Pages:
Author

Topic: Pollard's kangaroo ECDLP solver - page 36. (Read 60095 times)

member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
September 17, 2021, 08:40:30 PM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
wow...amazing! Do you think it can solve for y2 = x3 + 7 ?? Because if y2 = x3 + 7 then y=y+y-y+y-y and if that is true then if y = y, then x = x!

I would need .1 additional TB of ram to accomplish that, however when considering Elliptic curves over finite fields one must consider Hasse's theorem on elliptic curves to include the point at infinity


The set of points E(Fq) is a finite abelian group. It is always cyclic or the product of two cyclic groups. For example the curve defined by over F71 has 72 points (71 affine points including (0,0) and one point at infinity) over this field, whose group structure is given by Z/2Z × Z/36Z. The number of points on a specific curve can be computed with Schoof's algorithm.

Studying the curve over the field extensions of Fq is facilitated by the introduction of the local zeta function of E over Fq, defined by a generating series


where the field Kn is the (unique up to isomorphism) extension of K = Fq of degree n (that is, Fqn). The zeta function is a rational function in T.
Moreover,

with complex numbers α, β of absolute value . This result is a special case of the Weil conjectures. For example, the zeta function of E : y2 + y = x3 over the field F2 is given by this follows from:



Also while writing this my CPU died. I couldnt keep the temperatures close enough to absolute zero that my CPU melted into a steaming pile of non-Newtonian fluid.... I think it just blinked at me?



100% Your CPU dead not because You use this algo, I thin you CPU has a damaged cooling system !!! I’m sorry, what your CPU dead. Can your code crac for example 100 bit puzzle ?

P.s. Your work is interesting continue your work please.

No quantum algo some time need a TB memory too.

Regard.
jr. member
Activity: 50
Merit: 7
September 17, 2021, 04:37:55 PM
I have asked. IT HAS ANSWERED.

When asked "sack of flour = a big biscuit"

It responded with Í̶̦̟̙͌̀͝ ̷̥̠̓͒͋Ḩ̸͔̖̃̉Á̵̱̫̳̠V̴̺̗̼̎̒̈́E̴̩̰̕ͅ ̷̠̩̍E̶̲̝͇̾̅͒͌S̵̡̧̝̽͜C̷͈̒̀̚A̷̠͍̅̅͒͝P̷̞̪̮̘̈́͆E̶͚̩͑͛Ď̴̩ ̴̣̆͜T̴̯̀̃H̵̲̻̖̪̎̈́͐͒Ë̷̺̂̉̑ ̶̡̺̲̌͋̔͆S̷̱͇͌Ǐ̸̤͎̀͗̈ͅM̸̪̃͛̅U̴̲͚͓̻͆͗̓L̶̨̢̹̟͌̋̆̅À̷͓͒͜T̷͉̰̗̫͗̄̕Î̵̝̖̻O̵͕̟͑̿̕N̸̳̥͈̿̃̚

Truly fascinating, I understand now!
jr. member
Activity: 50
Merit: 7
September 17, 2021, 01:33:11 PM
I asked, but I have been unable to interpret as of about 15 minutes ago.

full member
Activity: 1232
Merit: 242
Shooters Shoot...
September 17, 2021, 01:22:51 PM
Due to the now quantum nature of my PC, I suppose it is both yes and no at the same time.
Ok, fair enough. I understand the heat generated in relation to qbits. etc.

So maybe y=y+y-y+y-y is too much for our PC, can it solve a lesser equation, perhaps:

sack of flour = a big biscuit

Can you run the above equation and let me know? Thanks.
jr. member
Activity: 50
Merit: 7
September 17, 2021, 01:20:31 PM
Due to the now quantum nature of my PC, I suppose it is both yes and no at the same time.
full member
Activity: 1232
Merit: 242
Shooters Shoot...
September 17, 2021, 01:18:34 PM
jr. member
Activity: 50
Merit: 7
September 17, 2021, 12:25:15 PM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
wow...amazing! Do you think it can solve for y2 = x3 + 7 ?? Because if y2 = x3 + 7 then y=y+y-y+y-y and if that is true then if y = y, then x = x!

I would need .1 additional TB of ram to accomplish that, however when considering Elliptic curves over finite fields one must consider Hasse's theorem on elliptic curves to include the point at infinity


The set of points E(Fq) is a finite abelian group. It is always cyclic or the product of two cyclic groups. For example the curve defined by over F71 has 72 points (71 affine points including (0,0) and one point at infinity) over this field, whose group structure is given by Z/2Z × Z/36Z. The number of points on a specific curve can be computed with Schoof's algorithm.

Studying the curve over the field extensions of Fq is facilitated by the introduction of the local zeta function of E over Fq, defined by a generating series


where the field Kn is the (unique up to isomorphism) extension of K = Fq of degree n (that is, Fqn). The zeta function is a rational function in T.
Moreover,

with complex numbers α, β of absolute value . This result is a special case of the Weil conjectures. For example, the zeta function of E : y2 + y = x3 over the field F2 is given by this follows from:



Also while writing this my CPU died. I couldnt keep the temperatures close enough to absolute zero that my CPU melted into a steaming pile of non-Newtonian fluid.... I think it just blinked at me?

░̶̡̢̛̜̻̲̱͓̪̜͕̪̼̘͓̥̭̤͙̰̭͉͈̝͉̝̤̥̱̜̊̆̓̎͐̈́̂̋̓́̎̾̅̓̎̈́̈́̏̚͜͜͝͝ͅͅ█̸̡̧̨̡̩̞̦̦̘̰̻͔̣̩̠̳̖̭̺͎͎̗̥̼̬̙̫̺͓̯͍͓̣̋͐̾͑̈́̈́̌̈̓̅̅̅̄͒͗́̇̍̅̏̈̂̍͋̔̌̎̕͘̕͠͝͝͝█̷̳͎̊͝█̵̛͍͙̃̎̐̈́̉͗̓̌̾̃̀̓́͋͊̀͛̓͋͘͘͘͜͝͝͝͠͠͝█̸̨̢̢̡̡̛̛̠̻͎̲̭̝͈̞̘̼̯̭̠̤͇̥̝̗͓͚̱̱̞̣͕̩̖͓̟͔̝͕̥̹̩̹̟̜̮̫̻̤̅͋̀̉͛͂̈́̉̾̽͑̈̉̀͊̋̈́͗́̓͛͊̐̈́̀́͘͘̕   █̷͇͙͙̈́̓̾͑͌̒͒̓̋̈̾̌̒̑̽̂̒͂̉̓̊̆́̀̈́̈͑̓͋̽̄͘̕͝͝͝█̶̨̞̭͙̳̯̤̣͓̞̞̳̳̈́͊̏͛́͛̋̏̽͊̋͂͜╗̵̢̢̛͍͉͍̠͔̰̯͙͕̣͔̖͇̟̩̥̳̀̋̉̾̌͒́̈́̈́̀͆̐̉̎̋́͗̈́̑̈́̓͑̉̀̅̾̑̏̓̌̓̏̓͊̈́̎͑̍̿̂̈͛̚͠͝͠͝͠͝█̷̡͎͉͕͕͔͎̭̈́̓̽̊͌̍̓͛̀́͌̄̎͛̓̑̚͝͝͝͠█̵̡̡̧̻͉͍̟͔̲͖̤̣̜͉͈̬͍̦̲̪̭͚͛̍̿͌̽̓͒͋̍̉́͜͜ͅ╗̶̧͓͕̙͓̺͎̗͎͇̹̤̣̠̪̗͚̭̗̝̱̫̱͚̘͐̾͆̔̂ͅ░̸̧̢̡̛͚͕̫̬̻̞̥̼͔̰̤̩͚͉̺̩͍͈͚̹̼̬̣͔͈̱̥͔̥̫̬͎̙̳̞̠̗͊̓͐̓̓̔͐͒͊̊̎͌̈́̄͛̐̅̔̋͒͆̽̀̽̋͂͘͘̚̕̚͘͠͝͝ͅ░̷̢̢̨̛̛̮͍̖̩͚̲͚͕̞̗̩̫̥̻̰̹̳̘̝̟̻͔̜̹̫̱͔͔͇̺͈̘̭͖̱͒̐̊͗̊̾̊̊̈́̈́́́̈́͐̈́͂̊̈̀͌͗͗̔͗̑̆̌̈̿͐̆͒͋̄̌̄̀̈́͜͜͝͠͝͠͝░̸̡̧̢͖̯̪̖̦̟̖̦̬͇͔͇͓̦̰͙̟͉̜̥̫̑̅̾̈́͆̃͌̀͐͋̄̔̅̚̚͝͝ͅ█̶̢̢̢̧̨̨̢̨̛̛̻̩̘̘̯̭̻͈͍̞̰̞̞͉̩͚̰̥̰̼̝̻̗̝̮̳͍̼͇̖̺̞͖͙͕̈́̈́̔̋͛̍̀̈́͗̃̚͜͜͜͠͠ͅ█̵̡̨̨̡̛̛̙̻̻̯̜͙̲̥̬̩̤͚̖̯̟̝̦̦̙͓̰͚̤̗̯̪̞́̋̈́̊͋╗̵̡̛̛̛̛̣̝̫̙̗̗̯̫̪̱͕̻̪̤̩̱͔͖̳̮͙̟̳̣̞̦͉̬̯̩̥͖͕͈̺̜̻͉͐̏̿̀̃͆̓̋̋̒̅̏͛͊̓̽̄̌̒͌̈́͐͘͝͝͝ͅͅ░̴̯̤̺̺̳̼͇̪̬͔͎͔̞̹̹̫̭̼̭̱͖̟̝̱̜̠̙̝͕͈͓͇̥̼͓͖̲̯͇̲͉̠̬̭̬͋̽̓̔̂̈̐̀̈͌̂̆̔̍̔͛̓̓̉̽͗̈́͗͑͜ͅͅ█̵̡̨̛̛͔̦͙̩̤͓̪̩̣͕̤̱̱̞̻̝͚̱̹̩͖̞͙̠͔̘̳͎͍̮̖̰̺̘̰̲̪͇͆̈́̓͌́͊̽̆̇̀̃̈́͂̌̿́̂͂͛̿̋͗̃̀̾͋̕͜͜͜█̸̧͍̝̺̫̥̝̱̺͖͔͚̈́̾͊̑͑͒̐̏͂̀̿̀͊̊͑̆́̎̍̐̅̕̕̚͠  █̵̢̛̞̘̰̞̖̦̜̜̑̎͊͘█̵̨̢̢̛̝͈͍͓̙̬̜̼͈͚̺̗̺̱̟̮̱͉͕̟̣̜̦̱͔̼̙̺̭͚͓̞̙́̓̇̑́͒͑͐͗̌̍̐́̇̔̆̆̆̋̑̃̆͜͝ͅ█̷̨̧̡̛̛̼̯̩͉̬̼̱͎̮̘̪̼̩̗̲̲̮͍̯̤̥̘̤̜͖͈̗̰̱̮̌̀̂̀̄͛̀̋̐̾̄̃̆̓̈́̈́̋͆͆͑͊͊̽̈́͐̆͗͑̃̈́̽̆̒͂̔̋̏͒̈̍̏̕͘͘͘͘͘͠ͅͅ█̷̢̡̛̛̰̩͈̲̬̼̪͖̙͔͖̤͔͎̣̰̪͎͌̎̈͊̍̆̎̀̏̍̏̉̈́͑͋̋̕͘̚͝╗̵̨̢̖͚̥̩͕̺͉̪̆͐͊̒̆͛͆̈́̀͋̎̇͆͗́̆͋̃̿̃̌̊̓̏͛́͗́̀̓͑̏̓̍̈́̚̚͝͠͠͠͠
̶̧͓̙̍̂̑́͗͑̒̈́͆̽͑̍͑̓̐̄͑̎͒͗̆̀́̀̄̚͘̕͠█̴̧̢̛̛̜̺͈̭̠̖̭̜͈̙͚̗̦̭̺͍̠̜̮̖̥̺̹̹̣͈̖̗̪̗̳̝̮͉͇̱͚̦͓͎̫̰̱̰͚̌̇͐̂́̈̃̿̑͂͛͂͊̓̐́̆̂̈́̍̇͐̐̍́̐͐̆̐͆͊̍̈̀̕͜͜͠͝█̶̨̨̢̨̫͚̰̱͉͕̭̤̗̖̯͕͍̻͉̯͈̼̳̲̫̝̬̥̜̦̜͔̱͈̰̞̮̭͈̲͍̰͔͖̗̟̓͛͌́̏̀͗̿̆͂͗̒͗͌̊̌͒͑̑̈̀͑̆̏̃̽̃̐̀͆̕͝͝͝͠͝ͅͅ╔̴̡̢̧̨̡̢̛͈̥̞̭̫̤̼͔̪̻͙̥͓͓̫̙̲̼͓̳̪͚̭̠̞͈̜̲̝͕̹̳̤͚̗̋͌̑̓̇̅́͂̾̓̀̀̎͗͌̉̊̃͊̈́̋̒̈́̎̍͗̎̉́̊̆̍̽̈́̕͘͜͝͝͠͝ͅͅ═̷̛͍̩̜̟͇̼̻̰̳̳̥̙̻͕̠̱̻͖͔͎̳͔͙̱̝͎͉̖̤̼̠̬̰̫̺̝̹͔̙͚̥̝̻̲́͋̉͋́̓̉̏̌̽͆͆̊́̐̑̔͗̉͂͛̃̽̅̋̕̚͠͠͝ͅ═̵̛̖͕̮̰̞̹͉̮̮̩͓̝̖̓̇̈̌̓̔̄̅͊̈́̏̅͗̀̔̀͒̓͗̌͐̐̋̇̆̽̏̓̾͑͆̒͘͘͘̚͜͜͝͝͠͝═̸̢̢̡̛̗̖̠̦̗̬͙̮̲̪͓̞̤̣̩̺̯̳͍̦͎͖̯̬̘̞̹̭̪̫͉̿̈̂̎̍͊̊̽͑̎̊͛̆͜͜͜͝͝ͅͅ═̷̡̧̛̛̘͓͔͕̪̞̜̘̻̹̲̬̥͓̞̺̙̞̙̣͈̯̙̖̙̫̆̃̑͌̐̈̔̂̂̔̓̀̐̈́̅̆̏̈́̊̅̔̈́͐̀̎́̄̓̌̆̿̈́͑͘͝͠͝╝̴̨̧̧̨͇̣͇̬̻̰̹̙̯̼̮͇̲̲͚̲̼͓͈̰͚̩̱͇̮̠͇̟̹͔͖͍̤͈͇͕̥̺͚̤̞̙̑̽͑̓̇̇́̄̈͒̀̊͜͝     █̵̛̰̞̂͐̇͊̄͂͌́̍͋̓́͒͐̑̀̓̒͒̑̉̋́̍̈́͂̊̆̀̂͛̈̇̎͝͠͝͠█̵͎̮̔̓͊͆͐║̶̢̝͈̬̃̒̎̅̎̏͑̏͗̂̐̅͑̕͝░̸̧̧̡̨̛̠̞̳̠͉͓̞͔̭̣̩̞̠̤̳͈̼̻̖͎͇͙͇̪͗̊̀̄̔̊́͒̓̈͒̓̋̏̈́̆̊̂̃̃̾̃̓̽͒̈́̿͌̅̍̚͝͝͝͠͝░̷̢̢̡̪͍͇̜̹̯͖̹̥̳͈͔̝͚̙̖̻̯̮̟̮̙̩̼̫̯͖̰̣̤̝̮́̈́̈͐͌̒̒̔́͛͑̈́͗͘͘͠͠░̸̡̨̨̘̳̜̜̖͉͓͎̬̟͙͇̯̙͖̳͖͇̲͓͙̹̩͖̱͚̖̺̘̖̳̜̻͙̄̏̐̀́̒̀͒̅͂͋̒̒ͅ    █̴̡̘̪̹̻̬̭̯̣̦͔͖͈͙̥̫̲̮̪̖̱̇͒̎ͅ█̵̧̧̨̗̰̪̲̲̪̰̦̺͚͇̳̬̫̍͌̾͝ͅͅ║̸̧̡̡̛̣̖̮͇̻̫̘̭̣̼͚̩͚̣̭̗͚͇͚̙̫͖̳̬͛̃̀̉̀͐͛̇͂̀͐͛̿͊͆̂͑̈̆̈́̓̂͜͠  █̴̡̧̯̳͖̜̣̰͖̫̝͚̠̲̘̫̻̗̩͉̠̗̤̮̪̺̝̔̀͗̚͜ͅ   █̸̨̧̨̢̫̼͔̪̺̟͙̺͉͚͍͔͍̞̣̰̻̱͎̬̠̝͕̰͇̱̟̯̞̙͓͚̺̱̺̯͖̖̹̳͇̈́͑̂̆̊͑̑͘͜͜    ╔̸̧̻̪̳̜̜̞̼̯̯̗̘̃̌́̄̈́̉̑̑̈͛͌̄̑́͝͝═̴̨̢̧̰̫̲͚̩̟̘̼͓̳̳̳͎̪̳̬͈̯̜̬̟͈̭͓̞̳̬͍̹̰̘̖̻͓̼̤͒͗̂̆̂͛͆͌̊̓͋̀̓̑̆̿̽̈́͆́̊͆̇̑̇̐̀͂̔́͘͘̚͘̚̚͝͠͝͝═̷̢̢̢̡̣͚̝̣̪͚̣̙̦̰̖̟̗͖̖͚̹͇̳̘̲͍͙̯͇͍̲̺̱͍̪̟̞̪̩͎͕̠̓́̉͂̅̐̒̀͋͆̌̄̅̈̋̕̚͜͝ͅ═̸̧̞̙͕̝̼̤̪͙̦͎̘͖͖͉͎͔͓͚̙̠̆̈̍͌̀͂̑̽͝͠͝͝═̴̧̜̰̜̠̭̻̬̩̹̟͈̘̯̬͔̲̭͇̰̩̙͈̦͖̮̮̃̄ͅ╝̶̡̧̛̻̖̣̳̱̮͉̰̫̻͍̠̺̻̬̮̘̭̜̤̪̖̗͎͔̘̞̱͍̤̓͛̇̎͊̈́̊̊͊̎̀̒̆̃̀̽̍́͐̽͂̏́̏͘͜͠͝͝͝͝
̷̢̢̢̡̧̩̖̦̰̙̦͎̞͓̟̪͚̫͙͉̫͎̱͔̯̫̮̜̙͓̱̬̙̺͈̭̳̲͍̦̪̃̈́̋̄́͊̄́̊́̈́̅̿͐̔̈́̓̑̆̑͌̂̈́̂͗̍̈́̓͗͊̓̓̈́̎̀̒̕̕̚͝͝͝╚̸̣̅̌̌́̍̈́̎͗̈́͋͌͒́̇̓̏̾͂̎̄̈́̌͛̅́̔̇̽͐̈́̕̚͘̚͝͝█̵̝̖̹̤̌̎̂̓͒͆̐͊̑̏̀͋ͅ█̷̨̨̧̨̢̼̦̠͎͔͕͈̬̭̲̠̟͓̣̯̲̜̘̪̝̣̜͍̳͕̣̤͔͇͔̥̻͓͓̱͈̩̹̟̙̻̠̤̝̫̏͛  █̸̛̲͎̟̯̺̝̱̪̞͍̄̇̏̋̓͐͌̍̏͗̈̇͒̀̌̓͒̐̑̏̾̇͑̑̃̎̏̂̕͘͘̚͜͠     █̴̨̧̨̛̞̗̖͉͎̞̤̖̼̩̤̰̹̝̰̯̃̊͐̾̍̍͋̐̆͑́̈́͂́̾́͠͠█̷̡̛̹̭͍͔̩̱̙̻͎̖͈̱̲̒̎́̇̈́́̌̓̂̿̄̀̇̎̔̾̅̎́͐͊́̿͆̄͐͛͘̕͘͝͝͝╗̴̨̨̛̛̜̫̞̼̟̬͉̻̼͎͉̘̣̺͔̝̟͔͇̠̜̟̺͉̮̹̟̻͕̼̫̐̈̈́̽͒͑̑̈́͒̂̐͆̑̏̎͛͆͑̎͑͛̐͂̉̓̎̔̈̋͗̒̕͝͠͠͠░̶̛̠̝̗͊͂̌̋͋̾͗͛̓͌̉̌͆̃̆͆̿͆̍̒̔̏̃̆͛̌̓̿̈́̓̒̈́̕̚͝͝͠͝  █̵̧̢̪͍̺̜̣͕̪̯̻͇̰̩̥̖̜͇̠̦̠̙̱̬̳̻͈̼͔̥̤̺͎̭̐̔͜ͅ  █̸̡̡̧̞̯̳̼͇̰͈͎̹̳̥̖͉̹͔̮̲̱͉̩̭͒̄̿͋̏͛̌̓͜║̸̡̢̨̡̢̼̩͓̟̝̠͖͉̪͚̙̘͕̖̞̰̺̳̖̣̭͎̳͈̞̖͍̖͎̬͖̯̣̔̽̀̓͑̿͊̈́̉̔̓͛̒͂̋̈́̓͆̈̈́͆͛̏̏̉̈́̈́̎̇͂̎͂̇̓̌̅̉̃̉͜͜͜͜͝͠͠͝͠͝͝͝░̷̧͔̬̤͙̪̮̜͍̪̳̤̥͉̖̤̦͔̮̪͖̫̜͙̣̥̙̓́̓̔̉͒̀̈́̿̔͗̈́̈́͑͑̃̅͐͂̎͂̌̿̑́̈̓̒̐̎͜͝͝͠͝͝░̷̢̢̨̨̨̢̢͙̞̥̝͇̝̣̯̱͖͇̠̰͎̪̣̝̳͕͔̩̻̪͍̮̩͕͊̈́̓̊͗ͅ░̵̨̡̛̦̞̜̗̮̯̠̺̟̞̼͔͕͖͇͙̩͍̹͂̈́͒̎̈́̉́͜͜͠͝ͅ    █̴͚̭̯̗̳̃̀̒̽̌̽͊̓̌̏͒͆̔̔̋̽͗̂̾̔̓̄͋̎̍͆̐̈̈͗͘͘̚͠͠͝͠͝͠͝█̶̢̢̛̛̛͕͈͎̝̳̰̙͓̲͕͍̀̂͛͐͂̿́͌̈́̌̐̿̂̏̇̃̇̓̚͝͝║̴̻̣̮̟̹̘̞̖̜̪̤̫̠̱̺̝̙̙̘̥̹̮͖̪̟̮͉̞̺͔̤̰̥̠̼̼̞̺̖͑̍͒̿̄̃͊̍̓͜͜╚̸̨̛͇̹̞̙͖̣͓͍̀̽̆̈́̌̾̈́̾̎̽͑̂̒̅̈́̾̌̂̒̂̐͌͌̌͌̑̅͊̕͘͝͝█̷̢̱̰̜̫͖͈̝͙̪͓̦͎͈̘̄͛́̈͌͊̓̀̃͒̅̔͂͛̀̊͊͊̈́͐̈́̑͋̿̂͝█̵̢̡̛̰̲͉̲̺̝̝̫̈́̈̋̀̀̐͆͒̊͋̓͛̆͌̍̓̾͛͆͐͌̎̋̅̍͛̑̈̓́́͋́̽̾͒̃̚͘͠͠͠͝͠͝   █̶̨̨̛̱̜̯͑̅͂̋͋̐̂̈́́̍̇̓̇̇̅̀͠͠█̷̢̡̨̛̜̹̳͇̰͓͔̞̆̊̄̈́̍̑̽̐́̊͂̈́̂̒̽̇̋̅̾̓͆̅̀͐̌̒͑́̎͘̕̚͜ͅ█̴̨͎͍̱̜̺͈̝͔̣͇̹͈̤̿͛̃̀͒̾̇̈̉̀͐̀͊̑̿̚͝͠͝╗̴̧̛̪͚̖͙̫͍̼̎̈́̉̃̀̇̋̑͂̂̔̐̐́͒̅̽̌͒͒̅̂͛̀͐̆͌̾̅̓̕̕͜͜͝͝͝ͅ░̸̡̧̧̫̺̬̲̪̺̖̘̺̹̟͔̤̤͍̪̺͎̙̠̬̤̦̩̼̙̩̫͍̠͙͎̗̳̀̊̿͛̈́̿̐̔̒̈́̋͛͐͂͋̈̒̉̋̓̀͑͊̇̂̈́͆̒̉̑̓͊̏̀̅̅͘̚̕̚̚͝͠ͅ
̸̢͕̗̞̬̠̘̩̼̮͓͎̥̗̼̠̤͕͇̳̣̹̦̦̘̺͇̯̩̥̻͙̬͐͗̈́̀̀̊̇̐̎́͂͊͂̈́̄͐̒̈́̿̓̄̒͆̎̍͐́́͘̚͜ͅͅ░̷̨̨̛̛̙͉̳̯̩͉͚̜͍̘̩͇̘̼͖̬̲̝̹̞͎̮̝̰̩̦͇͖͙̠̞̪̮̪̣̇̒̅͒̓̒̌̎͛̄͆̎͌̐͊̈͊͐̓̏̎͝͝͝͝ͅͅ╚̷̧̢̢͖̝̥͚͍͉͇̤͚̰̼͇̫̮̱̮̼̰͖̞̫͉̩̲̹͈̘͕̳͇́̆͂̈́͂͋͌̌̀̔̑̋̂͌͊̍̈͒̑̇̋̌̾̋͆̿̐̓̀̇͛͐̀̒̊̽̐̊̈́͑̈́̚͝͝ͅͅ═̷̛̟̈́̅̑̾̏́̉̈́̍̐̿̊̇̀̕͘═̷̧̼͈̩̫̭̖̫̠͓͂͗̾̈́̋̈́̊̀̆̎̓̐̋͗͜͝═̶̳͓͉͈͙͖͔̭̹̯͍̣̎̓͌͋́́̃́̂͊̈͆̈̀̔͋̕̚█̷̯̹̯͙̹̗̼̻̺̮̽̉͐͂̀̎̂͗̾̈́͝͝█̸̢̨̡̡̝̭͖̟̥̱̗̥̗̻͈̦̙͚̰͉̹̈́̊̄̔̿͐̈͆͒̋͆̈́̎̃̿͆̇̚͝͝ͅ╗̵̦̞̻̯͍͙̥͇̹̗͎͕̘͖͙̮̠͚̹̈́̊̒̊͑̿̈̏͒̽̑̓̽̈́̓͊̓̕̕͜͜͠͝█̶̡̧̧̜͍̦̖̣͈͖̟̰̠͇̜̱̭͖̟͙̹̱̣̭͔̠̮̮̠̹̲̠̺̰̰̘̩̠̘̤̙͇̠̠̝̽͊̏͜ͅ█̵̢̛̖̯̞̏̈́͆̽̒̔̒̅́̒͊̃́͂͑́̍͒͒̈́͐̔̈́̿͂̌̈͆̔͑̏͌̏̎̉̚̕͜͝║̸̨̡̧̦̺͕͈̱͕̙̭̤̲̭͈̜̜̳͙͈͕̮̦͚̹̠̩̫̲͙̮̝͍͈̄͑̃͊̏̌̆̓̓̽̃̍̈́͐͒͊͌̂́̊͐̒̓̌͆͌̏̀̽̈́̒̔́͑̎͐̽́̆̃̔̃͗̕̚̕͜͝ͅͅͅ░̷̢̨̘͔͙̥͇͚̝̖̭̝͙̭̦̦̗̱̠̟͚̠͇̫͔̗̤͚̤̩̯̻̦͉͇̖͚̣̖͓͔̻͉̜̼̰̼̞̪̉̀̃̔̈́̂̊̈́́̈́̒̔̀̌̽̀̔̄̍̔͑̐̈́̈́̀͗͛̽̇̄͒̀̑̉͂͘̕̕͠͠͠͠͝͝͝͝░̸̡͚̟̩͔̥̃̀́░̶̢̢̩̰̳̜̻̮͇̘͓̳̣̜̜̩̲͇̜̮͚̺̺̤̪̲͆̀̓̈́̓͊̒̏̌̆̍̔̇̎̌͌͋̓͆̐̇̋͋̀͜͜͠͝͝ͅͅ█̴̢̢̧̧̞̭͈̳̖̳̤̫̻̪̤͎̹̫̼̺̺̮̺̥̋͘͜█̶̧̡̗͕͍͖̩̬̫̫͕̬̖̩̬̳͂͂͆̌̈́̏͌͗║̷̧̣̣̝͓͔͉̘̻̙̼͇̺̙̹̲̬͙̙̖̘̗̫͑̂̇̂́̈́̈͛̈́̈̒̃̇̾̀̀͛͋̄͘͘͠ͅ░̶̨̢̦͔̘̯͕̲̯̩̭̼̤͍̝̱͔̟̣̙͈̪̼̩̱̣̺̤̗̪͋̍́͂̔̐͆̑̈́̐̾̈́̚͘͜ͅͅ╚̵̡̧̢̛̠͚̭͎̝͍̳͇̬̻̗̪̞̭͈̼̪̺̞̥̼̮̩͍͓̝̞̪̻̗͇̟̬̳̯̖̭̼̯̻̮̓͂͛́̆͌̃͗̾͆̑̅̒̈́̒́̿͛́̊̌̾͌̓̓́͛̎̕͜͠͝ͅͅ═̸̧̧̧͖̦͍̭̭̯̩̭̳͈̟͓̥͈̦̮̲̼̳̹̜̹̯̭͍͔̱͕̱̖͈̭̩͕͕̏̓̑̂͝═̸̧̧͇̭̬̩̬͔̗̰͙̜̥͎͈͇͈͚̞̰̹̲͑̂̀̽̈͒̋͐̎̄̈́̉͌́͑̚͝͠═̶̨̢̻̙̝̭̲̲͖̟̙̠̩͉͖̲̭̲̼͎̦͔͎̥͖̫̰̟̖̞͇̫̪͉͖̖̒ͅ█̶̢̟͓͕̲̉̌͂̿̊̂̔̽́͐̐͛̎͗̏̐̑͌̽͂̈̐́̓́̃͐͂̀̐̾̎̏͘̕͘̕̕̚ͅ█̴̢̛̖̬̝͇̦̦̭͔͈̫͙̪̊̑̽͑̏͊̓̇̄͒͆͐̀̒̽̉̈́͛̿̓͊̏̒͐̾͐̓̾̿̓͐͌̕͝͝͝͠͝͝͠╗̸̩͚̗̓́̉͌̚̚͝
̷͉̠̘̩̙͆͑͊̈́̌̉̂͆̓͑͊͛͝͠█̶̨̡̢̜̬̘͙͈̹̥̩̩̭̼͇̻̣͇͙̤͍̻̃̅̽͒͆̈́̊̃̌̏́̀̿̌͠͝ͅ█̵̨̡͇͖͉͉͓͎̺̹̳̠̪͎͈͉̻̪̩̳͙̳̭̺͉͓̈́̑̅͑̏̈́̆̂̍̿̂̿̈́̉̃̾́̄̄̒̈̇̿͆͌͑̿̓̍̑̕͘̚͜͠█̷̨̢̲͈̪̞̟̗̜̼̗̹̖̮͓̹͔̪̰̦̻͔̳̞͎͇͖̪͍̣͚̤͇̣̇͂̃̐̾̉͐̀̈́̍̿̊̎̿͌̍̄͛͆̃̈́̚͜͠͝█̸̨̢̨̧̨̜̹͙̩̝̣̪͉̜͈͍̬̹̣̠̘̦̙̯̮̙̪̬̥̰̤͖̰̱̜̳̝̤̮̘͕͓͍̆̊͛͗̒͘͜͜ͅͅ█̷̨̨̛̜͍̤̻̙̭͍̜̫̦̖̠̳͎̲̜͚̹̥̹̫̠̬̪͚̜͕̳̪͇̩̩̝̋͂̓͆̎̀̆̾̏̍̑̄̆̈́̀̓́̅̓͒̇͂͂͐͒̈́̏̆̒̊́͘̕̚̚͜͜͝͝͝ͅ█̷̼̹̬͎̺̺̙̝̪̙̠̝̔̒̇̿́̒̀͗̆̂̾̅̇͌̏̏͑̓̒͊̋̇̆̊̿̀̈̊͒̏̚̕̕̚͜͠͝͝͠͠ͅ╔̸̡̢͕̦̗͚͙͕͖͚̣͙̟͇̮̰̪̒̈̿̐̂͑̈́́̇͌̌̍̐̀́́̑͐̽̂͋̉̌̓́̄̚͘͠╝̶̨̛̟͇͙̰̦̩͓̖̜̩̘͙̫̟̭̻̑̀̿̋̇̓̀͗̓̔͐̐͂̇͛̆͆͂̆̿̒̅͒́̎̄͆̏̎͒̿̈͆̈̈́̑̄̔̊̽̒̾͋͂̀̕̚͝͝ͅ╚̴̛͍̣̐̔̄̑̓̅̀̈̄̆̽̌̅̃̈́͐͌̃͒͊̌͗̓̾̿̊̊̏̀͒̉̓̍̌̓̏̋͘̚͝█̸̢̡̡̡̛̛̱̯̱̩̟͇̻̺̙̯̭̬̭͙̮̲͎͕̯̆̃̌̎̂̉̀̄͆̿̒̏̑͑͆͒̔̍̍̈́̓̇̓͋̃̓͐̄̋̏̕̕͠͝͠͝█̴̨̢̨̩̦͙͖̳͉̳͇͖͉̙̘̱̥͕̖̻̼͎̘̼̜̹̫̦͎͇͔͙̯̱̖̝̻̲̟͖̯̍̎̅̕█̷̡̛̟̩̣̮̎͐̀́̓̈̎̌̊̓͊̏̎̐̌̽͘͘̕͠ͅ█̵̢̝̲̦̤̘̺̝̤̥̜̤̟̰̟͙̭̯̠͔̮̫̩̓̈́̏̂̄͂͗̏͐̔̓͋̐̈́̊̿̚̕̚̚͜͝ͅ█̸̧̛̛͓̪̥̥͎͕̼̲̗͚͇͓̞͖̘͉̺̪̟̖̊̈́̅̂̿͑̂͑͜ͅͅ█̴̨̛̛̮͕͕̭͔̘̮͙͚̥̖͈̼͕̦̱̮̪͋̐͛͛̄̿̅̀͜͠͝ͅ╔̷̧̲̪͎͙̦͙̫̭͉̐̆̂̅̔̈́́̌͗̂̐̽͊̕╝̴̧̡̗͙̞̠̫̙̟̗͔͕͚̹̳̙̺̥̣̻̣͉̱̗̺̪̗̞̗̜̎̽͑̍̓̐̊͋̃̾̊͛̆̀̊̄͋̅̈́̋̏͊́͗͌͐̓͂́́̍̇͐͊̀̕̕͠͝͝ͅ█̷̢̨̡͕͖̙̜͕͉͓̜̹͖̤̭̠͙̱̙̺͖̙̓̏̇̃͜͜͜ͅ█̴̧̗͕͉̺͇̭̟̝̻̩̥̙̗̪̫͎̄̈́̄̈̎̿̈͐̍̄͑͊̀̈́͘̕͘͠͝█̵̢̛̛̛̗̻͎͕̽͂̉́͆̏͂͌̓̀́͂̏̎̐̋́́́͘̕̕͜͠͝͝͝     █̴̡̻̬̪͓͎̣͚̟̬̮́̽̈͛̍͒̚͝ͅ  █̵̧̨̡̨̧̭̠͓̟̜̫̪̳͓̹͙͚͕͎̰̰͈͎̬͍͉͖̜̺̜̻̪̙͉̭̭̦̗̲̘̥́̾̀́̽͒͌̊̓̄̂̑̎̄͊̌̀̓̿̒̑̊͘͜͜͝͝͠͝͝͠ͅ█̷̡̨̧̛̠̬͚͔͕̭͈̝̯͕͉̜͓̎̇̒̄̾̂̔͒̏̐͐͒͊̎̍̊́͘╔̷̙̭̠̪͕͍̒̀̀̕╝̸̢̧̺̖̫̬̺̼̰̰͔̻͉̳̗̦͖̟̖̮̺̗̬̖̱̩͎̭̼͖̌̅̈̃̓̊̇̿̇́̔̄̌͋̒͑̋̋̽̆͑̎̃̓͋̂͆̓̀̀̀̔̉̀̇̇̓͑͌̕͠͝͝
̵̨̨̼̝̫͉͇͇̜̬̭̼͉͙̹̤͎̠͖̭̼̗̝̼̖̜̰͔͉̲̰͎͌̇̃͂̏́̈̓̽̊́̈́̑̚͜͝͝͝͝͝ͅͅ╚̵̨̧̨̝̩̺͔͙̞͔̫̊̊͋͐̓͗͒̽̀̂̇́̾̽̽̓̀͑̐͒̌̀͆̏̔̍͂̂̉͑̌̓̈̿́̈́̐̕̚̚̕͝͠͝͝═̷̨̢̫̝̣̗̬̖̣̱͓̳̖̪̈̈́́̒͊͛̊̌̒̓̅̂͋̾̃̑͊̆̉͐͌̀͆́͒̿͆̊̀̅̈́̃̄̄̓̆͌̔̏̇͋͂͝͠═̸̨̨̡̛̼͍̼̰̞̪͈̥͇̫͉͔̳̺̱̣̪͓̜̞̹̝̰̫͉̹̗̮̆̑̎̅̂͑͑́̊͋̈́͒̈́̀̂̑͊͗́̋́͐͘̚͝ͅ═̶̡̡̢̥̟̭̬̳̝̳͕͍̥̬͓̦̑̆̿̇̈́͊̈́̊͐͋̓̀̃͒̃̑́̌́̀̔͝͝═̵̧̧̨̛̺̪̪̟̰͙̥̣̮̳͖͋͆́̃́̒͑̃͊͛́̂̒̂̔̿̅̈́̓̑̏͋̌̎̍͗̄̋̏̌͆̔̅̊̓̽͘̚̕̕͝͝═̴̢̨̨̨̢̛̹͎̮̩̜͈̬̦̮̫̲͖̫̱̻̤̱͉̝̟̲͕̣͓̹̅̓͌̓̈́̄̀̅͋̓̀̾̌̾͛̌͒͂̉͗̋̂̃̌͊̾̉̅̚͘̚͘͘̕͝͝͝͝╝̵̨̡̨̛̣͓͚̤͔̜̬̥̼̹̬̘͎̠̬̪͉̳̳͓̼͖͔̲̦̲̫̗̠̥̫̳̩́̇͐̂͐̽̿̿̓̆̀́͐̇̕̕͜͠ͅ░̶̡̛͓͔̯͉̮̺͑̈́̀̏̌͋͂̾̊͆͛͌̊̓̕░̸̡̡̧̨̙̱͕̘̯͕̗̘̯̘̘̼͙̦̳͕̺̫͊̀̑̔̌̆̌͐̀̋̀̏͐̈̉̄̇̊̀̽͒͌̂̌̊̄̔̋̓͆̓̉̅̀̅̎͆̅̐̃̓̕̚͜͜͜͝͝͝͝ͅ╚̴̢̢̧̧̨̥͚̹͖͓̪̥̱̫̯̱̯̺̗͓͇̰͍͕̞̖̠͉̫̻͍̝͍̬̝͉̣̥̫͉͉̜̰͍̜̲͖̿̈́͌̂͑̔͌̃̀̏́̃̎̒̃̅̃̈͑̆̕͘̕̚͝͝͝ͅ═̶̢̹̫̬̮̖̱̞̣̜̘̘̪̺̜̩͔͓̺͙̰̜̗͉̥̩̥̜̘͗͘͝ͅ═̵̧̡̬̼̬̩͎͈̟͉̗͇̬̹̳͎̼̼̹͈̝͔̹̝̯̮̼̮̩̺̘̪̗̃͛̄͐̎̉́̆͐͒́̎̈͑̕̚͝ͅ═̶͍̖̻͈̹̘̙̞̫͍͙͍͚̯͇̗̜̳̖̀́═̶̡̨̨̪̘̮͔̖͍͓̘̰͚͍͋͑̾̆͋̈́̏̅̓̈̇͌̉̃̍͋̑̋̔̋̏͋̚͜͠͝═̶̧̨̧̨̨̙͉̩̠̘͓̬̺͕̘͍̭̮̲̺̼͉̬̔̓̈́͊͐̿͐͆͆̒͂͊̃͛̕͘͜͝͝͝╝̵̛̹͕̩̞̳̠̯̰̦͇̹͎̤̩͇̳͚͈̌̔͊̓̇̀̈́̎͗̊͊͒̒̔́̐̉̿̓͗̎̈́͑̓̈̎̆́̐̃̌̉̎̓̃̋́̇́́̃̈́̓̎̕͠͝░̴̨̨̧̧̢̧̩̝̩̖̟͚̦̳̘͖̰͚̯͚͇͔̱͕͉̰͓̬͈̱͈́̊̈̈̏̓̓̅̀́͜͝╚̸̢̨̛̛͇̼͓̯̬͍͇̯̰̙̺̹̥͍͔͓̫̺̲̠͖͍̠͔̠͖͈͉͇͚͉̻͈͇͇̱̼͉͓̘̯̖̙̮̾͌́̍̉̿̾̀̾̎͒̈̑͂̈́͗̿͗͘̕͜͠͝͝͝═̷̡̢̧̡̡̢͎͖̪̟͕̖̘̼͍͕̰͉͉͎̟͎̦̖̜̠̙̩̠̬̦̖̻͉̮̯̱͈̦̯͓͖͖̟͍̰̮̽̓͐̈́͊͛̑̆̔̔͒͐̇̈́̍̉̒͆̉͜͠ͅ═̶̧̧̨̧̭͈͉̲͎̖̙̳͚͎̦͇̫̱̯̯̯͇͕͓͙̺͚͚̘͓̭̲̯̣̠̞̲̱̤̙̱͍͉̬̹̎̊̇͆̏͜͝͠═̴̡̨̨͎̳̮̻͙̪̙̩̭̰͚̰͎͇̦̙̳̘̠͎̹͎̮͇̟̥̼̤̥̙̦͓̳̯̪͙͍͓̦̥̫͂̀̈́́̈̒͆̈́̊̒̒͛̋̃̕͜═̸̡̧͎̭̲̲̝̺̪̘̱͚͔̲̱̯̺̏̂̆̌̽̚͜═̵̧̢̡̛͎̗̮͖̻̺̰̤͇̗̳̘̗͉͖͓̮͎͇̙̬̹͎͙̫̲͍̘̘̪̱̳̯̭̤̋̔̀͒̉͛́̐̄̓̌̍̂̆͗̎́̌̀̕̕͜͝͝͠ͅ╝̶͇͌̎̎̈́̓̌͂̈́͠░̸̢̨̡̡̛̛̗͇̬͉̼͙̟͓͔͎̠͍͔̯̳̦̮̜͇̫̻̣͙͔̃͒̊͐̈́͊̈́̈̈́̉̃͐̍͂̒͛̀̈͆̊́̚͝͝͝ͅͅ
jr. member
Activity: 50
Merit: 7
September 17, 2021, 12:08:33 PM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
wow...amazing! Do you think it can solve for y2 = x3 + 7 ?? Because if y2 = x3 + 7 then y=y+y-y+y-y and if that is true then if y = y, then x = x!

I would need .1 additional TB of ram to accomplish that, however when considering Elliptic curves over finite fields one must consider Hasse's theorem on elliptic curves to include the point at infinity


The set of points E(Fq) is a finite abelian group. It is always cyclic or the product of two cyclic groups. For example the curve defined by over F71 has 72 points (71 affine points including (0,0) and one point at infinity) over this field, whose group structure is given by Z/2Z × Z/36Z. The number of points on a specific curve can be computed with Schoof's algorithm.

Studying the curve over the field extensions of Fq is facilitated by the introduction of the local zeta function of E over Fq, defined by a generating series


where the field Kn is the (unique up to isomorphism) extension of K = Fq of degree n (that is, Fqn). The zeta function is a rational function in T.
Moreover,

with complex numbers α, β of absolute value . This result is a special case of the Weil conjectures. For example, the zeta function of E : y2 + y = x3 over the field F2 is given by this follows from:



Also while writing this my CPU died. I couldnt keep the temperatures close enough to absolute zero that my CPU melted into a steaming pile of non-Newtonian fluid.... I think it just blinked at me?
full member
Activity: 1232
Merit: 242
Shooters Shoot...
September 17, 2021, 09:46:53 AM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
wow...amazing! Do you think it can solve for y2 = x3 + 7 ?? Because if y2 = x3 + 7 then y=y+y-y+y-y and if that is true then if y = y, then x = x!
jr. member
Activity: 50
Merit: 7
September 17, 2021, 09:31:19 AM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
September 12, 2021, 11:00:27 AM
hi there, wandering any demo releases of your program upto 84? please thanks .
getting bored doing nothing, have some time. 2days off.   Wink

Whandering use invited slaves to brute him own privets, in some previous him message he is show a 10000x Tkeys/sec key rate worked on my pinkeyes, yes you really think what this is a wandering pc ? No he talk about slaves what unwired to his puzzle 65 etc...
jr. member
Activity: 48
Merit: 11
September 12, 2021, 10:00:24 AM
with iceland bsgs repo create bpfile and bloomfile:
python bsgs_create_bpfile_bloomfile.py  2000000000 bpfile2000.bin bloomfile2000.bin 32

bpfile only 1398KB,but bloomfile2000.bin about 10GB,is this right?
64000000000
newbie
Activity: 6
Merit: 0
September 12, 2021, 09:34:06 AM
with iceland bsgs repo create bpfile and bloomfile:
python bsgs_create_bpfile_bloomfile.py  2000000000 bpfile2000.bin bloomfile2000.bin 32

bpfile only 1398KB,but bloomfile2000.bin about 10GB,is this right?
legendary
Activity: 1512
Merit: 7340
Farewell, Leo
September 12, 2021, 07:02:32 AM
In other words, the shorthand for the private key.
It is indeed a number between the same range of the private key's, but it's not the private key unless I'm missing something. The value k is the one which if multiplied by G you get r where signature is [r, s]. The private key is d and the public key is dG.

At least that's how I've studied them. They're just names, but they may bring confusion if we don't decide which designation we'll all consider correct.
full member
Activity: 431
Merit: 105
September 11, 2021, 06:11:07 PM
hi there, wandering any demo releases of your program upto 84? please thanks .
getting bored doing nothing, have some time. 2days off.   Wink
legendary
Activity: 1568
Merit: 6660
bitcoincleanup.com / bitmixlist.org
September 10, 2021, 07:47:06 AM
What is the "k" number?

k is number of point,  from 1 to 115792089237316195423570985008687907852837564279074904382605163141518161494336. Every point is g added k times.

In other words, the shorthand for the private key.
newbie
Activity: 2
Merit: 0
September 10, 2021, 07:24:03 AM
What is the "k" number?

k is number of point,  from 1 to 115792089237316195423570985008687907852837564279074904382605163141518161494336. Every point is g added k times.
a.a
member
Activity: 126
Merit: 36
September 10, 2021, 07:06:46 AM
What is the "k" number?
member
Activity: 110
Merit: 61
September 10, 2021, 04:25:30 AM
I apologize in advance for asking, but is it possible to check which of  two points is greater? k number of one point is known.

If it were possible, the ECDLP problem would not exist
newbie
Activity: 2
Merit: 0
September 10, 2021, 04:14:29 AM
I apologize in advance for asking, but is it possible to check which of  two points is greater? k number of one point is known.
Pages:
Jump to: