Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 308. (Read 240414 times)

legendary
Activity: 2646
Merit: 1138
All paid signature campaigns should be banned.
My comment about you stealing my Bitcoins was a joke.  You can't steal them for the mathematical reasons I gave.

The only way to get the next prize is to brute force search the range of the prize.

You are correct that other people with much faster hardware will probably beat you to the prize.

There has been a lot of effort on this thread where people try to "calculate" (in other words guess) the expected sub-range withing the next prize range.

You could search their guess at the expected sub-range but again without faster hardware you will probably not win the next prize.

You could try to search randomly in the next range (or their guess at the expected sub-range).  You will probably still lose but hey, you just might get lucky.
jr. member
Activity: 119
Merit: 1
I in a shock!!! On this forum it is possible to set questions? Or each man, who has set a question - thief and hacker?
You seriously think, what I such terrible hacker and my purpose in life - " Is that what you are thinking of doing? Stealing my Bitcoins? "
Any thief or hacker on this forum will not set questions - he simply were silent will make it!
Well it is simple a deviation(rejection) from a theme.
***
And now as a matter of fact of question.

Page 44 a post * 863
following here is
1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi
search range in hexadecimal
2000000000000000 to 4000000000000000
good luck


I understand so, that this address 1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi the man " has given back for all " as a prize.
Who can first find private key - that has the right to take away to itself BTC from this address.

It is possible to do(make) search private key different software, but I can use only clBitCrack (mine laptop - AMD)
For search private key software clBitCrack should process - keyspace in hexadecimal
from 2000000000000000 to 4000000000000000.
The maximal speed of search, which can apply mine laptop - AMD turns out 0.63 MKey/s
At such " of fantastic speed " after two day (for 48 hours) mine laptop - AMD has scanned "huge" quantity(amount) of variants - 19254d3801
If I shall continue search, mine laptop - AMD should work in a mode 24/7 more than 10 years!!!
How I can compete to other people, at which powerful computers and these computers reach(achieve) speeds 135 MKey/s - 850 MKey/s???!!!

Therefore I am compelled to search for other method.
legendary
Activity: 2646
Merit: 1138
All paid signature campaigns should be banned.

FOR EXAMPLE: what method it is possible to calculate the private key in hexadecimal keyspace for addresses 1HBtApAFA9B2YZw3G2YKSMCtb3dVnjuNe2
I know, that he is on a position 00000000000000000000000000000000000000000000000000000022382facd0
I have learned(found out) it casually from an open source.
But me interests as it is possible to calculate this position and with what minimal error (i.e. with the maximal accuracy).

All these addresses are taken casually only for an example

I think you are asking "How do I calculate the private key from the public key?"

It is easy to calculate the public key from the private key.  The formula is PublicKey = PrivateKey * G where G is a specific point on the specified elliptic curve and * is the scalar multiplication defined over the finite group of the elliptic curve.

For all practical purposes it is impossible to calculate or even estimate the private key from the public key because there is no "division operation" defined for the group.

That is what makes Bitcoin work.

If you could calculate or even estimate the private key from the public key then anyone could calculate anyone's private key from their public key and anyone could steal anyone's Bitcoins.  Is that what you are thinking of doing?  Stealing my Bitcoins?  

If anyone ever figures out how to calculate or estimate the private key from the public key then Bitcoin and a plethora of other system worldwide would all be catastrophically broken.
jr. member
Activity: 119
Merit: 1

I have no idea what you are asking.  What do you mean by "location"?
[/quote]

All space the private key in hexadecimal is located  - keyspace:
FROM - 0000000000000000000000000000000000000000000000000000000000000001:
TO - FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

To each position belongs two address: one - "ucompressed"; second - "compressed"

So, for example first position 0000000000000000000000000000000000000000000000000000000000000001 posesses two addresses
"ucompressed" - 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm
"compressed" - 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH

And last position FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF posesses other two addresses

"ucompressed" - 12M4QznuNZH2BRVbLK8SKvNqGTPJpCpST7
"compressed" - 1PRWyFKTsQSJaUdX9VKgQNw8JERPw2kMFm

All other addresses are in space
FROM - 0000000000000000000000000000000000000000000000000000000000000001:
TO - FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FOR EXAMPLE: what method it is possible to calculate the private key in hexadecimal keyspace for addresses 1HBtApAFA9B2YZw3G2YKSMCtb3dVnjuNe2
I know, that he is on a position 00000000000000000000000000000000000000000000000000000022382facd0
I have learned(found out) it casually from an open source.
But me interests as it is possible to calculate this position and with what minimal error (i.e. with the maximal accuracy).

All these addresses are taken casually only for an example
legendary
Activity: 2646
Merit: 1138
All paid signature campaigns should be banned.
Again, we know the exact method used to generated the all the private keys:  the keys are all a random number masked down to the desired size.

So if the range of the next key is know (and it is) then the probability of finding it within any subrange within the known range is easily calculated.

If you know a random number is between 1 and 1000 then the probability that it is between 100 and 199 is exactly 10%, the probability it is in any subrange you calculate by any means, no matter how well intentioned and complicated, is just the size of that subrange over the size of the known range.



Hi BurtW!

Can someone prompt as it is possible calculate location of the private key in hexadecimal (- keyspace FROM:TO)?

Possible write in P.M.
I have no idea what you are asking.  What do you mean by "location"?
jr. member
Activity: 119
Merit: 1
Again, we know the exact method used to generated the all the private keys:  the keys are all a random number masked down to the desired size.

So if the range of the next key is know (and it is) then the probability of finding it within any subrange within the known range is easily calculated.

If you know a random number is between 1 and 1000 then the probability that it is between 100 and 199 is exactly 10%, the probability it is in any subrange you calculate by any means, no matter how well intentioned and complicated, is just the size of that subrange over the size of the known range.



Hi BurtW!

Can someone prompt as it is possible calculate location of the private key in hexadecimal (- keyspace FROM:TO)?

Possible write in P.M.
jr. member
Activity: 184
Merit: 3
Quote
If you know a random number is between 1 and 1000 then the probability that it is between 100 and 199 is exactly 10%, the probability it is in any subrange you calculate by any means, no matter how well intentioned and complicated, is just the size of that subrange over the size of the known range.
somehow trivially simple for such a non-trivial name "Birthday paradox")).

***

can try to reduce the spread a little taking a few at 0-10 instead of 0-400 (really have to increase 2^~ which is not always good Cheesy )

2^1 - 2^10000

4 0-10, 5 0-400

10 5 3 7 330 59 92 117 228         2^ 1670
9 4 2 6 329 58 91 116 227          2^ 1670
8 3 1 5 328 57 90 115 226          2^ 1670
7 2 0 4 327 56 89 114 225          2^ 1670
8 10 2 0 16 20 139 67 33           2^ 2314
5 8 0 10 68 22 17 178 223          2^ 2475
0 2 7 10 15 5 37 255 90             2^ 2676
10 5 7 2 46 181 31 297 22          2^ 3076
9 4 6 1 45 180 30 296 21            2^ 3076
8 3 5 0 44 179 29 295 20            2^ 3076
10 5 3 7 172 180 47 174 78         2^ 3148
9 4 2 6 171 179 46 173 77          2^ 3148
8 3 1 5 170 178 45 172 76          2^ 3148
7 2 0 4 169 177 44 171 75          2^ 3148
10 1 5 8 127 178 17 18 35          2^ 3514
9 0 4 7 126 177 16 17 34           2^ 3514
3 1 10 6 285 229 23 141 134      2^ 3599
2 0 9 5 284 228 22 140 133        2^ 3599
0 6 4 10 17 148 60 22 206         2^ 3822
1 3 7 10 34 25 106 37 46          2^ 4162
0 2 6 9 33 24 105 36 45            2^ 4162
10 3 8 0 106 26 51 19 155        2^ 4260
3 0 10 7 26 107 43 143 244       2^ 4418
4 10 2 6 26 420 44 54 97          2^ 4556
3 9 1 5 25 419 43 53 96           2^ 4556
2 8 0 4 24 418 42 52 95           2^ 4556
1 10 7 3 109 16 110 18 34        2^ 4557
0 9 6 2 108 15 109 17 33          2^ 4557
10 7 2 4 68 26 65 251 248         2^ 4575
9 6 1 3 67 25 64 250 247          2^ 4575
8 5 0 2 66 24 63 249 246          2^ 4575
10 5 3 0 211 23 27 340 198       2^ 4791
2 8 4 10 81 126 48 49 30          2^ 5026
1 7 3 9 80 125 47 48 29           2^ 5026
0 6 2 8 79 124 46 47 28           2^ 5026
1 6 8 10 168 27 391 202 35      2^ 5256
0 5 7 9 167 26 390 201 34        2^ 5256
10 8 6 2 145 33 11 152 158       2^ 5289
9 7 5 1 144 32 10 151 157        2^ 5289
8 6 4 0 143 31 9 150 156         2^ 5289
3 5 10 1 172 29 8 174 64         2^ 5315
2 4 9 0 171 28 7 173 63          2^ 5315
8 2 10 0 21 164 6 34 30          2^ 5568
0 8 10 6 69 91 1 138 22          2^ 5621
6 2 8 10 83 47 155 184 120      2^ 5660
5 1 7 9 82 46 154 183 119        2^ 5660
4 0 6 8 81 45 153 182 118         2^ 5660
3 10 8 0 150 37 179 28 50         2^ 5688
10 0 6 3 8 60 77 298 169          2^ 5909
8 6 10 1 30 19 133 35 12          2^ 5942
7 5 9 0 29 18 132 34 11           2^ 5942
8 10 5 0 387 156 61 50 43        2^ 5962
10 1 5 8 178 136 30 14 88        2^ 5979
9 0 4 7 177 135 29 13 87          2^ 5979
1 10 3 5 118 120 40 74 351       2^ 6033
0 9 2 4 117 119 39 73 350        2^ 6033
1 5 3 10 52 175 15 46 22          2^ 6054
0 4 2 9 51 174 14 45 21           2^ 6054
etc...



5 0-10, 4 0-400

just 4

10 0 6 3 8 60 77 298 169       2^5909
10 5 0 3 7 118 25 212 52       2^9094
0 10 6 8 2 38 115 65 166       2^9142
6 2 4 0 10 25 11 22 178         2^9388

or invent sifter,fix range, something like

200-250
200-250
200-250
200-250
150-200
150-200
150-200
150-200
150-200
legendary
Activity: 2646
Merit: 1138
All paid signature campaigns should be banned.
Again, we know the exact method used to generated the all the private keys:  the keys are all a random number masked down to the desired size.

So if the range of the next key is know (and it is) then the probability of finding it within any subrange within the known range is easily calculated.

If you know a random number is between 1 and 1000 then the probability that it is between 100 and 199 is exactly 10%, the probability it is in any subrange you calculate by any means, no matter how well intentioned and complicated, is just the size of that subrange over the size of the known range.

jr. member
Activity: 184
Merit: 3
Code:
[61] 1425787542618654982 in [12/48](1418803843896439702, 1425791246954663018)
[i] Birthday paradox: 100.0 % (48/165=29.09%)
as predicted, #61 required only 30% of all work
Q.E.D.

Can this "Birthday paradox" be used for this option?.

Take 2^2 to 2^~ in order, degree by degree or horizontal, reads every number of degree. on average, 2 numbers (52 50 70 38 42 58 26 61 91) get 0-400 spacing, 3 numbers (525 070 384 258 266 191) 0-2500. Read the location of our number.

2 numbers (52 50 70 38 42 58 26 61 91) from 2^256 to 2^512, horizontal.

52 50 70 38 42 58 26 61 91

79 45 106 6 64 35 15 16 68          2^ 369 num length > 112 112
78 44 105 5 63 34 14 15 67          2^ 369 num length > 112 111
77 43 104 4 62 33 13 14 66          2^ 369 num length > 112 110
76 42 103 3 61 32 12 13 65          2^ 369 num length > 112 109
75 41 102 2 60 31 11 12 64          2^ 369 num length > 112 108
74 40 101 1 59 30 10 11 63          2^ 369 num length > 112 107
73 39 100 0 58 29 9 10 62          2^ 369 num length > 112 106
72 38 99 3 57 28 8 9 61          2^ 369 num length > 112 105
71 37 98 2 56 27 7 8 60          2^ 369 num length > 112 104
70 36 97 1 55 26 6 7 59          2^ 369 num length > 112 103
69 35 96 0 54 25 5 6 58          2^ 369 num length > 112 102
68 34 95 43 53 24 4 5 57          2^ 369 num length > 112 101
67 33 94 42 52 23 3 4 56          2^ 369 num length > 112 100
66 32 93 41 51 22 2 3 55          2^ 369 num length > 112 99
65 31 92 40 50 21 1 2 54          2^ 369 num length > 112 98
64 30 91 39 49 20 0 1 53          2^ 369 num length > 112 97
63 29 90 38 48 19 2 0 52          2^ 369 num length > 112 96
62 28 89 37 47 18 1 13 51          2^ 369 num length > 112 95
61 27 88 36 46 17 0 12 50          2^ 369 num length > 112 94
...

68 0 36 11 77 80 44 46 18          2^ 391 num length > 118 118
67 37 35 10 76 79 43 45 17          2^ 391 num length > 118 117
66 36 34 9 75 78 42 44 16          2^ 391 num length > 118 116
65 35 33 8 74 77 41 43 15          2^ 391 num length > 118 115
64 34 32 7 73 76 40 42 14          2^ 391 num length > 118 114
63 33 31 6 72 75 39 41 13          2^ 391 num length > 118 113
62 32 30 5 71 74 38 40 12          2^ 391 num length > 118 112
61 31 29 4 70 73 37 39 11          2^ 391 num length > 118 111
60 30 28 3 69 72 36 38 10          2^ 391 num length > 118 110
59 29 27 2 68 71 35 37 9          2^ 391 num length > 118 109
58 28 26 1 67 70 34 36 8          2^ 391 num length > 118 108
57 27 25 0 66 69 33 35 7          2^ 391 num length > 118 107
56 26 24 19 65 68 32 34 6          2^ 391 num length > 118 106
55 25 23 18 64 67 31 33 5          2^ 391 num length > 118 105
54 24 22 17 63 66 30 32 4          2^ 391 num length > 118 104
53 23 21 16 62 65 29 31 3          2^ 391 num length > 118 103
52 22 20 15 61 64 28 30 2          2^ 391 num length > 118 102
51 21 19 14 60 63 27 29 1          2^ 391 num length > 118 101
50 20 18 13 59 62 26 28 0          2^ 391 num length > 118 100
...

41 31 65 69 15 25 87 49 2          2^ 399 num length > 121 121
40 30 64 68 14 24 86 48 1          2^ 399 num length > 121 120
39 29 63 67 13 23 85 47 0          2^ 399 num length > 121 119
38 28 62 66 12 22 84 46 94          2^ 399 num length > 121 118
37 27 61 65 11 21 83 45 93          2^ 399 num length > 121 117
36 26 60 64 10 20 82 44 92          2^ 399 num length > 121 116
35 25 59 63 9 19 81 43 91          2^ 399 num length > 121 115
34 24 58 62 8 18 80 42 90          2^ 399 num length > 121 114
33 23 57 61 7 17 79 41 89          2^ 399 num length > 121 113
32 22 56 60 6 16 78 40 88          2^ 399 num length > 121 112
31 21 55 59 5 15 77 39 87          2^ 399 num length > 121 111
30 20 54 58 4 14 76 38 86          2^ 399 num length > 121 110
29 19 53 57 3 13 75 37 85          2^ 399 num length > 121 109
28 18 52 56 2 12 74 36 84          2^ 399 num length > 121 108
27 17 51 55 1 11 73 35 83          2^ 399 num length > 121 107
26 16 50 54 0 10 72 34 82          2^ 399 num length > 121 106
25 15 49 53 60 9 71 33 81          2^ 399 num length > 121 105
24 14 48 52 59 8 70 32 80          2^ 399 num length > 121 104
23 13 47 51 58 7 69 31 79          2^ 399 num length > 121 103
22 12 46 50 57 6 68 30 78          2^ 399 num length > 121 102
21 11 45 49 56 5 67 29 77          2^ 399 num length > 121 101
20 10 44 48 55 4 66 28 76          2^ 399 num length > 121 100
19 9 43 47 54 3 65 27 75          2^ 399 num length > 121 99
18 8 42 46 53 2 64 26 74          2^ 399 num length > 121 98
17 7 41 45 52 1 63 25 73          2^ 399 num length > 121 97
16 6 40 44 51 0 62 24 72          2^ 399 num length > 121 96
15 5 39 43 50 80 61 23 71          2^ 399 num length > 121 95
14 4 38 42 49 79 60 22 70          2^ 399 num length > 121 94
13 3 37 41 48 78 59 21 69          2^ 399 num length > 121 93
12 2 36 40 47 77 58 20 68          2^ 399 num length > 121 92
11 1 35 39 46 76 57 19 67          2^ 399 num length > 121 91
10 0 34 38 45 75 56 18 66          2^ 399 num length > 121 90
...

6 87 1 96 46 14 16 17 36          2^ 420 num length > 127 127
5 86 0 95 45 13 15 16 35          2^ 420 num length > 127 126
4 85 19 94 44 12 14 15 34          2^ 420 num length > 127 125
3 84 18 93 43 11 13 14 33          2^ 420 num length > 127 124
2 83 17 92 42 10 12 13 32          2^ 420 num length > 127 123
1 82 16 91 41 9 11 12 31          2^ 420 num length > 127 122
0 81 15 90 40 8 10 11 30          2^ 420 num length > 127 121
...

83 105 37 85 91 78 74 25 11          2^ 449 num length > 136 136
82 104 36 84 90 77 73 24 10          2^ 449 num length > 136 135
81 103 35 83 89 76 72 23 9          2^ 449 num length > 136 134
80 102 34 82 88 75 71 22 8          2^ 449 num length > 136 133
79 101 33 81 87 74 70 21 7          2^ 449 num length > 136 132
78 100 32 80 86 73 69 20 6          2^ 449 num length > 136 131
77 99 31 79 85 72 68 19 5          2^ 449 num length > 136 130
76 98 30 78 84 71 67 18 4          2^ 449 num length > 136 129
75 97 29 77 83 70 66 17 3          2^ 449 num length > 136 128
74 96 28 76 82 69 65 16 2          2^ 449 num length > 136 127
73 95 27 75 81 68 64 15 1          2^ 449 num length > 136 126
72 94 26 74 80 67 63 14 0          2^ 449 num length > 136 125
...

87 80 72 119 49 92 136 121 31          2^ 478 num length > 144 144
86 79 71 118 48 91 135 120 30          2^ 478 num length > 144 143
85 78 70 117 47 90 134 119 29          2^ 478 num length > 144 142
84 77 69 116 46 89 133 118 28          2^ 478 num length > 144 141
83 76 68 115 45 88 132 117 27          2^ 478 num length > 144 140
82 75 67 114 44 87 131 116 26          2^ 478 num length > 144 139
81 74 66 113 43 86 130 115 25          2^ 478 num length > 144 138
80 73 65 112 42 85 129 114 24          2^ 478 num length > 144 137
79 72 64 111 41 84 128 113 23          2^ 478 num length > 144 136
78 71 63 110 40 83 127 112 22          2^ 478 num length > 144 135
77 70 62 109 39 82 126 111 21          2^ 478 num length > 144 134
76 69 61 108 38 81 125 110 20          2^ 478 num length > 144 133
75 68 60 107 37 80 124 109 19          2^ 478 num length > 144 132
74 67 59 106 36 79 123 108 18          2^ 478 num length > 144 131
73 66 58 105 35 78 122 107 17          2^ 478 num length > 144 130
72 65 57 104 34 77 121 106 16          2^ 478 num length > 144 129
71 64 56 103 33 76 120 105 15          2^ 478 num length > 144 128
70 63 55 102 32 75 119 104 14          2^ 478 num length > 144 127
69 62 54 101 31 74 118 103 13          2^ 478 num length > 144 126
68 61 53 100 30 73 117 102 12          2^ 478 num length > 144 125
67 60 52 99 29 72 116 101 11          2^ 478 num length > 144 124
66 59 51 98 28 71 115 100 10          2^ 478 num length > 144 123
65 58 50 97 27 70 114 99 9          2^ 478 num length > 144 122
64 57 49 96 26 69 113 98 8          2^ 478 num length > 144 121
63 56 48 95 25 68 112 97 7          2^ 478 num length > 144 120
62 55 47 94 24 67 111 96 6          2^ 478 num length > 144 119
61 54 46 93 23 66 110 95 5          2^ 478 num length > 144 118
60 53 45 92 22 65 109 94 4          2^ 478 num length > 144 117
59 52 44 91 21 64 108 93 3          2^ 478 num length > 144 116
58 51 43 90 20 63 107 92 2          2^ 478 num length > 144 115
57 50 42 89 19 62 106 91 1          2^ 478 num length > 144 114
56 49 41 88 18 61 105 90 0          2^ 478 num length > 144 113
55 48 40 87 17 60 104 89 94          2^ 478 num length > 144 112
54 47 39 86 16 59 103 88 93          2^ 478 num length > 144 111
53 46 38 85 15 58 102 87 92          2^ 478 num length > 144 110
52 45 37 84 14 57 101 86 91          2^ 478 num length > 144 109
51 44 36 83 13 56 100 85 90          2^ 478 num length > 144 108
50 43 35 82 12 55 99 84 89          2^ 478 num length > 144 107
49 42 34 81 11 54 98 83 88          2^ 478 num length > 144 106
48 41 33 80 10 53 97 82 87          2^ 478 num length > 144 105
47 40 32 79 9 52 96 81 86          2^ 478 num length > 144 104
46 39 31 78 8 51 95 80 85          2^ 478 num length > 144 103
45 38 30 77 7 50 94 79 84          2^ 478 num length > 144 102
44 37 29 76 6 49 93 78 83          2^ 478 num length > 144 101
43 36 28 75 5 48 92 77 82          2^ 478 num length > 144 100
42 35 27 74 4 47 91 76 81          2^ 478 num length > 144 99
41 34 26 73 3 46 90 75 80          2^ 478 num length > 144 98
40 33 25 72 2 45 89 74 79          2^ 478 num length > 144 97
39 32 24 71 1 44 88 73 78          2^ 478 num length > 144 96
38 31 23 70 0 43 87 72 77          2^ 478 num length > 144 95
37 30 22 69 17 42 86 71 76          2^ 478 num length > 144 94
36 29 21 68 16 41 85 70 75          2^ 478 num length > 144 93
35 28 20 67 15 40 84 69 74          2^ 478 num length > 144 92
34 27 19 66 14 39 83 68 73          2^ 478 num length > 144 91
33 26 18 65 13 38 82 67 72          2^ 478 num length > 144 90
32 25 17 64 12 37 81 66 71          2^ 478 num length > 144 89
31 24 16 63 11 36 80 65 70          2^ 478 num length > 144 88
30 23 15 62 10 35 79 64 69          2^ 478 num length > 144 87
29 22 14 61 9 34 78 63 68          2^ 478 num length > 144 86
28 21 13 60 8 33 77 62 67          2^ 478 num length > 144 85
27 20 12 59 7 32 76 61 66          2^ 478 num length > 144 84
26 19 11 58 6 31 75 60 65          2^ 478 num length > 144 83
25 18 10 57 5 30 74 59 64          2^ 478 num length > 144 82
24 17 9 56 4 29 73 58 63          2^ 478 num length > 144 81
23 16 8 55 3 28 72 57 62          2^ 478 num length > 144 80
22 15 7 54 2 27 71 56 61          2^ 478 num length > 144 79
21 14 6 53 1 26 70 55 60          2^ 478 num length > 144 78
20 13 5 52 0 25 69 54 59          2^ 478 num length > 144 77
...

143 65 134 105 50 28 33 34 61          2^ 481 num length > 145 145
142 64 133 104 49 27 32 33 60          2^ 481 num length > 145 144
141 63 132 103 48 26 31 32 59          2^ 481 num length > 145 143
140 62 131 102 47 25 30 31 58          2^ 481 num length > 145 142
139 61 130 101 46 24 29 30 57          2^ 481 num length > 145 141
138 60 129 100 45 23 28 29 56          2^ 481 num length > 145 140
137 59 128 99 44 22 27 28 55          2^ 481 num length > 145 139
136 58 127 98 43 21 26 27 54          2^ 481 num length > 145 138
135 57 126 97 42 20 25 26 53          2^ 481 num length > 145 137
134 56 125 96 41 19 24 25 52          2^ 481 num length > 145 136
133 55 124 95 40 18 23 24 51          2^ 481 num length > 145 135
132 54 123 94 39 17 22 23 50          2^ 481 num length > 145 134
131 53 122 93 38 16 21 22 49          2^ 481 num length > 145 133
130 52 121 92 37 15 20 21 48          2^ 481 num length > 145 132
129 51 120 91 36 14 19 20 47          2^ 481 num length > 145 131
128 50 119 90 35 13 18 19 46          2^ 481 num length > 145 130
127 49 118 89 34 12 17 18 45          2^ 481 num length > 145 129
126 48 117 88 33 11 16 17 44          2^ 481 num length > 145 128
125 47 116 87 32 10 15 16 43          2^ 481 num length > 145 127
124 46 115 86 31 9 14 15 42          2^ 481 num length > 145 126
123 45 114 85 30 8 13 14 41          2^ 481 num length > 145 125
122 44 113 84 29 7 12 13 40          2^ 481 num length > 145 124
121 43 112 83 28 6 11 12 39          2^ 481 num length > 145 123
120 42 111 82 27 5 10 11 38          2^ 481 num length > 145 122
119 41 110 81 26 4 9 10 37          2^ 481 num length > 145 121
118 40 109 80 25 3 8 9 36          2^ 481 num length > 145 120
117 39 108 79 24 2 7 8 35          2^ 481 num length > 145 119
116 38 107 78 23 1 6 7 34          2^ 481 num length > 145 118
115 37 106 77 22 0 5 6 33          2^ 481 num length > 145 117
114 36 105 76 21 99 4 5 32          2^ 481 num length > 145 116
113 35 104 75 20 98 3 4 31          2^ 481 num length > 145 115
112 34 103 74 19 97 2 3 30          2^ 481 num length > 145 114
111 33 102 73 18 96 1 2 29          2^ 481 num length > 145 113
110 32 101 72 17 95 0 1 28          2^ 481 num length > 145 112
109 31 100 71 16 94 58 0 27          2^ 481 num length > 145 111
108 30 99 70 15 93 57 50 26          2^ 481 num length > 145 110
107 29 98 69 14 92 56 49 25          2^ 481 num length > 145 109
106 28 97 68 13 91 55 48 24          2^ 481 num length > 145 108
105 27 96 67 12 90 54 47 23          2^ 481 num length > 145 107
104 26 95 66 11 89 53 46 22          2^ 481 num length > 145 106
103 25 94 65 10 88 52 45 21          2^ 481 num length > 145 105
102 24 93 64 9 87 51 44 20          2^ 481 num length > 145 104
101 23 92 63 8 86 50 43 19          2^ 481 num length > 145 103
100 22 91 62 7 85 49 42 18          2^ 481 num length > 145 102
99 21 90 61 6 84 48 41 17          2^ 481 num length > 145 101
98 20 89 60 5 83 47 40 16          2^ 481 num length > 145 100
97 19 88 59 4 82 46 39 15          2^ 481 num length > 145 99
96 18 87 58 3 81 45 38 14          2^ 481 num length > 145 98
95 17 86 57 2 80 44 37 13          2^ 481 num length > 145 97
94 16 85 56 1 79 43 36 12          2^ 481 num length > 145 96
93 15 84 55 0 78 42 35 11          2^ 481 num length > 145 95
92 14 83 54 47 77 41 34 10          2^ 481 num length > 145 94
91 13 82 53 46 76 40 33 9          2^ 481 num length > 145 93
90 12 81 52 45 75 39 32 8          2^ 481 num length > 145 92
89 11 80 51 44 74 38 31 7          2^ 481 num length > 145 91
88 10 79 50 43 73 37 30 6          2^ 481 num length > 145 90
87 9 78 49 42 72 36 29 5          2^ 481 num length > 145 89
86 8 77 48 41 71 35 28 4          2^ 481 num length > 145 88
85 7 76 47 40 70 34 27 3          2^ 481 num length > 145 87
84 6 75 46 39 69 33 26 2          2^ 481 num length > 145 86
83 5 74 45 38 68 32 25 1          2^ 481 num length > 145 85
82 4 73 44 37 67 31 24 0          2^ 481 num length > 145 84
...

126 148 69 90 137 55 0 1 13          2^ 503 num length > 152 152
125 147 68 89 136 54 137 0 12          2^ 503 num length > 152 151
124 146 67 88 135 53 136 83 11          2^ 503 num length > 152 150
123 145 66 87 134 52 135 82 10          2^ 503 num length > 152 149
122 144 65 86 133 51 134 81 9          2^ 503 num length > 152 148
121 143 64 85 132 50 133 80 8          2^ 503 num length > 152 147
120 142 63 84 131 49 132 79 7          2^ 503 num length > 152 146
119 141 62 83 130 48 131 78 6          2^ 503 num length > 152 145
118 140 61 82 129 47 130 77 5          2^ 503 num length > 152 144
117 139 60 81 128 46 129 76 4          2^ 503 num length > 152 143
116 138 59 80 127 45 128 75 3          2^ 503 num length > 152 142
115 137 58 79 126 44 127 74 2          2^ 503 num length > 152 141
114 136 57 78 125 43 126 73 1          2^ 503 num length > 152 140
113 135 56 77 124 42 125 72 0          2^ 503 num length > 152 139
...

139 82 47 27 98 51 65 53 106          2^ 508 num length > 153 153
138 81 46 26 97 50 64 52 105          2^ 508 num length > 153 152
137 80 45 25 96 49 63 51 104          2^ 508 num length > 153 151
136 79 44 24 95 48 62 50 103          2^ 508 num length > 153 150
135 78 43 23 94 47 61 49 102          2^ 508 num length > 153 149
134 77 42 22 93 46 60 48 101          2^ 508 num length > 153 148
133 76 41 21 92 45 59 47 100          2^ 508 num length > 153 147
132 75 40 20 91 44 58 46 99          2^ 508 num length > 153 146
131 74 39 19 90 43 57 45 98          2^ 508 num length > 153 145
130 73 38 18 89 42 56 44 97          2^ 508 num length > 153 144
129 72 37 17 88 41 55 43 96          2^ 508 num length > 153 143
128 71 36 16 87 40 54 42 95          2^ 508 num length > 153 142
127 70 35 15 86 39 53 41 94          2^ 508 num length > 153 141
126 69 34 14 85 38 52 40 93          2^ 508 num length > 153 140
125 68 33 13 84 37 51 39 92          2^ 508 num length > 153 139
124 67 32 12 83 36 50 38 91          2^ 508 num length > 153 138
123 66 31 11 82 35 49 37 90          2^ 508 num length > 153 137
122 65 30 10 81 34 48 36 89          2^ 508 num length > 153 136
121 64 29 9 80 33 47 35 88          2^ 508 num length > 153 135
120 63 28 8 79 32 46 34 87          2^ 508 num length > 153 134
119 62 27 7 78 31 45 33 86          2^ 508 num length > 153 133
118 61 26 6 77 30 44 32 85          2^ 508 num length > 153 132
117 60 25 5 76 29 43 31 84          2^ 508 num length > 153 131
116 59 24 4 75 28 42 30 83          2^ 508 num length > 153 130
115 58 23 3 74 27 41 29 82          2^ 508 num length > 153 129
114 57 22 2 73 26 40 28 81          2^ 508 num length > 153 128
113 56 21 1 72 25 39 27 80          2^ 508 num length > 153 127
112 55 20 0 71 24 38 26 79          2^ 508 num length > 153 126
111 54 19 5 70 23 37 25 78          2^ 508 num length > 153 125
110 53 18 4 69 22 36 24 77          2^ 508 num length > 153 124
109 52 17 3 68 21 35 23 76          2^ 508 num length > 153 123
108 51 16 2 67 20 34 22 75          2^ 508 num length > 153 122
107 50 15 1 66 19 33 21 74          2^ 508 num length > 153 121
106 49 14 0 65 18 32 20 73          2^ 508 num length > 153 120
...


mean, we have a spread here
0, 0, 0, 0, 0, 0, 0, 0, 0
400,  400, 400, 400, 400, 400, 400, 400, 400

need to guess (Birthday paradox) the combination and count it in the space 2^1 - 2^~...

script to see the scatter spread, the further 2^~, the greater the chance to get.  

Quote
ii = 1
while ii <= 1:
    i = 256 # 2^ start
    while i <= 512: # 2^ end
        a = pow(2,i)
        Aa = len(str(a))
        Ab = int(Aa)
        print(Ab)
        iii=0
        while iii <=Ab:
            n = str(a)[iii:]
            nn1= "52"
            nn2= "50"
            nn3= "70"
            nn4= "38"
            nn5= "42"
            nn6= "58"
            nn7= "26"
            nn8= "61"
            nn9= "91"
            if nn1 in n:
                if nn2 in n:
                    if nn3 in n:
                        if nn4 in n:
                            if nn5 in n:
                                if nn6 in n:
                                    if nn7 in n:
                                        if nn8 in n:
                                            if nn9 in n:
                                                print(n.index(nn1),
                                                      n.index(nn2),
                                                      n.index(nn3),
                                                      n.index(nn4),
                                                      n.index(nn5),
                                                      n.index(nn6),
                                                      n.index(nn7),
                                                      n.index(nn8),
                                                      n.index(nn9),"   ","2^",i,"num length >",len(str(a)),len(n))
                else:
                    pass
            iii=iii+1
        i=i+1
    ii=ii+1

histogram for the same (2^256 - 2^16384).

Quote
import collections
import matplotlib.pyplot as plt

j=[]

ii = 1
while ii <= 1:
    i = 256 # 2^ start
    while i <= 16384: # 2^ end
        a = pow(2,i)
        n = str(a)
        nn1= "52"
        nn2= "50"
        nn3= "70"
        nn4= "38"
        nn5= "42"
        nn6= "58"
        nn7= "26"
        nn8= "61"
        nn9= "91"
        if nn1 in n:
            if nn2 in n:
                if nn3 in n:
                    if nn4 in n:
                        if nn5 in n:
                            if nn6 in n:
                                if nn7 in n:
                                    if nn8 in n:
                                        if nn9 in n:
                                            jj = j.append(n.index(nn1))
                                            jj = j.append(n.index(nn2))
                                            jj = j.append(n.index(nn3))
                                            jj = j.append(n.index(nn4))
                                            jj = j.append(n.index(nn5))
                                            jj = j.append(n.index(nn6))
                                            jj = j.append(n.index(nn7))
                                            jj = j.append(n.index(nn8))
                                            jj = j.append(n.index(nn9))
            else:
                pass
        i=i+1
    ii=ii+1

l = j
w = collections.Counter(l)
plt.bar(w.keys(), w.values())
plt.show()

sample search (for the following puzzles 10 by 2)

Quote
import random
from bit import *

list = ["15c9mPGLku1HuW9LRtBf4jcHVpBUt8txKz","1Dn8NF8qDyyfHMktmuoQLGyjWmZXgvosXf","1HAX2n9Uruu9YDt4cqRgYcvtGvZj1rbUyt",
        "1Kn5h2qpgw9mWE5jKpk8PP4qvvJ1QVy8su","1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB","1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi",
        "1NpYjtLira16LfGbGwZJ5JbDPh3ai9bjf4","16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN","18ZMbwUFLMHoZBbfpCjUJQTCMCbktshgpe",
        "13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so","1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9","1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ",
        "19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG","19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR","1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU",
        "1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR","12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4","1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv",
        "1J36UjUByGroXcCvmj13U6uwaVv9caEeAt","1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF","1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE",
        "15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb","1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8","1BCf6rHUW6m3iH2ptsvnjgLruAiPQQepLe",
        "15qsCm78whspNQFydGJQk5rexzxTQopnHZ","13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC","14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2",
        "1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D","1Kh22PvXERd2xpTQk3ur6pPEqFeckCJfAr","1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK",
        "1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq","16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf","19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt",
        "1L12FHH2FHjvTviyanuiFVfmzCy46RRATU","1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74","1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5",
        "17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad","1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL","19eVSDuizydXxhohGh8Ki9WY9KsHdSwoQC",
        "15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b","18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8","1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX",
        "1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL","1KCgMv8fo2TPBpddVi9jqmMmcne9uSNJ5F","1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n",
        "1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX","1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf","1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu",
        "1CMjscKB3QW7SDyQ4c3C3DEUHiHRhiZVib","18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB","15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc",
        "1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao","1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL","12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg",
        "1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3","18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos","1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4",
        "174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy","1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv","1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV",
        "1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z","1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6","1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7",
        "17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT","1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh","1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx",
        "1CdufMQL892A69KXgv6UNBD17ywWqYpKut","1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N","1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5",
        "1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz","1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4","1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj",
        "1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz","1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua","16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy",
        "1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R","17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD","13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3",
        "16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v","1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq","15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA",
        "1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT","1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt","1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo",
        "1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo","15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD","13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1",
        "1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux","19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg","1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P",
        "18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL","1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV","1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2",
        "1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy","13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV","1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN",
        "18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg","1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN","1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ",
        "1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE","14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9","19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG",
        "14u4nA5sugaswb6SZgn5av2vuChdMnD9E5","1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv"]


def func():
    ffff = random.randint(0,100)
    ffff2 = random.randint(0,200)
    fffff = random.randint(0,400)
    asd = random.choice([ffff,ffff2,ffff,fffff,ffff])
    return asd
while True:
    k1=  func() #0-400
    k2=  func() #0-400
    k3=  func() #0-400
    k4=  func() #0-400
    k5=  func() #0-400
    k6=  func() #0-400
    k7=  func() #0-400
    k8=  func() #0-400
    k9=  func() #0-400
    k10=  func() #0-400
    II=1
    while II <= 16384:
        A = []
        a = pow(2,II)
        h = str(a)
        b = len(str(a))
        c = int(b)
        print(c)
        i = 0
        while i <= c:
            A.append(h[i:])
            i=i+1
        for elem in A:
            hh = elem
            hhh = len(hh)
            hhhh = int(hhh)
            if hhhh <=400:
                pass
            else:
                ff1 = str(hh)[k1:k1+2]
                ff2 = str(hh)[k2:k2+2]
                ff3 = str(hh)[k3:k3+2]
                ff4 = str(hh)[k4:k4+2]
                ff5 = str(hh)[k5:k5+2]
                ff6 = str(hh)[k6:k6+2]
                ff7 = str(hh)[k7:k7+2]
                ff8 = str(hh)[k8:k8+2]
                ff9 = str(hh)[k9:k9+2]
                ff10 = str(hh)[k10:k10+2]
                ran = int(ff1+ff2+ff3+ff4+ff5+ff6+ff7+ff8+ff9+ff10)
                if ran >= 1:
                    baba = len(str(ran))
                    if baba >= 19:
                        bina = bin(ran)[2:]
                        ed = bina.count("0")
                        if ed >= 0:
                            if ed <= 100:
                                b = ran
                                key = Key.from_int(b)
                                addr = key.address
                                if addr in list:
                                    print ("found!!!",b,addr)
                                    s1 = str(b)
                                    s2 = addr
                                    f=open(u"C:/a.txt","a")
                                    f.write(s1)
                                    f.write(s2)      
                                    f.close()
                                    pass
                                else:
                                    print(ran,baba,addr,ed,"   ",len(hh),"   ",k1,k2,k3,k4,k5,k6,k7,k8,k9,k10)
                                            
        II = II+1        
        A.clear
    print("!!!loop end!!!")
    pass



***

interesting, do different puzzle numbers intersect with such a search at different 2^...? check problematic because 2^500000 consumes more than 10 gigabytes of RAM ,don't get too far))

13 82 45 75 89 10 84 64 92
19 99 76 66 79 76 34 20 49
52 50 70 38 42 58 26 61 91
copper member
Activity: 416
Merit: 105
need multi gpu thred for faster work
jr. member
Activity: 38
Merit: 18
Code:
[61] 1425787542618654982 in [12/48](1418803843896439702, 1425791246954663018)
[i] Birthday paradox: 100.0 % (48/165=29.09%)
as predicted, #61 required only 30% of all work
Q.E.D.
copper member
Activity: 416
Merit: 105
try this kknd
-b 36 -t 512 -p 2800

-b 200 -t 512 -p 512
Quote
C:\Users\admin\Desktop\bitcrack>clBitCrack.exe -d 0 -b 200 -t 512 -p 512  -----
[2019-05-12.23:11:56] [Info] Loading ' c3.txt'
[2019-05-12.23:11:56] [Info] Compression: both
[2019-05-12.23:11:56] [Info] Starting at: F9F882DF6F85D35711C4298BDB870F16916F13C
[2019-05-12.23:11:56] [Info] Ending at:   FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDC
[2019-05-12.23:11:56] [Info] Counting by: 0000000000000000000000000000000000000000000000000000000000000001
[2019-05-12.23:11:56] [Info] Compiling OpenCL kernels...
[2019-05-12.23:11:56] [Info] Initializing GeForce RTX 2080
[2019-05-12.23:12:03] [Info] Generating 52,428,800 starting points (2000.0MB)
[2019-05-12.23:12:10] [Info] 10.0%
[2019-05-12.23:12:11] [Info] 20.0%
[2019-05-12.23:12:12] [Info] 30.0%
[2019-05-12.23:12:13] [Info] 40.0%
[2019-05-12.23:12:15] [Info] 50.0%
[2019-05-12.23:12:16] [Info] 60.0%
[2019-05-12.23:12:17] [Info] 70.0%
[2019-05-12.23:12:18] [Info] 80.0%
[2019-05-12.23:12:20] [Info] 90.0%
[2019-05-12.23:12:21] [Info] 100.0%
[2019-05-12.23:12:21] [Info] Done
[2019-05-12.23:12:22] [Info] Loading addresses from '01btc.txt'
[2019-05-12.23:12:32] [Info] 1,681,329 addresses loaded (32.1MB)
GeForce RTX 2080 3232/8192MB | 1681329 targets 135.27 MKey/s (52,931,539,763,200 total) [4:13:01:43][2019-05-13.11:53:49] [Info] Checkpoint

-b 36 -t 512 -p 2800
Quote
C:\Users\admin\Desktop\bitcrack>clBitCrack.exe -d 0 -b 36 -t 512 -p 2800
[2019-05-13.12:01:25] [Info] Loading ' c3.txt'
[2019-05-13.12:01:25] [Info] Compression: both
[2019-05-13.12:01:25] [Info] Starting at: F9F882DF6F85D35711C4298BDB870F16916F13
[2019-05-13.12:01:25] [Info] Ending at:   FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6
[2019-05-13.12:01:25] [Info] Counting by: 0000000000000000000000000000000000000000000000000000000000000001
[2019-05-13.12:01:25] [Info] Compiling OpenCL kernels...
[2019-05-13.12:01:25] [Info] Initializing GeForce RTX 2080
[2019-05-13.12:01:31] [Info] Generating 51,609,600 starting points (1968.8MB)
[2019-05-13.12:01:38] [Info] 10.0%
[2019-05-13.12:01:39] [Info] 20.0%
[2019-05-13.12:01:40] [Info] 30.0%
[2019-05-13.12:01:41] [Info] 40.0%
[2019-05-13.12:01:43] [Info] 50.0%
[2019-05-13.12:01:44] [Info] 60.0%
[2019-05-13.12:01:45] [Info] 70.0%
[2019-05-13.12:01:46] [Info] 80.0%
[2019-05-13.12:01:47] [Info] 90.0%
[2019-05-13.12:01:48] [Info] 100.0%
[2019-05-13.12:01:48] [Info] Done
[2019-05-13.12:01:48] [Info] Loading addresses from '01btc.txt'
[2019-05-13.12:01:57] [Info] 1,681,329 addresses loaded (32.1MB)
GeForce RTX 2080 3182/8192MB | 1681329 targets 135.39 MKey/s (52,991,521,587,200 total) [4:13:10:04][2019-05-13.12:02:26] [Info] Checkpoint
did you find something ? Cheesy
jr. member
Activity: 32
Merit: 11
try this kknd
-b 36 -t 512 -p 2800

-b 200 -t 512 -p 512
Quote
C:\Users\admin\Desktop\bitcrack>clBitCrack.exe -d 0 -b 200 -t 512 -p 512  -----
[2019-05-12.23:11:56] [Info] Loading ' c3.txt'
[2019-05-12.23:11:56] [Info] Compression: both
[2019-05-12.23:11:56] [Info] Starting at: F9F882DF6F85D35711C4298BDB870F16916F13C
[2019-05-12.23:11:56] [Info] Ending at:   FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDC
[2019-05-12.23:11:56] [Info] Counting by: 0000000000000000000000000000000000000000000000000000000000000001
[2019-05-12.23:11:56] [Info] Compiling OpenCL kernels...
[2019-05-12.23:11:56] [Info] Initializing GeForce RTX 2080
[2019-05-12.23:12:03] [Info] Generating 52,428,800 starting points (2000.0MB)
[2019-05-12.23:12:10] [Info] 10.0%
[2019-05-12.23:12:11] [Info] 20.0%
[2019-05-12.23:12:12] [Info] 30.0%
[2019-05-12.23:12:13] [Info] 40.0%
[2019-05-12.23:12:15] [Info] 50.0%
[2019-05-12.23:12:16] [Info] 60.0%
[2019-05-12.23:12:17] [Info] 70.0%
[2019-05-12.23:12:18] [Info] 80.0%
[2019-05-12.23:12:20] [Info] 90.0%
[2019-05-12.23:12:21] [Info] 100.0%
[2019-05-12.23:12:21] [Info] Done
[2019-05-12.23:12:22] [Info] Loading addresses from '01btc.txt'
[2019-05-12.23:12:32] [Info] 1,681,329 addresses loaded (32.1MB)
GeForce RTX 2080 3232/8192MB | 1681329 targets 135.27 MKey/s (52,931,539,763,200 total) [4:13:01:43][2019-05-13.11:53:49] [Info] Checkpoint

-b 36 -t 512 -p 2800
Quote
C:\Users\admin\Desktop\bitcrack>clBitCrack.exe -d 0 -b 36 -t 512 -p 2800
[2019-05-13.12:01:25] [Info] Loading ' c3.txt'
[2019-05-13.12:01:25] [Info] Compression: both
[2019-05-13.12:01:25] [Info] Starting at: F9F882DF6F85D35711C4298BDB870F16916F13
[2019-05-13.12:01:25] [Info] Ending at:   FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6
[2019-05-13.12:01:25] [Info] Counting by: 0000000000000000000000000000000000000000000000000000000000000001
[2019-05-13.12:01:25] [Info] Compiling OpenCL kernels...
[2019-05-13.12:01:25] [Info] Initializing GeForce RTX 2080
[2019-05-13.12:01:31] [Info] Generating 51,609,600 starting points (1968.8MB)
[2019-05-13.12:01:38] [Info] 10.0%
[2019-05-13.12:01:39] [Info] 20.0%
[2019-05-13.12:01:40] [Info] 30.0%
[2019-05-13.12:01:41] [Info] 40.0%
[2019-05-13.12:01:43] [Info] 50.0%
[2019-05-13.12:01:44] [Info] 60.0%
[2019-05-13.12:01:45] [Info] 70.0%
[2019-05-13.12:01:46] [Info] 80.0%
[2019-05-13.12:01:47] [Info] 90.0%
[2019-05-13.12:01:48] [Info] 100.0%
[2019-05-13.12:01:48] [Info] Done
[2019-05-13.12:01:48] [Info] Loading addresses from '01btc.txt'
[2019-05-13.12:01:57] [Info] 1,681,329 addresses loaded (32.1MB)
GeForce RTX 2080 3182/8192MB | 1681329 targets 135.39 MKey/s (52,991,521,587,200 total) [4:13:10:04][2019-05-13.12:02:26] [Info] Checkpoint
hero member
Activity: 1120
Merit: 554
These puzzle giveaways pop up time to time but they are usually just fake and a way for the real owner of the bitcoin to claim they earned them in a legit way.  Its not very likely people iwll just hand over free btc to randoms on the internet when that money could be used for charity.
member
Activity: 127
Merit: 32
try this kknd
-b 36 -t 512 -p 2800
jr. member
Activity: 32
Merit: 11
Any pool to join ? RTX 2080

To search for a compressed key, the speed is even higher.
bat file: cuBitCrack.exe -c address -b 112 -t 512 -p 512 -o key.txt    




1681329 targets   Grin







copper member
Activity: 416
Merit: 105
Hello
here is 61st key found ...  Smiley
pubkey : 0249a43860d115143c35c09454863d6f82a95e47c1162fb9b2ebe0186eb26f453f
https://www.blockchain.com/fr/btc/address/1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB

following here is
1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi
search range in hexadecimal
2000000000000000 to 4000000000000000
good luck Wink

summary


1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi
search range in hexadecimal
from 2000000000000000 to 3FFFFFFFFFFFFFFFFF to be precise lol.
6 decades LOL
member
Activity: 245
Merit: 17
Any pool to join ? RTX 2080

To search for a compressed key, the speed is even higher.
bat file: cuBitCrack.exe -c address -b 112 -t 512 -p 512 -o key.txt    








member
Activity: 245
Merit: 17
Hello
here is 61st key found ...  Smiley
pubkey : 0249a43860d115143c35c09454863d6f82a95e47c1162fb9b2ebe0186eb26f453f
https://www.blockchain.com/fr/btc/address/1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB

following here is
1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi
search range in hexadecimal
2000000000000000 to 4000000000000000
good luck Wink

summary


1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi
search range in hexadecimal
from 2000000000000000 to 3FFFFFFFFFFFFFFFFF to be precise lol.
jr. member
Activity: 138
Merit: 2
Congratulations to the winner of 61 puzzles ,luck smiled lucky.
Sooner or later, the puzzle will be solved .Good luck!!!!
Jump to: