51 111010100000111000010100001101000000000100111010100 Max1:3 Max0:9 Min1:0 Min0:1 InStr: 311115341114211912311112
52 1110111110101110000101100100110010111001111000111100 Max1:5 Max0:4 Min1:0 Min0:1 InStr: 315111341122122211324342
53 11000000001111000100011100100011111100011001001101100 Max1:6 Max0:8 Min1:0 Min0:1 InStr: 28431332136322122122
54 100011011011111011011011010101101011010001111101000011 Max1:5 Max0:4 Min1:1 Min0:0 InStr: 1321215121212111112111211351142
55 1101010101111100001111110011011011001111110000100010100 Max1:6 Max0:4 Min1:0 Min0:1 InStr: 21111111546221212264131112
56 10011101000110001011011000111010110001001111111111011111 Max1:10 Max0:3 Min1:1 Min0:0 InStr: 1231132311212331112312a15
57 111101011001001011100100100000111100101011101011000011100 Max1:4 Max0:5 Min1:0 Min0:1 InStr: 411122121132121542111131112432
58 1011000110011101011011100001010010000110001001101000100001 Max1:3 Max0:4 Min1:1 Min0:0 InStr: 1123223111213411121423122113141
59 11101001001011011001011101110000111110010101011010001001111 Max1:5 Max0:4 Min1:1 Min0:0 InStr: 311212112122113134521111112113124
60 111111000000011110100001100000100101001101100111101110111110 Max1:6 Max0:7 Min1:0 Min0:1 InStr: 674114251211122122413151
61 1001111001001011010100011011101000010111101100100100100000110 Max1:4 Max0:5 Min1:0 Min0:1 InStr: 1242121121111321311411412212121521
Theoretically, using this data, and also add a calculation of the repetition of the following public address. You can make an algorithm that will iterate over the initially possible private keys. Increasing repetition ranges.
Sorry by english. Translating.