Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 288. (Read 229248 times)

newbie
Activity: 44
Merit: 0
Why did 70, 75 and 80 move?
jr. member
Activity: 59
Merit: 3
Sometimes, when I look at clouds, I see that they look kind of like animals.  I have seen a cloud that looks like a rabbit.  One time I saw this cloud that looked very much like an elephant.  I have seen many various animals in clouds.  I believe that if you look hard enough at any cloud you will see that it looks like some sort of animal.
You too?! Oh mate, I thought that I'm the only one who see it Grin Grin Grin.
Just yesterday I saw a horse-cloud, that was beautiful!
legendary
Activity: 2646
Merit: 1137
All paid signature campaigns should be banned.
I decided to drive the statistics.
Calculate the partial repetition of a part of a public address, starting from the end or from the beginning. Bit repetitions.
I.e

10101010111......010101010111010101010
01011010100......010101001011010101010
Match the end to 11 bits.


1101011011011010101010111......010101010110101010101
1101011011011001011010100......010101001010010101010
Match from the beginning to 14 bits.

Private keys get over in a row. And looking for repetition in a public address. When repetition is found, the difference in the private key is calculated.

At the moment, found such a minimum range.
Code:
24 bits: 2970 * 128   = 380160 (+-128) pkeys
23 bits: 330 * 128    = 42240  (+-128) pkeys
22 bits: 33 * 128     = 4244    (+-128) pkeys
21 bits: 11 * 128     = 1408    (+-128) pkeys
20 bits: 10 * 128     = 1280    (+-128) pkeys
Matching 19 or less bits are found with ranges of less than 128 keys.

Of course, a jump (pass) to 380k keys, at a search speed of 1M per second, is nothing. But finding large ranges, you can make big jumps.
Sometimes, when I look at clouds, I see that they look kind of like animals.  I have seen a cloud that looks like a rabbit.  One time I saw this cloud that looked very much like an elephant.  I have seen many various animals in clouds.  I believe that if you look hard enough at any cloud you will see that it looks like some sort of animal.
member
Activity: 255
Merit: 27
I decided to drive the statistics.
Calculate the partial repetition of a part of a public address, starting from the end or from the beginning. Bit repetitions.
I.e

10101010111......010101010111010101010
01011010100......010101001011010101010
Match the end to 11 bits.


1101011011011010101010111......010101010110101010101
1101011011011001011010100......010101001010010101010
Match from the beginning to 14 bits.

Private keys get over in a row. And looking for repetition in a public address. When repetition is found, the difference in the private key is calculated.

At the moment, found such a minimum range.
Code:
24 bits: 2970 * 128   = 380160 (+-128) pkeys
23 bits: 330 * 128    = 42240  (+-128) pkeys
22 bits: 33 * 128     = 4244    (+-128) pkeys
21 bits: 11 * 128     = 1408    (+-128) pkeys
20 bits: 10 * 128     = 1280    (+-128) pkeys
Matching 19 or less bits are found with ranges of less than 128 keys.

Of course, a jump (pass) to 380k keys, at a search speed of 1M per second, is nothing. But finding large ranges, you can make big jumps.
newbie
Activity: 43
Merit: 0
Hello to everyone,

62. Wallet Hex Code Start: Starting with 2F (B, D, E) ......

Based on what?
full member
Activity: 282
Merit: 114
Hello to everyone,

62. Wallet Hex Code Start: Starting with 2F (B, D, E) ......

I can assure you at this stage that you missed the right range :-)
full member
Activity: 924
Merit: 221
Cracking bitcoin private key would be near to impossible. The wallets are unique and if it is a cold storage though one can still have the difficulties in accessing it for bitcoin has stored in that hardware or cold storage where one could not access if it is not doing online activities. So, forget that reward OP and start earning btc in a decent way like joining a bounty campaign or investing btc with your hard earn money.
member
Activity: 245
Merit: 17
Hello to everyone,

62. Wallet Hex Code Start: Starting with 2F (B, D, E) ......

Why ? How ?  Huh
jr. member
Activity: 59
Merit: 3
...the puzzle above 70 in the next fifty years will not be solved...
We have to try continue here https://cloud.google.com/tpu/
jr. member
Activity: 138
Merit: 2
I will answer in Russian.
Кaк бyдeм дeлить нe yбитoгo кaбaнчикa?  Grin Grin Grin
Bceм пo 0.1BTC  Cheesy
full member
Activity: 282
Merit: 114
On first machine (600GB RAM):
Code:
Check bit = 90 only, pubkey is:
035c38bd9ae4b10e8a250857006f3cfd98ab15a6196d9f4dfd25bc7ecc77d788d5
Build Hash, MEM size = 384GB

On second machine (80GB RAM):
Code:
Check bit = 90 only, pubkey is:
035c38bd9ae4b10e8a250857006f3cfd98ab15a6196d9f4dfd25bc7ecc77d788d5
Build Hash, MEM size = 64GB
Search bits = 90
Search Keys....  from 20000000000000000000000 to 3ffffffffffffffffffffff

... and nothing changes from two days on both machines.
Something is wrong?
Am I to understand that no more changes are expected in these processes?

Can someone modify the code in such a way that the process is visible (along with the percentage)?
for machine's memory is 600GB
at least this code need update:
uint32_t entry = xst.n[0] & (HASH_SIZE-1);
to
uint64_t entry = xst.n[0] & (HASH_SIZE-1);

and update
typedef struct hashtable_entry {
    uint32_t x;
    uint32_t exponent;
} hashtable_entry;
to
typedef struct hashtable_entry {
    uint32_t x;
    uint64_t exponent; //this will take more memory
} hashtable_entry;


For 5TB RAM changes are that same how for 600GB? :-)
newbie
Activity: 26
Merit: 0
Кaк ? ктo нaйдeт тoт и зaбepeт  Grin Grin Grin нeмнoгo ocтaлocь  Grin
member
Activity: 255
Merit: 27
I will answer in Russian.
Кaк бyдeм дeлить нe yбитoгo кaбaнчикa?  Grin Grin Grin
jr. member
Activity: 138
Merit: 2
I think we are reading the Creator of the puzzle,as they say, our hope and support! Who agrees with me let the support that the puzzle above 70 in the next fifty years will not be solved ,then maybe it's worth to share between all of us who participated in solving this powerfully prize from 71 to 160 .If that is my modest purse 1EtUE8aBfLNeMMMeG4265ifERhhJXaWbpL   Roll Eyes Roll Eyes Roll Eyes
legendary
Activity: 2646
Merit: 1137
All paid signature campaigns should be banned.
any tip how i can make raw public key like on this table ?


unsigned char rawpubkeys[NUMPUBKEYS][33] = {
{ 0x03,0x29,0xc4,0x57,0x4a,0x4f,0xd8,0xc8,0x10,0xb7,0xe4,0x2a,0x4b,0x39,0x88,0x82,0xb3,0x81,0xbc,0xd8,0x5e,0x40,0xc6,0x88,0x37,0x12,0x91,0x2d,0x16,0x7c,0x83,0xe7,0x3a },//== 1Kh22PvXERd2xpTQk3ur6pPEqFeckCJfAr#85
};

unsigned char rawpubkeys[NUMPUBKEYS][33] = {
{
      .. add all strings here...

    "1Kh22PvXERd2xpTQk3ur6pPEqFeckCJfAr", // #85

};
newbie
Activity: 8
Merit: 0
any tip how i can make raw public key like on this table ?


unsigned char rawpubkeys[NUMPUBKEYS][33] = {
{ 0x03,0x29,0xc4,0x57,0x4a,0x4f,0xd8,0xc8,0x10,0xb7,0xe4,0x2a,0x4b,0x39,0x88,0x82,0xb3,0x81,0xbc,0xd8,0x5e,0x40,0xc6,0x88,0x37,0x12,0x91,0x2d,0x16,0x7c,0x83,0xe7,0x3a },//== 1Kh22PvXERd2xpTQk3ur6pPEqFeckCJfAr#85
};
jr. member
Activity: 119
Merit: 1
Hi, folks! Great topic!
Need some of your guru's help. As far as I understood, if we have i.e.
61. 00000000000000000000000000000000000000000000000013C96A3742F64906 - 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB
62.                                                                                                                      - 1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi
63.                                                                                                                      - 1NpYjtLira16LfGbGwZJ5JbDPh3ai9bjf4
64.                                                                                                                      - 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN
65. 000000000000000000000000000000000000000000000001a838b13505b26867  - 18ZMbwUFLMHoZBbfpCjUJQTCMCbktshgpe
means that privat keys for #62, 63 & 64 will be somewhere between 13C96A3742F64906:1a838b13505b26867. Am I right?
If yes, how can I narrow the keyspace for #62 only? Even approximate range I believe will be ok fo try. Can a simple hex math be used in this case?
Sorry if its a noob question.


And who prevents you to narrow a range of search?
For search the private keys for address 62 is selected keyspace 2000000000000000 - 3FFFFFFFFFFFFFFF
In this space it is possible to find about 2305843009213693952 variants.
The project has started for a long time, therefore it is possible to assume, that about three quarters of addresses is checked up and among them no required.
I.e. it is necessary to you to check up 2305843009213693952:4 = 576460752303423488 variants
Can try to begin with 3800000000000001

- keyspace 3800000000000001:3FFFFFFFFFFFFFFF

If this quantity of variants 576460752303423488 you divide into speed of generation of keys of your computer that receive a rough operating time

Good luck!
Since the entire search space for #62 is 2000000000000000 to 3FFFFFFFFFFFFFFF

If you search the last 1/4 of the space from 3800000000000001 to 3FFFFFFFFFFFFFFF you will have exactly a 25% chance of finding the key assuming nobody else with much faster hardware finds it first.

Good luck!  You are going to need it.

I with you completely agree!

In a post № 1018 on page 51 I wrote about factors (on statistics) found Private Key
Minimal - K*1.2561547139608029

It is possible to assume, that Private Key for addresses 62 can be in space
From 2000000000000000 x K*1.2561547139608029 up to 3FFFFFFFFFFFFFFF i.e. approximately
From 2800000000000001 and up to 3FFFFFFFFFFFFFFF
I think, that the minimum half of way from 2000000000000001:3FFFFFFFFFFFFFFF already and key is not found.
Then it is possible to try from 3000000000000001 up to 3FFFFFFFFFFFFFFF
In any case on my computer with speed only 0.63 MKey/s to participate in this competition it is senseless.
member
Activity: 255
Merit: 27

62   2000000000000000 - 3FFFFFFFFFFFFFFF
63   4000000000000000 - 7FFFFFFFFFFFFFFF
64   8000000000000000-  FFFFFFFFFFFFFFFF

If realy getting random number at privat key. And used previos statisks. When, no any numbers not found in previos 30 percent in own range.
Code:
Pos='01' Diff='0' Pos='0' Perc='100' Percent2='100' 
Pos='02' Diff='2' Pos='2' Perc='100' Percent2='100' 
Pos='03' Diff='5' Pos='5' Perc='100' Percent2='100' 
Pos='04' Diff='11' Pos='4' Perc='36.36' Percent2='53.33' 
Pos='05' Diff='23' Pos='13' Perc='56.52' Percent2='67.74' 
Pos='06' Diff='47' Pos='33' Perc='70.21' Percent2='77.77' 
Pos='07' Diff='95' Pos='44' Perc='46.31' Percent2='59.84' 
Pos='08' Diff='191' Pos='160' Perc='83.76' Percent2='87.84' 
Pos='09' Diff='383' Pos='339' Perc='88.51' Percent2='91.38' 
Pos='10' Diff='767' Pos='258' Perc='33.63' Percent2='50.24' 
Pos='11' Diff='1535' Pos='643' Perc='41.88' Percent2='56.42' 
Pos='12' Diff='3071' Pos='1659' Perc='54.02' Percent2='65.51' 
Pos='13' Diff='6143' Pos='3168' Perc='51.57' Percent2='63.67' 
Pos='14' Diff='12287' Pos='6448' Perc='52.47' Percent2='64.35' 
Pos='15' Diff='24575' Pos='18675' Perc='75.99' Percent2='81.99' 
Pos='16' Diff='49151' Pos='35126' Perc='71.46' Percent2='78.59' 
Pos='17' Diff='98303' Pos='63055' Perc='64.14' Percent2='73.1' 
Pos='18' Diff='196607' Pos='133133' Perc='67.71' Percent2='75.78' 
Pos='19' Diff='393215' Pos='226463' Perc='57.59' Percent2='68.19' 
Pos='20' Diff='786431' Pos='601173' Perc='76.44' Percent2='82.33' 
Pos='21' Diff='1572863' Pos='1287476' Perc='81.85' Percent2='86.39' 
Pos='22' Diff='3145727' Pos='1958927' Perc='62.27' Percent2='71.7' 
Pos='23' Diff='6291455' Pos='3501650' Perc='55.65' Percent2='66.74' 
Pos='24' Diff='12582911' Pos='10234372' Perc='81.33' Percent2='86' 
Pos='25' Diff='25165823' Pos='24796901' Perc='98.53' Percent2='98.9' 
Pos='26' Diff='50331647' Pos='37761646' Perc='75.02' Percent2='81.26' 
Pos='27' Diff='100663295' Pos='78395509' Perc='77.87' Percent2='83.4' 
Pos='28' Diff='201326591' Pos='160525544' Perc='79.73' Percent2='84.8' 
Pos='29' Diff='402653183' Pos='266491166' Perc='66.18' Percent2='74.63' 
Pos='30' Diff='805306367' Pos='764726628' Perc='94.96' Percent2='96.22' 
Pos='31' Diff='1610612735' Pos='1565517639' Perc='97.2' Percent2='97.9' 
Pos='32' Diff='3221225471' Pos='2019730990' Perc='62.7' Percent2='72.02' 
Pos='33' Diff='6442450943' Pos='4989954264' Perc='77.45' Percent2='83.09' 
Pos='34' Diff='12884901887' Pos='9838104861' Perc='76.35' Percent2='82.26' 
Pos='35' Diff='25769803775' Pos='11522937200' Perc='44.71' Percent2='58.53' 
Pos='36' Diff='51539607551' Pos='25207900796' Perc='48.9' Percent2='61.68' 
Pos='37' Diff='103079215103' Pos='65891822227' Perc='63.92' Percent2='72.94' 
Pos='38' Diff='206158430207' Pos='78252059856' Perc='37.95' Percent2='53.46' 
Pos='39' Diff='412316860415' Pos='186286015465' Perc='45.18' Percent2='58.88' 
Pos='40' Diff='824633720831' Pos='728773506006' Perc='88.37' Percent2='91.28' 
Pos='41' Diff='1649267441663' Pos='908496391259' Perc='55.08' Percent2='66.31' 
Pos='42' Diff='3298534883327' Pos='1795862924687' Perc='54.44' Percent2='65.83' 
Pos='43' Diff='6597069766655' Pos='5210787792273' Perc='78.98' Percent2='84.23' 
Pos='44' Diff='13194139533311' Pos='11006715245967' Perc='83.42' Percent2='87.56' 
Pos='45' Diff='26388279066623' Pos='11200370064389' Perc='42.44' Percent2='56.83' 
Pos='46' Diff='52776558133247' Pos='33816484304196' Perc='64.07' Percent2='73.05' 
Pos='47' Diff='105553116266495' Pos='84482287025338' Perc='80.03' Percent2='85.02' 
Pos='48' Diff='211106232532991' Pos='120838230522779' Perc='57.24' Percent2='67.93' 
Pos='49' Diff='422212465065983' Pos='268381416677197' Perc='63.56' Percent2='72.67' 
Pos='50' Diff='844424930131967' Pos='329665519457108' Perc='39.04' Percent2='54.28' 
Pos='51' Diff='1688849860263935' Pos='1495819561732564' Perc='88.57' Percent2='91.42' 
Pos='52' Diff='3377699720527871' Pos='3090595732758076' Perc='91.5' Percent2='93.62' 
Pos='53' Diff='6755399441055743' Pos='4511884157792876' Perc='66.78' Percent2='75.09' 
Pos='54' Diff='13510798882111487' Pos='5470855617126211' Perc='40.49' Percent2='55.36' 
Pos='55' Diff='27021597764222975' Pos='21038191237128468' Perc='77.85' Percent2='83.39' 
Pos='56' Diff='54043195528445951' Pos='26204343783194591' Perc='48.48' Percent2='61.36' 
Pos='57' Diff='108086391056891903' Pos='102216961891882524' Perc='94.56' Percent2='95.92' 
Pos='58' Diff='216172782113783807' Pos='127919073938414113' Perc='59.17' Percent2='69.38' 
Pos='59' Diff='432345564227567615' Pos='380955196182410319' Perc='88.11' Percent2='91.08' 
Pos='60' Diff='864691128455135231' Pos='846810974067784638' Perc='97.93' Percent2='98.44' 
Pos='61' Diff='1729382256910270463' Pos='849326790315231494' Perc='49.11' Percent2='61.83'
First percent in own range. Second in full range from 0 to own end.
It just happens that it is difficult (small chance) to get a large number of consecutive zeros.
And a very small chance that it will look like 10001... or 1001... or 101... or 11... and a very small chance that it will look like 1000000000.....
But for some reason, this logic does not come to the end of the list. If we throw away very small ranges, then we see that there are a lot of keys in the range of 90 percent.
98.53, 94.96, 97.2, 91.5, 94.56, 97.93. By the way, this does not contradict logic. Six out of sixty is 10 percent. And from 90 to 99.99 is also 10 percent.
Sorted percentage
Code:
Percent='33.63'         Count='1'
Percent='36.36'         Count='1'
Percent='37.95'         Count='1'
Percent='39.04'         Count='1'
Percent='40.49'         Count='1'
Percent='41.88'         Count='1'
Percent='42.44'         Count='1'
Percent='44.71'         Count='1'
Percent='45.18'         Count='1'
Percent='46.31'         Count='1'
Percent='48.48'         Count='1'
Percent='48.9'          Count='1'
Percent='49.11'         Count='1'
Percent='51.57'         Count='1'
Percent='52.47'         Count='1'
Percent='54.02'         Count='1'
Percent='54.44'         Count='1'
Percent='55.08'         Count='1'
Percent='55.65'         Count='1'
Percent='56.52'         Count='1'
Percent='57.24'         Count='1'
Percent='57.59'         Count='1'
Percent='59.17'         Count='1'
Percent='62.27'         Count='1'
Percent='62.7'          Count='1'
Percent='63.56'         Count='1'
Percent='63.92'         Count='1'
Percent='64.07'         Count='1'
Percent='64.14'         Count='1'
Percent='66.18'         Count='1'
Percent='66.78'         Count='1'
Percent='67.71'         Count='1'
Percent='70.21'         Count='1'
Percent='71.46'         Count='1'
Percent='75.02'         Count='1'
Percent='75.99'         Count='1'
Percent='76.35'         Count='1'
Percent='76.44'         Count='1'
Percent='77.45'         Count='1'
Percent='77.85'         Count='1'
Percent='77.87'         Count='1'
Percent='78.98'         Count='1'
Percent='79.73'         Count='1'
Percent='80.03'         Count='1'
Percent='81.33'         Count='1'
Percent='81.85'         Count='1'
Percent='83.42'         Count='1'
Percent='83.76'         Count='1'
Percent='88.11'         Count='1'
Percent='88.37'         Count='1'
Percent='88.51'         Count='1'
Percent='88.57'         Count='1'
Percent='91.5'          Count='1'
Percent='94.56'         Count='1'
Percent='94.96'         Count='1'
Percent='97.2'          Count='1'
Percent='97.93'         Count='1'
Percent='98.53'         Count='1'
Percent='100'   Count='3'
Based on this, we can conclude that in the key in the binary form there will be a small probability of long repetitions of zero or unity.
Code:
01                                                                   1          Max1:1          Max0:0          Min1:1          Min0:0          InStr:                                   1
02                                                                  11          Max1:2          Max0:0          Min1:2          Min0:0          InStr:                                   2
03                                                                 111          Max1:3          Max0:0          Min1:3          Min0:0          InStr:                                   3
04                                                                1000          Max1:1          Max0:3          Min1:0          Min0:3          InStr:                                  13
05                                                               10101          Max1:1          Max0:1          Min1:1          Min0:0          InStr:                               11111
06                                                              110001          Max1:2          Max0:3          Min1:1          Min0:0          InStr:                                 231
07                                                             1001100          Max1:2          Max0:2          Min1:0          Min0:2          InStr:                                1222
08                                                            11100000          Max1:3          Max0:5          Min1:0          Min0:5          InStr:                                  35
09                                                           111010011          Max1:3          Max0:2          Min1:1          Min0:0          InStr:                               31122
10                                                          1000000010          Max1:1          Max0:7          Min1:0          Min0:1          InStr:                                1711
11                                                         10010000011          Max1:2          Max0:5          Min1:1          Min0:0          InStr:                               12152
12                                                        101001111011          Max1:4          Max0:2          Min1:1          Min0:0          InStr:                             1112412
13                                                       1010001100000          Max1:2          Max0:5          Min1:0          Min0:1          InStr:                              111325
14                                                      10100100110000          Max1:2          Max0:4          Min1:0          Min0:1          InStr:                            11121224
15                                                     110100011110011          Max1:4          Max0:3          Min1:1          Min0:0          InStr:                             2113422
16                                                    1100100100110110          Max1:2          Max0:2          Min1:0          Min0:1          InStr:                          2212122121
17                                                   10111011001001111          Max1:4          Max0:2          Min1:1          Min0:0          InStr:                           113122124
18                                                  110000100000001101          Max1:2          Max0:7          Min1:1          Min0:0          InStr:                             2417211
19                                                 1010111010010011111          Max1:5          Max0:2          Min1:1          Min0:0          InStr:                         11113112125
20                                                11010010110001010101          Max1:2          Max0:3          Min1:1          Min0:0          InStr:                     211211231111111
21                                               110111010010100110100          Max1:3          Max0:2          Min1:0          Min0:1          InStr:                      21311211122112
22                                              1011011110010000001111          Max1:4          Max0:6          Min1:1          Min0:0          InStr:                           112142164
23                                             10101010110111001010010          Max1:3          Max0:2          Min1:0          Min0:1          InStr:                  111111112132111211
24                                            110111000010101000000100          Max1:3          Max0:6          Min1:0          Min0:1          InStr:                        213411111612
25                                           1111110100101111011100101          Max1:6          Max0:2          Min1:1          Min0:0          InStr:                       6112114132111
26                                          11010000000011001001101110          Max1:3          Max0:8          Min1:0          Min0:1          InStr:                        211822122131
27                                         110101011000011100001110101          Max1:3          Max0:4          Min1:1          Min0:0          InStr:                     211111243431111
28                                        1101100100010110110011101000          Max1:3          Max0:3          Min1:0          Min0:1          InStr:                    2122131121223113
29                                       10111111000100101010100011110          Max1:6          Max0:3          Min1:0          Min0:1          InStr:                    1163121111111341
30                                      111101100101001100110101100100          Max1:4          Max0:2          Min1:0          Min0:1          InStr:                  412211122221112212
31                                     1111101010011111110011101000111          Max1:7          Max0:3          Min1:1          Min0:0          InStr:                       5111127231133
32                                    10111000011000101010011000101110          Max1:3          Max0:4          Min1:0          Min0:1          InStr:                  113423111112231131
33                                   110101001011011001010100011011000          Max1:2          Max0:3          Min1:0          Min0:1          InStr:              2111121121221111132123
34                                  1101001010011001011001000100011101          Max1:3          Max0:3          Min1:1          Min0:0          InStr:               211211122211221313311
35                                 10010101110110100100001000101110000          Max1:3          Max0:4          Min1:0          Min0:1          InStr:                12111131211214131134
36                                100111011110100000100000101001111100          Max1:5          Max0:5          Min1:0          Min0:1          InStr:                    1231411515111252
37                               1011101010111011101010110101010010011          Max1:3          Max0:2          Min1:1          Min0:0          InStr:         113111113131111121111112122
38                              10001000111000001011111010110011010000          Max1:5          Max0:5          Min1:0          Min0:1          InStr:                  131335115111222114
39                             100101101011111100000110000001111101001          Max1:6          Max0:6          Min1:1          Min0:0          InStr:                   12112111652651121
40                            1110100110101110010010010011001111010110          Max1:4          Max0:2          Min1:0          Min0:1          InStr:            311221113212121222411121
41                           10101001110000110100110101100110001011011          Max1:3          Max0:4          Min1:1          Min0:0          InStr:           1111123421122111222311212
42                          101010001000100001110001011000110110001111          Max1:4          Max0:4          Min1:1          Min0:0          InStr:               111113131433112321234
43                         1101011110100111011001001111100010110010001          Max1:5          Max0:3          Min1:1          Min0:0          InStr:             21114112312212531122131
44                        11100000001010110011010110100011010110001111          Max1:4          Max0:7          Min1:1          Min0:0          InStr:             37111122211121132111234
45                       100100010111111001010000101000011110000000101          Max1:6          Max0:7          Min1:1          Min0:0          InStr:               121311621114111447111
46                      1011101100000110000011100010001101010101000100          Max1:3          Max0:5          Min1:0          Min0:1          InStr:            113125253313211111111312
47                     11011001101011000010000101101010011110010111010          Max1:4          Max0:4          Min1:0          Min0:1          InStr:        2122211124141121111242113111
48                    101011011110011011010111110011100011101110011011          Max1:5          Max0:3          Min1:1          Min0:0          InStr:           1111214221211152333132212
49                   1011101000001011101101011000000010101111101001101          Max1:5          Max0:7          Min1:1          Min0:0          InStr:         113115113121112711115112211
50                  10001010111101010000111100001011101001001101010100          Max1:4          Max0:4          Min1:0          Min0:1          InStr:      131111411114441131121221111112
51                 111010100000111000010100001101000000000100111010100          Max1:3          Max0:9          Min1:0          Min0:1          InStr:            311115341114211912311112
52                1110111110101110000101100100110010111001111000111100          Max1:5          Max0:4          Min1:0          Min0:1          InStr:            315111341122122211324342
53               11000000001111000100011100100011111100011001001101100          Max1:6          Max0:8          Min1:0          Min0:1          InStr:                28431332136322122122
54              100011011011111011011011010101101011010001111101000011          Max1:5          Max0:4          Min1:1          Min0:0          InStr:     1321215121212111112111211351142
55             1101010101111100001111110011011011001111110000100010100          Max1:6          Max0:4          Min1:0          Min0:1          InStr:          21111111546221212264131112
56            10011101000110001011011000111010110001001111111111011111          Max1:10         Max0:3          Min1:1          Min0:0          InStr:           1231132311212331112312a15
57           111101011001001011100100100000111100101011101011000011100          Max1:4          Max0:5          Min1:0          Min0:1          InStr:      411122121132121542111131112432
58          1011000110011101011011100001010010000110001001101000100001          Max1:3          Max0:4          Min1:1          Min0:0          InStr:     1123223111213411121423122113141
59         11101001001011011001011101110000111110010101011010001001111          Max1:5          Max0:4          Min1:1          Min0:0          InStr:   311212112122113134521111112113124
60        111111000000011110100001100000100101001101100111101110111110          Max1:6          Max0:7          Min1:0          Min0:1          InStr:            674114251211122122413151
61       1001111001001011010100011011101000010111101100100100100000110          Max1:4          Max0:5          Min1:0          Min0:1          InStr:  1242121121111321311411412212121521
Theoretically, using this data, and also add a calculation of the repetition of the following public address. You can make an algorithm that will iterate over the initially possible private keys. Increasing repetition ranges.

Sorry by english. Translating.
jr. member
Activity: 59
Merit: 3
Great! Thanks you all, mates, for a constructive answers!

...therefore it is possible to assume, that about three quarters of addresses is checked up and among them no required...
That exactly what I have thought and want to use with the profit. Means that, as the speed of my hardware is only ~25 MKey/s I have not enough of my life to check all that range and, asuming that three quarters of addresses have already been checked, I will better focuse only on the last quarter.

Good luck!  You are going to need it.
Thanks, bro! Soon I will share with you my reward  Grin Grin Grin
legendary
Activity: 2646
Merit: 1137
All paid signature campaigns should be banned.
Hi, folks! Great topic!
Need some of your guru's help. As far as I understood, if we have i.e.
61. 00000000000000000000000000000000000000000000000013C96A3742F64906 - 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB
62.                                                                                                                      - 1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi
63.                                                                                                                      - 1NpYjtLira16LfGbGwZJ5JbDPh3ai9bjf4
64.                                                                                                                      - 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN
65. 000000000000000000000000000000000000000000000001a838b13505b26867  - 18ZMbwUFLMHoZBbfpCjUJQTCMCbktshgpe
means that privat keys for #62, 63 & 64 will be somewhere between 13C96A3742F64906:1a838b13505b26867. Am I right?
If yes, how can I narrow the keyspace for #62 only? Even approximate range I believe will be ok fo try. Can a simple hex math be used in this case?
Sorry if its a noob question.


And who prevents you to narrow a range of search?
For search the private keys for address 62 is selected keyspace 2000000000000000 - 3FFFFFFFFFFFFFFF
In this space it is possible to find about 2305843009213693952 variants.
The project has started for a long time, therefore it is possible to assume, that about three quarters of addresses is checked up and among them no required.
I.e. it is necessary to you to check up 2305843009213693952:4 = 576460752303423488 variants
Can try to begin with 3800000000000001

- keyspace 3800000000000001:3FFFFFFFFFFFFFFF

If this quantity of variants 576460752303423488 you divide into speed of generation of keys of your computer that receive a rough operating time

Good luck!
Since the entire search space for #62 is 2000000000000000 to 3FFFFFFFFFFFFFFF

If you search the last 1/4 of the space from 3800000000000001 to 3FFFFFFFFFFFFFFF you will have exactly a 25% chance of finding the key assuming nobody else with much faster hardware finds it first.

Good luck!  You are going to need it.
Jump to: