Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 292. (Read 229181 times)

full member
Activity: 706
Merit: 111
01 0000000000000000000000000000000000000000000000000000000000000001 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
02 0000000000000000000000000000000000000000000000000000000000000003 1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb
03 0000000000000000000000000000000000000000000000000000000000000007 19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA
04 0000000000000000000000000000000000000000000000000000000000000008 1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e
05 0000000000000000000000000000000000000000000000000000000000000015 1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k
06 0000000000000000000000000000000000000000000000000000000000000031 1PitScNLyp2HCygzadCh7FveTnfmpPbfp8
07 000000000000000000000000000000000000000000000000000000000000004c 1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC
08 00000000000000000000000000000000000000000000000000000000000000e0 1M92tSqNmQLYw33fuBvjmeadirh1ysMBxK
09 00000000000000000000000000000000000000000000000000000000000001d3 1CQFwcjw1dwhtkVWBttNLDtqL7ivBonGPV
10 0000000000000000000000000000000000000000000000000000000000000202 1LeBZP5QCwwgXRtmVUvTVrraqPUokyLHqe
11 0000000000000000000000000000000000000000000000000000000000000483 1PgQVLmst3Z314JrQn5TNiys8Hc38TcXJu
12 0000000000000000000000000000000000000000000000000000000000000a7b 1DBaumZxUkM4qMQRt2LVWyFJq5kDtSZQot
13 0000000000000000000000000000000000000000000000000000000000001460 1Pie8JkxBT6MGPz9Nvi3fsPkr2D8q3GBc1
14 0000000000000000000000000000000000000000000000000000000000002930 1ErZWg5cFCe4Vw5BzgfzB74VNLaXEiEkhk
15 00000000000000000000000000000000000000000000000000000000000068f3 1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW
16 000000000000000000000000000000000000000000000000000000000000c936 1BDyrQ6WoF8VN3g9SAS1iKZcPzFfnDVieY
17 000000000000000000000000000000000000000000000000000000000001764f 1HduPEXZRdG26SUT5Yk83mLkPyjnZuJ7Bm
18 000000000000000000000000000000000000000000000000000000000003080d 1GnNTmTVLZiqQfLbAdp9DVdicEnB5GoERE
19 000000000000000000000000000000000000000000000000000000000005749f 1NWmZRpHH4XSPwsW6dsS3nrNWfL1yrJj4w
20 00000000000000000000000000000000000000000000000000000000000d2c55 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
21 00000000000000000000000000000000000000000000000000000000001ba534 14oFNXucftsHiUMY8uctg6N487riuyXs4h
22 00000000000000000000000000000000000000000000000000000000002de40f 1CfZWK1QTQE3eS9qn61dQjV89KDjZzfNcv
23 0000000000000000000000000000000000000000000000000000000000556e52 1L2GM8eE7mJWLdo3HZS6su1832NX2txaac
24 0000000000000000000000000000000000000000000000000000000000dc2a04 1rSnXMr63jdCuegJFuidJqWxUPV7AtUf7
25 0000000000000000000000000000000000000000000000000000000001fa5ee5 15JhYXn6Mx3oF4Y7PcTAv2wVVAuCFFQNiP
26 000000000000000000000000000000000000000000000000000000000340326e 1JVnST957hGztonaWK6FougdtjxzHzRMMg
27 0000000000000000000000000000000000000000000000000000000006ac3875 128z5d7nN7PkCuX5qoA4Ys6pmxUYnEy86k
28 000000000000000000000000000000000000000000000000000000000d916ce8 12jbtzBb54r97TCwW3G1gCFoumpckRAPdY
29 0000000000000000000000000000000000000000000000000000000017e2551e 19EEC52krRUK1RkUAEZmQdjTyHT7Gp1TYT
30 000000000000000000000000000000000000000000000000000000003d94cd64 1LHtnpd8nU5VHEMkG2TMYYNUjjLc992bps
31 000000000000000000000000000000000000000000000000000000007d4fe747 1LhE6sCTuGae42Axu1L1ZB7L96yi9irEBE
32 00000000000000000000000000000000000000000000000000000000b862a62e 1FRoHA9xewq7DjrZ1psWJVeTer8gHRqEvR
33 00000000000000000000000000000000000000000000000000000001a96ca8d8 187swFMjz1G54ycVU56B7jZFHFTNVQFDiu
34 000000000000000000000000000000000000000000000000000000034a65911d 1PWABE7oUahG2AFFQhhvViQovnCr4rEv7Q
35 00000000000000000000000000000000000000000000000000000004aed21170 1PWCx5fovoEaoBowAvF5k91m2Xat9bMgwb
36 00000000000000000000000000000000000000000000000000000009de820a7c 1Be2UF9NLfyLFbtm3TCbmuocc9N1Kduci1
37 0000000000000000000000000000000000000000000000000000001757756a93 14iXhn8bGajVWegZHJ18vJLHhntcpL4dex
38 00000000000000000000000000000000000000000000000000000022382facd0 1HBtApAFA9B2YZw3G2YKSMCtb3dVnjuNe2
39 0000000000000000000000000000000000000000000000000000004b5f8303e9 122AJhKLEfkFBaGAd84pLp1kfE7xK3GdT8
40 000000000000000000000000000000000000000000000000000000e9ae4933d6 1EeAxcprB2PpCnr34VfZdFrkUWuxyiNEFv
41 00000000000000000000000000000000000000000000000000000153869acc5b 1L5sU9qvJeuwQUdt4y1eiLmquFxKjtHr3E
42 000000000000000000000000000000000000000000000000000002a221c58d8f 1E32GPWgDyeyQac4aJxm9HVoLrrEYPnM4N
43 000000000000000000000000000000000000000000000000000006bd3b27c591 1PiFuqGpG8yGM5v6rNHWS3TjsG6awgEGA1
44 00000000000000000000000000000000000000000000000000000e02b35a358f 1CkR2uS7LmFwc3T2jV8C1BhWb5mQaoxedF
45 0000000000000000000000000000000000000000000000000000122fca143c05  1NtiLNGegHWE3Mp9g2JPkgx6wUg4TW7bbk
46 00000000000000000000000000000000000000000000000000002ec18388d544 1F3JRMWudBaj48EhwcHDdpeuy2jwACNxjP
47 00000000000000000000000000000000000000000000000000006cd610b53cba 1Pd8VvT49sHKsmqrQiP61RsVwmXCZ6ay7Z
48 0000000000000000000000000000000000000000000000000000ade6d7ce3b9b 1DFYhaB2J9q1LLZJWKTnscPWos9VBqDHzv
49 000000000000000000000000000000000000000000000000000174176b015f4d 12CiUhYVTTH33w3SPUBqcpMoqnApAV4WCF
50 00000000000000000000000000000000000000000000000000022bd43c2e9354 1MEzite4ReNuWaL5Ds17ePKt2dCxWEofwk
51 00000000000000000000000000000000000000000000000000075070a1a009d4 1NpnQyZ7x24ud82b7WiRNvPm6N8bqGQnaS
52 000000000000000000000000000000000000000000000000000efae164cb9e3c  15z9c9sVpu6fwNiK7dMAFgMYSK4GqsGZim
53 00000000000000000000000000000000000000000000000000180788e47e326c 15K1YKJMiJ4fpesTVUcByoz334rHmknxmT
54 00000000000000000000000000000000000000000000000000236fb6d5ad1f43  1KYUv7nSvXx4642TKeuC2SNdTk326uUpFy
55 000000000000000000000000000000000000000000000000006abe1f9b67e114 1LzhS3k3e9Ub8i2W1V8xQFdB8n2MYCHPCa
56 000000000000000000000000000000000000000000000000009d18b63ac4ffdf   17aPYR1m6pVAacXg1PTDDU7XafvK1dxvhi
57 00000000000000000000000000000000000000000000000001eb25c90795d61c 15c9mPGLku1HuW9LRtBf4jcHVpBUt8txKz
58 00000000000000000000000000000000000000000000000002c675b852189a21 1Dn8NF8qDyyfHMktmuoQLGyjWmZXgvosXf
59 00000000000000000000000000000000000000000000000007496cbb87cab44f  1HAX2n9Uruu9YDt4cqRgYcvtGvZj1rbUyt
60 0000000000000000000000000000000000000000000000000fc07a1825367bbe  1Kn5h2qpgw9mWE5jKpk8PP4qvvJ1QVy8su
61 00000000000000000000000000000000000000000000000013C96A3742F64906 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB

65 000000000000000000000000000000000000000000000001A838B13505B26867 18ZMbwUFLMHoZBbfpCjUJQTCMCbktshgpe

70 0000000000000000000000000000000000000000000000349B84B6431A6C4EF1 19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR

75 0000000000000000000000000000000000000000000004C5CE114686A1336E07 1J36UjUByGroXcCvmj13U6uwaVv9caEeAt
jr. member
Activity: 34
Merit: 5
#75: 4c5ce114686a1336e07

I have a very slow GPU (965m). For 80+ I need better GPU.
full member
Activity: 282
Merit: 114
Thank you very much. Now it seems that everything should be ok.
As for the RAM demand ... - no one orders to run it from the beginning, since I am interested in the scope, eg 80 - I can skip 79 previous ones, freeing up memory by the whole 2 ^ 79 Smiley
member
Activity: 245
Merit: 17
How to modify the current Baby-step-giant-step code to be able to compile on the current keyspace? I realize how long it will last and how much RAM will need.

with these declarations:

typedef struct hashtable_entry {
    uint128_t x;
    uint128_t exponent;
} hashtable_entry;

#define HASH_SIZE (2*GSTEP)
hashtable_entry table[HASH_SIZE];

using
#define GSTEP ((uint128_t)1<<32)

requires 256 Gb RAM !!!

to solve case #85, I assume that you need #define GSTEP ((uint128_t)1<<42)

that's 256*2*2*2*2*2*2*2*2*2*2 =  256 Tb RAM  Roll Eyes

Doesn't work.

warning: format ‘%lx’ expects argument of type ‘long unsigned int’, but argument 4 has type ‘uint128_t {aka __int128 unsigned}’ [-Wformat=]
                     printf("Found private key %2d: %16lx or %16lx\n", j + 1,


Easy to solve. Just rewrite the print section by separating lo and hi 64bits.
this is what I did
Code:
           while (table[entry].exponent != 0) {
                if (table[entry].x == (uint64_t) xst.n[2]) {
                    uint128_t key = (uint128_t) i *  (uint128_t) (2 * GSTEP);

                    uint128_t key1 = key - table[entry].exponent ;
                    uint128_t key2 = key + table[entry].exponent;

uint64_t key1lo = key1;
uint64_t key1hi = (key1 >> 64);
uint64_t key2lo = key2;
uint64_t key2hi = (key2 >> 64);
                    printf("Found private key %2d: %lx %lx or %lx %lx\n", j + 1,  key1hi,key1lo,key2hi,key2lo);
                    next++;
              ..................................
       
full member
Activity: 282
Merit: 114
How to modify the current Baby-step-giant-step code to be able to compile on the current keyspace? I realize how long it will last and how much RAM will need.

with these declarations:

typedef struct hashtable_entry {
    uint128_t x;
    uint128_t exponent;
} hashtable_entry;

#define HASH_SIZE (2*GSTEP)
hashtable_entry table[HASH_SIZE];

using
#define GSTEP ((uint128_t)1<<32)

requires 256 Gb RAM !!!

to solve case #85, I assume that you need #define GSTEP ((uint128_t)1<<42)

that's 256*2*2*2*2*2*2*2*2*2*2 =  256 Tb RAM  Roll Eyes

Doesn't work.

warning: format ‘%lx’ expects argument of type ‘long unsigned int’, but argument 4 has type ‘uint128_t {aka __int128 unsigned}’ [-Wformat=]
                     printf("Found private key %2d: %16lx or %16lx\n", j + 1,
newbie
Activity: 26
Merit: 0
pikachunakapika

hello give try your program test your program thanks
 Smiley
jr. member
Activity: 34
Merit: 5
#70: 349b84b6431a6c4ef1
jr. member
Activity: 38
Merit: 18
Time for calculations!
hoho, love it  Cool

==================
can you explain in short why the size of RAM matters in this algorithm?
The essence of the BSGS (baby-step-gigant-step) algorithm in simple words.
1)We calc 1st pubkey table and save in RAM.
2)We calc 2st pubkey table and on the fly compare it with 1st table in ram without save.
3)If a match is found, the privkey is ready.
The size of the tables is the same and less than the square root of the bit size of the key being flushed.
The comparison procedure in RAM is essentially the multiplication of two square roots, example 2^40 * 2^40 = 2^80.
2^80 is very difficult to calculate, but 2^40 times easier. Ok?
RAM is necessary because the comparison should be as FAST as possible.

Computational complexity
When there is enough RAM, each puzzle requires x2 more calculations.
But in case of a lack of ram, each puzzle the computational complexity increases x4 (exponential growth).

If there is not enough ram, you can compare BSvsGS by calculating BS/GS in chunks.
But the price is high - an exponential increase in computing.
For comparison with the next piece of BS loaded into memory, we are forced to re-calculate the GS completely.
An illustrative example showing dimensions.

Increase computation that you have 16Gb free RAM (penalties if not enough)
Code:
#61,#62	16Gb/16=1	x1
[BS]
[GS]
.......................................
#63,#64 32Gb/16=2 x3 ((2*2+2)/2)
[BS][BS]
[GS][GS][GS][GS]
.......................................
#65,#66 64Gb/16=4 x10 ((4*4+4)/2)
[BS][BS]
[BS][BS]
[GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS]
.......................................
#67,#68 128Gb/16=8 x36 ((8*8+8)/2)
[BS][BS][BS][BS]
[BS][BS][BS][BS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
.......................................
#69,#70 256Gb/16=16 x136 ((16*16+16)/2)
[BS][BS][BS][BS]
[BS][BS][BS][BS]
[BS][BS][BS][BS]
[BS][BS][BS][BS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]
[GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS][GS]

norm if enough ram
x1->x2->x4->x8->x16
penalties if not enough ram
x1->x3->x10->x36->x136

Due to this fact, the GPU calculations will be much less efficient.
The width of the memory bus is crucial, as the most powerful data exchange (Vega/Volta) is assumed.

==================
How long did it take and how much mem does it require ...
I realize how long it will last and how much RAM will need.
what equipment is needed to solve the puzzle and what software?

Calculate the time to restore the keys of the puzzle.

The use of the program break_short(brsh) is supposed

1core brsh =   0,27 Mkeys/s
128cr brsh =  34,5  Mkeys/s
Time is indicated for calculation only for one table(BS/GS), but they should be considered two, that is, double the actual time.

Ideal calculations suggest that you have enough RAM (no penalties)
Code:
2^x |#puzzle| memory | 1core brsh | 128cr brsh | 
------------------------------------------------
2^23(#47,#48)  128(Mb)    30(sec) |      0()   |
2^24(#49,#50)  256(Mb)    60(sec) |    0,5(sec)|
2^25(#51,#52)  512(Gb)     2(min) |      1(sec)|
2^26(#53,#54)    1(Gb)     4(min) |      2(sec)|
2^27(#55,#56)    2(Gb)     8(min) |      4(sec)|
2^28(#57,#58)    4(Gb)    16(min) |      8(sec)|
2^29(#59,#60)    8(Gb)    32(min) |     16(sec)|
2^30(#61,#62)   16(Gb)     1(h)   |     32(sec)|
2^31(#63,#64)   32(Gb)     2(h)   |      1(min)|
2^32(#65,#66)   64(Gb)     4(h)   |      2(min)|
-----double-ram-x2(Gb)-because-need-x32->x64----
2^33(#67,#68)  256(Gb)     8(h)   |      4(min)|
2^34(#69,#70)  512(Gb)    16(h)   |      8(min)|
2^35(#71,#72)    1(Tb)    32(h)   |     16(min)|
2^36(#73,#74)    2(Tb)   2,5(d)   |     32(min)|
2^37(#75,#76)    4(Tb)     5(d)   |      1(h)  |
2^38(#77,#78)    8(Tb)    10(d)   |      2(h)  |
2^39(#79,#80)   16(Tb)    20(d)   |      4(h)  |
2^40(#81,#82)   32(Tb)    40(d)   |      8(h)  |
2^41(#83,#84)   64(Tb)     3(m)   |     16(h)  |
2^42(#85,#86)  128(Tb)     6(m)   |     32(h)  |
2^43(#87,#88)  256(Tb)     9(m)   |    2,5(d)  |
2^44(#89,#90)  512(Tb)   1,5(y)   |      5(d)  |
2^45(#91,#92     1(Pb)     3(y)   |     10(d)  |
2^46(#93,#94)    2(Pb)     6(y)   |     20(d)  |
2^47(#95,#96)    4(Pb)    12(y)   |     40(d)  |
2^47(#97,#98)    8(Pb)    24(y)   |      3(m)  |
2^47(#99,#100)  16(Pb)    48(y)   |      6(m)  |

* On Linux operating systems, performance is 25% higher than on Windows.
* Assumes server instance AmazonAWS 4Tb ddr4 128cores (x1e.32xlarge)
* The actual performance of 128 cores can be reduced to 96 cores if the server has 64 real cores of 2 logical cores each.

==================

Calculations suggest that you have 4Tb of memory (penalties if not enough)
Code:
2^x |#puzzle | memory | norm/penalty| 1core brsh  | 128cr brsh |
----------------------------------------------------------------
2^37(#75,#76)    4(Tb)|   1/      1|  5(d)/  5(d)|  1(h)/  1(h)|
2^38(#77,#78)    8(Tb)|   2/      3| 10(d)/ 15(d)|  2(h)/  3(h)|
----------------------------------------------------------------
2^39(#79,#80)   16(Tb)|   4/     10| 20(d)/1,5(m)|  4(h)/ 10(h)|
2^40(#81,#82)   32(Tb)|   8/     36| 40(d)/  6(m)|  8(h)/ 36(h)|
2^41(#83,#84)   64(Tb)|  16/    136|  3(m)/  2(y)| 16(h)/  6(d)|
----------------------------------------------------------------
2^42(#85,#86)  128(Tb)|  32/    528|  6(m)/  8(y)| 32(h)/ 22(d)|
2^43(#87,#88)  256(Tb)|  64/   2080|  9(m)/ 24(y)|2,5(d)/  3(m)|
----------------------------------------------------------------
2^44(#89,#90)  512(Tb)| 128/   8256|1,5(y)/ 95(y)|  5(d)/ 10(m)|
2^45(#91,#92)    1(Pb)| 256/  32896|  3(y)/385(y)| 10(d)/3,5(y)|
2^46(#93,#94)    2(Pb)| 512/ 131328|  6(y)/  ?(y)| 20(d)/ 14(y)|
----------------------------------------------------------------
2^47(#95,#96)    4(Pb)|1024/ 524800| 12(y)/  ?(y)| 40(d)/ 56(y)|
2^47(#97,#98)    8(Pb)|2048/2098176| 24(y)/  ?(y)|  3(m)/252(y)|
----------------------------------------------------------------
2^47(#99,#100)  16(Pb)|4096/8390656| 48(y)/  ?(y)|  6(m)/  ?(y)|

* penalty calculation formula
penalty = (((norm * norm) + norm) / 2)


How is this possible?

Now restore the chronology of events

May 31, the Author deliberately discloses the pubkeys in every fifth transaction in order to update and improve the puzzle.
On June 7, a vigilant certain Mr.X gets #65, then #70, #75, #80 within 4 days.
By the above calculation it is easy to understand how he did it.
He modified break_short, adding 64-128bit, multi-core and the ability to calculate BS in chunks.
(even a novice C programmer can easily add these modifications to the program)
Then he rented amazonaws x1e.32xlarge with 2-4Tb for 4 days (250$/day), spending 1k $ and earned 20k $
I hate you, but you're well done)

How is it going in London? Wink You know, Bivonas is not the best place)

Why didn't he find #85? As can be seen from the table it is unprofitable! (without significant improvement of Software or Server)

Arulbero has already wrote some posts of improving the Software, let's leave it.


I think that beyond #85 it will be very difficult to recover the private key, even with 1 TB of RAM (with the Baby-Giant Step algorithm).

Nvme ssd as a swap?

SSD is much slower than RAM. (DDR4 47GB/s)

Let's talk about Servers.
We are not so important processor or videocard. But the size of RAM is very important to us.
The problem is that more than 4Tb RAM is not mass produced.
Consider a few ideas around this.

NVMe has approximately the same bandwidth as DDR4 RAM, but the access speed is much lower.
A HDD has a response time of about 10ms, an SSD will respond in 0.1ms, an Optain will respond in 8micros, a RAM will respond in 50ns.
0.1ms is equal to 100,000 ns.
This means that RAM can serve data in memory 1000 times faster than NVMe disk.

I checked the paging file(swap) on M.2 RAID0 NVMe - it's useless. its slooooooooow (100Kkey/s)

But there is news from Western Digital
Memory Extension Drive
Ultrastar DC ME200 1,2,4Tb
https://blog.westerndigital.com/how-ultrastar-memory-extension-drive-works/
https://www.westerndigital.com/products/data-center-drives/ultrastar-dc-me200-memory-extension-drive
According to WD, if we take the appeal to 786 GB of DRAM for pure performance, which is estimated at 1,080 million transactions per second, then a 3: 1 mix (576 GB of Ultrastar and 192 GB of DRAM) will drop to 91% of performance or to 983 thousand transactions, and at a ratio of 7: 1 (672 GB Ultrastar and 96 GB DRAM), the performance will decrease to 85% or 918 thousand transactions per second.


Intel Optain(Optane)
Optain looks like an acceleration cache for hard drives.
It can also work in the expansion mode of RAM (!).
It will be useful for a large number of small file accesses(!).
Optain has less capacity than SSD.
A 7th generation Intel processor is required, so it does not improve performance for older PCs.
Optane can to 7 microseconds at readings.
Optane can only get QD1 performance. This is impressive (5 times faster than current generation SSM NVMe).

Intel Optane SSD 750Gb
https://itpeernetwork.intel.com/optane-intel-memory-drive-technology/

Optane DC Persistent Memory DIMM format
https://lenovopress.com/lp1066-intel-optane-dc-persistent-memory

You are the only one that has the working code for that  Grin
Not one) #70 success calc.
0290E6900A58D33393BC1097B5AED31F2E4E7CBD3E5466AF958665BC0121248483
00000000000000000000000000000000000000000000003*9*4*6*3*A*C*E*1
Our legendary master, why so long, maybe it's time to clean up the Xeon registers?)
member
Activity: 245
Merit: 17
How to modify the current Baby-step-giant-step code to be able to compile on the current keyspace? I realize how long it will last and how much RAM will need.

with these declarations:

typedef struct hashtable_entry {
    uint128_t x;
    uint128_t exponent;
} hashtable_entry;

#define HASH_SIZE (2*GSTEP)
hashtable_entry table[HASH_SIZE];

using
#define GSTEP ((uint128_t)1<<32)

requires 256 Gb RAM !!!

to solve case #85, I assume that you need #define GSTEP ((uint128_t)1<<42)

that's 256*2*2*2*2*2*2*2*2*2*2 =  256 Tb RAM  Roll Eyes
full member
Activity: 282
Merit: 114
How to modify the current Baby-step-giant-step code to be able to compile on the current keyspace? I realize how long it will last and how much RAM will need.
legendary
Activity: 2646
Merit: 1137
All paid signature campaigns should be banned.
Well, what is the sacramental meaning of the step through 5? And he just brute force? because, it seems, it is necessary that the address be translated to its public key lit up. Arulbero could not until there is no output, find the number or could?)).

The author of the puzzle did that transaction to spend from every fifth address.  

My guess is that it is an experiment to see how far people can get when there is an available spend transaction versus addresses with no available spend transaction.

He has been known to visit this thread.  Perhaps he will explain it.

Obviously it is much easier to get the private key when there is a spend transaction on the address. #1 through #61 took a long time whereas #65, #70, #75 and #80 were snatched up pretty soon after the author added the spend transaction to those addresses.  I expect #85 will also be snatched up in due time.

As discussed #85, #90, #95, #100, #105, #110 are all within the realm of possibility given enough time and resources.  It looks as if #115 would be a new world record so someone with enough equipment and motivation can probably get that one.  Beyond that it is very iffy.

Note that since there is a spend transaction on these addresses we will probably see more of them before we ever see the next address without a spend transaction, #62.  This is a HUGE difference in effort.

I think one of the take home messages here might be that due to this difference in effort and other factors having to do with privacy and the fungiblity of Bitcoin in general:  do not reuse Bitcoin addresses.  Bitcoin addresses should be used exactly twice:  once to fund them and once to spend them - then never used again.
jr. member
Activity: 34
Merit: 5
No not bitcrack. It does not work here.
member
Activity: 73
Merit: 10
Hi, i have an asus 1080ti  Wink

but do you have to use bitcrack?

jr. member
Activity: 34
Merit: 5
Anyone with a fast GPU (nvidia) and linux who can give me ssh for a % share of #85? The system needs to have cuda installed.
Private message me please if interested Smiley
newbie
Activity: 26
Merit: 0
Arulbero
could you give us all the private keys for 160 bits
 Grin Grin Grin
jr. member
Activity: 184
Merit: 3
Well, what is the sacramental meaning of the step through 5? And he just brute force? because, it seems, it is necessary that the address be translated to its public key lit up. Arulbero could not until there is no output, find the number or could?)).

member
Activity: 255
Merit: 27
.....
80 ----------------------------- Unknown Private Key spent ----------------------------- 1BCf6rHUW6m3iH2ptsvnjgLruAiPQQepLe
.....
85 ---------- Unknown Private Key spent 0.00001 BTC from 0.85001 BTC ------------ 1Kh22PvXERd2xpTQk3ur6pPEqFeckCJfAr
.....
90 ---------- Unknown Private Key spent 0.00001 BTC from 0.90001 BTC ------------ 1L12FHH2FHjvTviyanuiFVfmzCy46RRATU
.....
95 ---------- Unknown Private Key spent 0.00001 BTC from 0.95001 BTC ------------ 19eVSDuizydXxhohGh8Ki9WY9KsHdSwoQC
.....
100 --------- Unknown Private Key spent 0.00001 BTC from 1.00001 BTC ------------ 1KCgMv8fo2TPBpddVi9jqmMmcne9uSNJ5F
.....
105 --------- Unknown Private Key spent 0.00001 BTC from 1.05001 BTC ------------ 1CMjscKB3QW7SDyQ4c3C3DEUHiHRhiZVib
.....
110 --------- Unknown Private Key spent 0.00001 BTC from 1.10001 BTC ------------ 12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg
.....
115 --------- Unknown Private Key spent 0.00001 BTC from 1.15001 BTC ------------ 1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv
.....
120 --------- Unknown Private Key spent 0.00001 BTC from 1.20001 BTC ------------ 17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT
.....
125 --------- Unknown Private Key spent 0.00001 BTC from 1.25001 BTC ------------ 1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5
.....
130 --------- Unknown Private Key spent 0.00001 BTC from 1.30001 BTC ------------ 1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua
.....
135 --------- Unknown Private Key spent 0.00001 BTC from 1.35001 BTC ------------ 16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v
.....
140 --------- Unknown Private Key spent 0.00001 BTC from 1.40001 BTC ------------ 1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo
.....
145 --------- Unknown Private Key spent 0.00001 BTC from 1.45001 BTC ------------ 19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg
.....
150 --------- Unknown Private Key spent 0.00001 BTC from 1.50001 BTC ------------ 1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy
.....
155 --------- Unknown Private Key spent 0.00001 BTC from 1.55001 BTC ------------ 1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ
.....
160 --------- Unknown Private Key spent 0.00001 BTC from 1.60001 BTC ------------ 1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv

jr. member
Activity: 47
Merit: 13
01 0000000000000000000000000000000000000000000000000000000000000001 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
02 0000000000000000000000000000000000000000000000000000000000000003 1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb
03 0000000000000000000000000000000000000000000000000000000000000007 19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA
04 0000000000000000000000000000000000000000000000000000000000000008 1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e
05 0000000000000000000000000000000000000000000000000000000000000015 1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k
06 0000000000000000000000000000000000000000000000000000000000000031 1PitScNLyp2HCygzadCh7FveTnfmpPbfp8
07 000000000000000000000000000000000000000000000000000000000000004c 1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC
08 00000000000000000000000000000000000000000000000000000000000000e0 1M92tSqNmQLYw33fuBvjmeadirh1ysMBxK
09 00000000000000000000000000000000000000000000000000000000000001d3 1CQFwcjw1dwhtkVWBttNLDtqL7ivBonGPV
10 0000000000000000000000000000000000000000000000000000000000000202 1LeBZP5QCwwgXRtmVUvTVrraqPUokyLHqe
11 0000000000000000000000000000000000000000000000000000000000000483 1PgQVLmst3Z314JrQn5TNiys8Hc38TcXJu
12 0000000000000000000000000000000000000000000000000000000000000a7b 1DBaumZxUkM4qMQRt2LVWyFJq5kDtSZQot
13 0000000000000000000000000000000000000000000000000000000000001460 1Pie8JkxBT6MGPz9Nvi3fsPkr2D8q3GBc1
14 0000000000000000000000000000000000000000000000000000000000002930 1ErZWg5cFCe4Vw5BzgfzB74VNLaXEiEkhk
15 00000000000000000000000000000000000000000000000000000000000068f3 1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW
16 000000000000000000000000000000000000000000000000000000000000c936 1BDyrQ6WoF8VN3g9SAS1iKZcPzFfnDVieY
17 000000000000000000000000000000000000000000000000000000000001764f 1HduPEXZRdG26SUT5Yk83mLkPyjnZuJ7Bm
18 000000000000000000000000000000000000000000000000000000000003080d 1GnNTmTVLZiqQfLbAdp9DVdicEnB5GoERE
19 000000000000000000000000000000000000000000000000000000000005749f 1NWmZRpHH4XSPwsW6dsS3nrNWfL1yrJj4w
20 00000000000000000000000000000000000000000000000000000000000d2c55 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum
21 00000000000000000000000000000000000000000000000000000000001ba534 14oFNXucftsHiUMY8uctg6N487riuyXs4h
22 00000000000000000000000000000000000000000000000000000000002de40f 1CfZWK1QTQE3eS9qn61dQjV89KDjZzfNcv
23 0000000000000000000000000000000000000000000000000000000000556e52 1L2GM8eE7mJWLdo3HZS6su1832NX2txaac
24 0000000000000000000000000000000000000000000000000000000000dc2a04 1rSnXMr63jdCuegJFuidJqWxUPV7AtUf7
25 0000000000000000000000000000000000000000000000000000000001fa5ee5 15JhYXn6Mx3oF4Y7PcTAv2wVVAuCFFQNiP
26 000000000000000000000000000000000000000000000000000000000340326e 1JVnST957hGztonaWK6FougdtjxzHzRMMg
27 0000000000000000000000000000000000000000000000000000000006ac3875 128z5d7nN7PkCuX5qoA4Ys6pmxUYnEy86k
28 000000000000000000000000000000000000000000000000000000000d916ce8 12jbtzBb54r97TCwW3G1gCFoumpckRAPdY
29 0000000000000000000000000000000000000000000000000000000017e2551e 19EEC52krRUK1RkUAEZmQdjTyHT7Gp1TYT
30 000000000000000000000000000000000000000000000000000000003d94cd64 1LHtnpd8nU5VHEMkG2TMYYNUjjLc992bps
31 000000000000000000000000000000000000000000000000000000007d4fe747 1LhE6sCTuGae42Axu1L1ZB7L96yi9irEBE
32 00000000000000000000000000000000000000000000000000000000b862a62e 1FRoHA9xewq7DjrZ1psWJVeTer8gHRqEvR
33 00000000000000000000000000000000000000000000000000000001a96ca8d8 187swFMjz1G54ycVU56B7jZFHFTNVQFDiu
34 000000000000000000000000000000000000000000000000000000034a65911d 1PWABE7oUahG2AFFQhhvViQovnCr4rEv7Q
35 00000000000000000000000000000000000000000000000000000004aed21170 1PWCx5fovoEaoBowAvF5k91m2Xat9bMgwb
36 00000000000000000000000000000000000000000000000000000009de820a7c 1Be2UF9NLfyLFbtm3TCbmuocc9N1Kduci1
37 0000000000000000000000000000000000000000000000000000001757756a93 14iXhn8bGajVWegZHJ18vJLHhntcpL4dex
38 00000000000000000000000000000000000000000000000000000022382facd0 1HBtApAFA9B2YZw3G2YKSMCtb3dVnjuNe2
39 0000000000000000000000000000000000000000000000000000004b5f8303e9 122AJhKLEfkFBaGAd84pLp1kfE7xK3GdT8
40 000000000000000000000000000000000000000000000000000000e9ae4933d6 1EeAxcprB2PpCnr34VfZdFrkUWuxyiNEFv
41 00000000000000000000000000000000000000000000000000000153869acc5b 1L5sU9qvJeuwQUdt4y1eiLmquFxKjtHr3E
42 000000000000000000000000000000000000000000000000000002a221c58d8f 1E32GPWgDyeyQac4aJxm9HVoLrrEYPnM4N
43 000000000000000000000000000000000000000000000000000006bd3b27c591 1PiFuqGpG8yGM5v6rNHWS3TjsG6awgEGA1
44 00000000000000000000000000000000000000000000000000000e02b35a358f 1CkR2uS7LmFwc3T2jV8C1BhWb5mQaoxedF
45 0000000000000000000000000000000000000000000000000000122fca143c05  1NtiLNGegHWE3Mp9g2JPkgx6wUg4TW7bbk
46 00000000000000000000000000000000000000000000000000002ec18388d544 1F3JRMWudBaj48EhwcHDdpeuy2jwACNxjP
47 00000000000000000000000000000000000000000000000000006cd610b53cba 1Pd8VvT49sHKsmqrQiP61RsVwmXCZ6ay7Z
48 0000000000000000000000000000000000000000000000000000ade6d7ce3b9b 1DFYhaB2J9q1LLZJWKTnscPWos9VBqDHzv
49 000000000000000000000000000000000000000000000000000174176b015f4d 12CiUhYVTTH33w3SPUBqcpMoqnApAV4WCF
50 00000000000000000000000000000000000000000000000000022bd43c2e9354 1MEzite4ReNuWaL5Ds17ePKt2dCxWEofwk
51 00000000000000000000000000000000000000000000000000075070a1a009d4 1NpnQyZ7x24ud82b7WiRNvPm6N8bqGQnaS
52 000000000000000000000000000000000000000000000000000efae164cb9e3c  15z9c9sVpu6fwNiK7dMAFgMYSK4GqsGZim
53 00000000000000000000000000000000000000000000000000180788e47e326c 15K1YKJMiJ4fpesTVUcByoz334rHmknxmT
54 00000000000000000000000000000000000000000000000000236fb6d5ad1f43  1KYUv7nSvXx4642TKeuC2SNdTk326uUpFy
55 000000000000000000000000000000000000000000000000006abe1f9b67e114 1LzhS3k3e9Ub8i2W1V8xQFdB8n2MYCHPCa
56 000000000000000000000000000000000000000000000000009d18b63ac4ffdf   17aPYR1m6pVAacXg1PTDDU7XafvK1dxvhi
57 00000000000000000000000000000000000000000000000001eb25c90795d61c 15c9mPGLku1HuW9LRtBf4jcHVpBUt8txKz
58 00000000000000000000000000000000000000000000000002c675b852189a21 1Dn8NF8qDyyfHMktmuoQLGyjWmZXgvosXf
59 00000000000000000000000000000000000000000000000007496cbb87cab44f  1HAX2n9Uruu9YDt4cqRgYcvtGvZj1rbUyt
60 0000000000000000000000000000000000000000000000000fc07a1825367bbe  1Kn5h2qpgw9mWE5jKpk8PP4qvvJ1QVy8su
61 00000000000000000000000000000000000000000000000013C96A3742F64906 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB
.....
65 000000000000000000000000000000000000000000000001a838b13505b26867 18ZMbwUFLMHoZBbfpCjUJQTCMCbktshgpe
.....
70 ----------------------------- Unknown Private Key spent ----------------------------- 19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR
.....
75 ----------------------------- Unknown Private Key spent ----------------------------- 1J36UjUByGroXcCvmj13U6uwaVv9caEeAt
.....
80 ----------------------------- Unknown Private Key spent ----------------------------- 1BCf6rHUW6m3iH2ptsvnjgLruAiPQQepLe

 Smiley  Smiley  Smiley
legendary
Activity: 1932
Merit: 2077
112 bit is the current record for the ECDLP (Elliptic Curve Discrete Logarithm Problem = retrieve the private key from the public key)

I understood correctly: if you have 200 playstation3 and 6 months, then you can find a private key to any Bitcoin address that had outgoing transactions?


No, you could find any private key in a 120 bit space, but Bitcoin uses a 256 bit space.

You could find only the private keys of the puzzle transaction below 120 bit: #85, #90, #95, #100, #105 ... #115 bit
member
Activity: 174
Merit: 12

If you have 2^143 * 200 = 2230074519853062314153571827264836150598041600 PS3 and 6 months. And the electricity to power them, let's say about 100W per PS3.

Just? Count all bitcoins in my pocket  Cheesy Grin
Jump to: