Anyway maybe that makes sense to reduce the volume of addresses being searched. We can preselect all double matches from 2^2 to 2^16384, from 000001 to 999999, to boldly use the space up 2^16384. The first we know 288230 to 576460. For Part 3, the same variability of coincidences as for the two is distributed. If the first does not coincide with the second in a certain space, then it does not coincide with the third as well as the second with the third. Therefore can take 288230 + blabla + blabla, blabla which are not in those addresses that we drop.
288230 + blabl1(-drop) + blabl1(-drop)
288230 + blabl1(-drop) + blabl2(-drop)
288230 + blabl1(-drop) + blabl3(-drop)
...
288230 + blabl2(-drop) + blabl1(-drop)
288230 + blabl2(-drop) + blabl2(-drop)
288230 + blabl2(-drop) + blabl3(-drop)
...
288231 + blabl1(-drop) + blabl1(-drop)
288231 + blabl1(-drop) + blabl2(-drop)
288231 + blabl1(-drop) + blabl3(-drop)
...
288232 + blabl1(-drop) + blabl1(-drop)
288232 + blabl1(-drop) + blabl2(-drop)
288232 + blabl1(-drop) + blabl3(-drop)
...
In this way, can search for Satoshi addresses, 78:6=13.
114316678280891804995523418509491057753329410818141542253734500471810132820688 1CHKGF3SsDLK3djn6E8jUkjuwcgPKMyc34 17cojTmUrAofenxVSB5BhSvZM61iMPCrzd
114316260673220778268790230044278609268507534811910719820562753639543748782835 1AEqg7kTHmLho5PcF9tPVZhhnQ6tmfUTha 1LpADvJHv1odfkWxXxzccqZ8viBNkFhnHy
114316452646018272683475381526695091171425943777328474335018802849693380444001 18upKC5M91ypuRKzeJWkgGqZf1d1TpsE2F 1LoCCvHWDNHSYYmNNczS7sLYQCvJmPWdtm
114316625178452460115813013373580331434373522159645941409868415734332300148981 1PGXnFaQYgrt3qGaJZYGtwDj8FGHzrQkQL 1NZDn5NPAmtgDPLAegZRkMUfLSsRbdnAtS
114316904686872180867719739744819328776352362511332360202616099091238249076764 1KCvqGifTqgfhgr36JXjY9j9xfrttqJJSe 13FMzY25nL9z19DzbnSAJZ9s3C2Nsv3YiY
100235088372727205216482572769683692690495080675055786504559914586112624555718 1Kx65vMycF29aho4732Q3QzVe6SPsxKhDk 18K2zfmfKaitvS1rXRn3w3sq3wSHHa6SMr
100235527728515171422893936559947349135600554688646401128675966128331072713446 1N4Tc4pWXegZrZKcNHRy6FQaqMnyqK1yXM 145NB2fvU9MYVMTJ567PcXuNikR95vDJmX
100235723673589086620306468291281640667774197889575061424929696336978686441984 14GjH3Txb7e7Z1FKnJDkvdjmCJKvzv2EE7 1LEU3HxJG9WzS5BTfQeBSK8V3yVjjfKVUC
100235635271122069407191662505452274854151459486808625334955067680197890775655 12Vm8sExTCTS32L8YxghS8EBV4rcuBZxkp 1KE1ezfgMt1qGLDkq8vqkUNB3dLDPZqmTS
100235202398033455327631709491786847917683923094331177537179646806329369617010 1FG7VwA2meYBaLSGbwBseCyMUYNJgZ452E 18TmNBvQtDXm5QjCR6r7pY5HSQd29bzJbC
100235093529756268710420280488109144495848453137385895680900086092684317815814 1DN8sByU9PVz52SDPZakFfYVLPmrUkX6ro 1NPbvqfZzxJKc86kP2bPW4z6iM5Wv5y7aP
Another scan variant is to take a fixed position degrees
blabla=115000
blabl1 = 15
blabl2 = 2
blabl3 = 1
blabl8 = 5
...
123456789...position (blabl2 = 2)
65536
4
294967296
1
8446744073709551616
3
40282366920938463463374607431768211456
1
15792089237316195423570985008687907853269984665640564039457584007913129639936
1
3407807929942597099574024998205846127479365820592393377723561443721764030073546976801
874298166903427690031858186486050853753882811946569946433649006084096
...
random walks 2^2 - 2^16384, positions remain.
scan (blabla+blabl1+blabl2+blabl3+...blab12)
scan (blabla+blabl1+blabl2+blabl3+...blab12)
scan (blabla+blabl1+blabl2+blabl3+...blab12)
Well, the variant that was already mentioned is just a bust with a cognitive shift, but we cannot find out what the numbers will be in large degrees 2^18446744073709551616. But given the fact that they are all repeating in infinity)), maybe something will jump out.
(Imagine that this is a 77-78 digit number.)
115792089237316195423570985008687907853269984665640564039457584007913129639936
1
15792089237316195423570985008687907853269984665640564039457584007913129639936
11
5792089237316195423570985008687907853269984665640564039457584007913129639936
115
792089237316195423570985008687907853269984665640564039457584007913129639936
1157
92089237316195423570985008687907853269984665640564039457584007913129639936
***
Well, going back to wandering in a puzzle
in continuation
https://bitcointalksearch.org/topic/m.48644494If 59 turns out to be among 390000000000000000-554000000000000000 Quite interesting where will be 60.
10001010 01000011 11100110
10001010 10100111 01001110
10001101 01011011 00111110
10001111 10101000 10111011 10010011 00101010 11110111 10010011 01111101 00100001
10010100 00111010 01110000 10010100 01101001 10010100 10010011 11111111 11101110
10010111 01001011 00110011 10010110 10010100 01010111 10010111 00011110 00000101
10001010 11011001 10100000
10000101 10111001 01100011
10001010 00100010 00111110
10001111 01000000 01011100 10010000 01100010 11011010 10010001 10011111 00100001
10010101 01100111 11000100 10010100 11010111 00001101 10010100 11010111 00001101
10010110 11001110 11110010 10010110 11100000 11011001 10010110 10100010 00010000
60 15,... 1152921504606846976 - ((((((((((15,9456789 * 128) * 128) * 128) * 128) * 128) * 128) * 128) * 128) - 1143914305352105984) * 128) =
10001110 570000000000000000 - 640000000000000000 9 low 15,93
10001101 640000000000000000 - 710000000000000000 9 low 15,92 15,93
10001100 700000000000000000 - 770000000000000000 9 15,91 15,92
10001010 810000000000000000 - 882000000000000000 9 15,90 15,91
10001001 880000000000000000 - 943000000000000000 8,9 15,89 15,90
10001000 940000000000000000 - 1010000000000000000 8 15,89
10000111 1000000000000000000- 1070000000000000000 8 15,88 15,89
10000110 1060000000000000000- 1130000000000000000 8 hi 15,87 15,88
10000101 1120000000000000000- 1160000000000000000 8 hi 15,87
576460752303423488-1152921504606846976
Will there be a match
10001010 or include other bytes 10001100 10001001 10001000 10000111 10000110. Here the approximate space is obtained 700000000000000000-1070000000000000000, maybe up to 1130000000000000000 will go.