Pages:
Author

Topic: Pollard's kangaroo ECDLP solver - page 35. (Read 58537 times)

full member
Activity: 1162
Merit: 237
Shooters Shoot...
September 17, 2021, 01:18:34 PM
jr. member
Activity: 50
Merit: 7
September 17, 2021, 12:25:15 PM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
wow...amazing! Do you think it can solve for y2 = x3 + 7 ?? Because if y2 = x3 + 7 then y=y+y-y+y-y and if that is true then if y = y, then x = x!

I would need .1 additional TB of ram to accomplish that, however when considering Elliptic curves over finite fields one must consider Hasse's theorem on elliptic curves to include the point at infinity


The set of points E(Fq) is a finite abelian group. It is always cyclic or the product of two cyclic groups. For example the curve defined by over F71 has 72 points (71 affine points including (0,0) and one point at infinity) over this field, whose group structure is given by Z/2Z × Z/36Z. The number of points on a specific curve can be computed with Schoof's algorithm.

Studying the curve over the field extensions of Fq is facilitated by the introduction of the local zeta function of E over Fq, defined by a generating series


where the field Kn is the (unique up to isomorphism) extension of K = Fq of degree n (that is, Fqn). The zeta function is a rational function in T.
Moreover,

with complex numbers α, β of absolute value . This result is a special case of the Weil conjectures. For example, the zeta function of E : y2 + y = x3 over the field F2 is given by this follows from:



Also while writing this my CPU died. I couldnt keep the temperatures close enough to absolute zero that my CPU melted into a steaming pile of non-Newtonian fluid.... I think it just blinked at me?

░̶̡̢̛̜̻̲̱͓̪̜͕̪̼̘͓̥̭̤͙̰̭͉͈̝͉̝̤̥̱̜̊̆̓̎͐̈́̂̋̓́̎̾̅̓̎̈́̈́̏̚͜͜͝͝ͅͅ█̸̡̧̨̡̩̞̦̦̘̰̻͔̣̩̠̳̖̭̺͎͎̗̥̼̬̙̫̺͓̯͍͓̣̋͐̾͑̈́̈́̌̈̓̅̅̅̄͒͗́̇̍̅̏̈̂̍͋̔̌̎̕͘̕͠͝͝͝█̷̳͎̊͝█̵̛͍͙̃̎̐̈́̉͗̓̌̾̃̀̓́͋͊̀͛̓͋͘͘͘͜͝͝͝͠͠͝█̸̨̢̢̡̡̛̛̠̻͎̲̭̝͈̞̘̼̯̭̠̤͇̥̝̗͓͚̱̱̞̣͕̩̖͓̟͔̝͕̥̹̩̹̟̜̮̫̻̤̅͋̀̉͛͂̈́̉̾̽͑̈̉̀͊̋̈́͗́̓͛͊̐̈́̀́͘͘̕   █̷͇͙͙̈́̓̾͑͌̒͒̓̋̈̾̌̒̑̽̂̒͂̉̓̊̆́̀̈́̈͑̓͋̽̄͘̕͝͝͝█̶̨̞̭͙̳̯̤̣͓̞̞̳̳̈́͊̏͛́͛̋̏̽͊̋͂͜╗̵̢̢̛͍͉͍̠͔̰̯͙͕̣͔̖͇̟̩̥̳̀̋̉̾̌͒́̈́̈́̀͆̐̉̎̋́͗̈́̑̈́̓͑̉̀̅̾̑̏̓̌̓̏̓͊̈́̎͑̍̿̂̈͛̚͠͝͠͝͠͝█̷̡͎͉͕͕͔͎̭̈́̓̽̊͌̍̓͛̀́͌̄̎͛̓̑̚͝͝͝͠█̵̡̡̧̻͉͍̟͔̲͖̤̣̜͉͈̬͍̦̲̪̭͚͛̍̿͌̽̓͒͋̍̉́͜͜ͅ╗̶̧͓͕̙͓̺͎̗͎͇̹̤̣̠̪̗͚̭̗̝̱̫̱͚̘͐̾͆̔̂ͅ░̸̧̢̡̛͚͕̫̬̻̞̥̼͔̰̤̩͚͉̺̩͍͈͚̹̼̬̣͔͈̱̥͔̥̫̬͎̙̳̞̠̗͊̓͐̓̓̔͐͒͊̊̎͌̈́̄͛̐̅̔̋͒͆̽̀̽̋͂͘͘̚̕̚͘͠͝͝ͅ░̷̢̢̨̛̛̮͍̖̩͚̲͚͕̞̗̩̫̥̻̰̹̳̘̝̟̻͔̜̹̫̱͔͔͇̺͈̘̭͖̱͒̐̊͗̊̾̊̊̈́̈́́́̈́͐̈́͂̊̈̀͌͗͗̔͗̑̆̌̈̿͐̆͒͋̄̌̄̀̈́͜͜͝͠͝͠͝░̸̡̧̢͖̯̪̖̦̟̖̦̬͇͔͇͓̦̰͙̟͉̜̥̫̑̅̾̈́͆̃͌̀͐͋̄̔̅̚̚͝͝ͅ█̶̢̢̢̧̨̨̢̨̛̛̻̩̘̘̯̭̻͈͍̞̰̞̞͉̩͚̰̥̰̼̝̻̗̝̮̳͍̼͇̖̺̞͖͙͕̈́̈́̔̋͛̍̀̈́͗̃̚͜͜͜͠͠ͅ█̵̡̨̨̡̛̛̙̻̻̯̜͙̲̥̬̩̤͚̖̯̟̝̦̦̙͓̰͚̤̗̯̪̞́̋̈́̊͋╗̵̡̛̛̛̛̣̝̫̙̗̗̯̫̪̱͕̻̪̤̩̱͔͖̳̮͙̟̳̣̞̦͉̬̯̩̥͖͕͈̺̜̻͉͐̏̿̀̃͆̓̋̋̒̅̏͛͊̓̽̄̌̒͌̈́͐͘͝͝͝ͅͅ░̴̯̤̺̺̳̼͇̪̬͔͎͔̞̹̹̫̭̼̭̱͖̟̝̱̜̠̙̝͕͈͓͇̥̼͓͖̲̯͇̲͉̠̬̭̬͋̽̓̔̂̈̐̀̈͌̂̆̔̍̔͛̓̓̉̽͗̈́͗͑͜ͅͅ█̵̡̨̛̛͔̦͙̩̤͓̪̩̣͕̤̱̱̞̻̝͚̱̹̩͖̞͙̠͔̘̳͎͍̮̖̰̺̘̰̲̪͇͆̈́̓͌́͊̽̆̇̀̃̈́͂̌̿́̂͂͛̿̋͗̃̀̾͋̕͜͜͜█̸̧͍̝̺̫̥̝̱̺͖͔͚̈́̾͊̑͑͒̐̏͂̀̿̀͊̊͑̆́̎̍̐̅̕̕̚͠  █̵̢̛̞̘̰̞̖̦̜̜̑̎͊͘█̵̨̢̢̛̝͈͍͓̙̬̜̼͈͚̺̗̺̱̟̮̱͉͕̟̣̜̦̱͔̼̙̺̭͚͓̞̙́̓̇̑́͒͑͐͗̌̍̐́̇̔̆̆̆̋̑̃̆͜͝ͅ█̷̨̧̡̛̛̼̯̩͉̬̼̱͎̮̘̪̼̩̗̲̲̮͍̯̤̥̘̤̜͖͈̗̰̱̮̌̀̂̀̄͛̀̋̐̾̄̃̆̓̈́̈́̋͆͆͑͊͊̽̈́͐̆͗͑̃̈́̽̆̒͂̔̋̏͒̈̍̏̕͘͘͘͘͘͠ͅͅ█̷̢̡̛̛̰̩͈̲̬̼̪͖̙͔͖̤͔͎̣̰̪͎͌̎̈͊̍̆̎̀̏̍̏̉̈́͑͋̋̕͘̚͝╗̵̨̢̖͚̥̩͕̺͉̪̆͐͊̒̆͛͆̈́̀͋̎̇͆͗́̆͋̃̿̃̌̊̓̏͛́͗́̀̓͑̏̓̍̈́̚̚͝͠͠͠͠
̶̧͓̙̍̂̑́͗͑̒̈́͆̽͑̍͑̓̐̄͑̎͒͗̆̀́̀̄̚͘̕͠█̴̧̢̛̛̜̺͈̭̠̖̭̜͈̙͚̗̦̭̺͍̠̜̮̖̥̺̹̹̣͈̖̗̪̗̳̝̮͉͇̱͚̦͓͎̫̰̱̰͚̌̇͐̂́̈̃̿̑͂͛͂͊̓̐́̆̂̈́̍̇͐̐̍́̐͐̆̐͆͊̍̈̀̕͜͜͠͝█̶̨̨̢̨̫͚̰̱͉͕̭̤̗̖̯͕͍̻͉̯͈̼̳̲̫̝̬̥̜̦̜͔̱͈̰̞̮̭͈̲͍̰͔͖̗̟̓͛͌́̏̀͗̿̆͂͗̒͗͌̊̌͒͑̑̈̀͑̆̏̃̽̃̐̀͆̕͝͝͝͠͝ͅͅ╔̴̡̢̧̨̡̢̛͈̥̞̭̫̤̼͔̪̻͙̥͓͓̫̙̲̼͓̳̪͚̭̠̞͈̜̲̝͕̹̳̤͚̗̋͌̑̓̇̅́͂̾̓̀̀̎͗͌̉̊̃͊̈́̋̒̈́̎̍͗̎̉́̊̆̍̽̈́̕͘͜͝͝͠͝ͅͅ═̷̛͍̩̜̟͇̼̻̰̳̳̥̙̻͕̠̱̻͖͔͎̳͔͙̱̝͎͉̖̤̼̠̬̰̫̺̝̹͔̙͚̥̝̻̲́͋̉͋́̓̉̏̌̽͆͆̊́̐̑̔͗̉͂͛̃̽̅̋̕̚͠͠͝ͅ═̵̛̖͕̮̰̞̹͉̮̮̩͓̝̖̓̇̈̌̓̔̄̅͊̈́̏̅͗̀̔̀͒̓͗̌͐̐̋̇̆̽̏̓̾͑͆̒͘͘͘̚͜͜͝͝͠͝═̸̢̢̡̛̗̖̠̦̗̬͙̮̲̪͓̞̤̣̩̺̯̳͍̦͎͖̯̬̘̞̹̭̪̫͉̿̈̂̎̍͊̊̽͑̎̊͛̆͜͜͜͝͝ͅͅ═̷̡̧̛̛̘͓͔͕̪̞̜̘̻̹̲̬̥͓̞̺̙̞̙̣͈̯̙̖̙̫̆̃̑͌̐̈̔̂̂̔̓̀̐̈́̅̆̏̈́̊̅̔̈́͐̀̎́̄̓̌̆̿̈́͑͘͝͠͝╝̴̨̧̧̨͇̣͇̬̻̰̹̙̯̼̮͇̲̲͚̲̼͓͈̰͚̩̱͇̮̠͇̟̹͔͖͍̤͈͇͕̥̺͚̤̞̙̑̽͑̓̇̇́̄̈͒̀̊͜͝     █̵̛̰̞̂͐̇͊̄͂͌́̍͋̓́͒͐̑̀̓̒͒̑̉̋́̍̈́͂̊̆̀̂͛̈̇̎͝͠͝͠█̵͎̮̔̓͊͆͐║̶̢̝͈̬̃̒̎̅̎̏͑̏͗̂̐̅͑̕͝░̸̧̧̡̨̛̠̞̳̠͉͓̞͔̭̣̩̞̠̤̳͈̼̻̖͎͇͙͇̪͗̊̀̄̔̊́͒̓̈͒̓̋̏̈́̆̊̂̃̃̾̃̓̽͒̈́̿͌̅̍̚͝͝͝͠͝░̷̢̢̡̪͍͇̜̹̯͖̹̥̳͈͔̝͚̙̖̻̯̮̟̮̙̩̼̫̯͖̰̣̤̝̮́̈́̈͐͌̒̒̔́͛͑̈́͗͘͘͠͠░̸̡̨̨̘̳̜̜̖͉͓͎̬̟͙͇̯̙͖̳͖͇̲͓͙̹̩͖̱͚̖̺̘̖̳̜̻͙̄̏̐̀́̒̀͒̅͂͋̒̒ͅ    █̴̡̘̪̹̻̬̭̯̣̦͔͖͈͙̥̫̲̮̪̖̱̇͒̎ͅ█̵̧̧̨̗̰̪̲̲̪̰̦̺͚͇̳̬̫̍͌̾͝ͅͅ║̸̧̡̡̛̣̖̮͇̻̫̘̭̣̼͚̩͚̣̭̗͚͇͚̙̫͖̳̬͛̃̀̉̀͐͛̇͂̀͐͛̿͊͆̂͑̈̆̈́̓̂͜͠  █̴̡̧̯̳͖̜̣̰͖̫̝͚̠̲̘̫̻̗̩͉̠̗̤̮̪̺̝̔̀͗̚͜ͅ   █̸̨̧̨̢̫̼͔̪̺̟͙̺͉͚͍͔͍̞̣̰̻̱͎̬̠̝͕̰͇̱̟̯̞̙͓͚̺̱̺̯͖̖̹̳͇̈́͑̂̆̊͑̑͘͜͜    ╔̸̧̻̪̳̜̜̞̼̯̯̗̘̃̌́̄̈́̉̑̑̈͛͌̄̑́͝͝═̴̨̢̧̰̫̲͚̩̟̘̼͓̳̳̳͎̪̳̬͈̯̜̬̟͈̭͓̞̳̬͍̹̰̘̖̻͓̼̤͒͗̂̆̂͛͆͌̊̓͋̀̓̑̆̿̽̈́͆́̊͆̇̑̇̐̀͂̔́͘͘̚͘̚̚͝͠͝͝═̷̢̢̢̡̣͚̝̣̪͚̣̙̦̰̖̟̗͖̖͚̹͇̳̘̲͍͙̯͇͍̲̺̱͍̪̟̞̪̩͎͕̠̓́̉͂̅̐̒̀͋͆̌̄̅̈̋̕̚͜͝ͅ═̸̧̞̙͕̝̼̤̪͙̦͎̘͖͖͉͎͔͓͚̙̠̆̈̍͌̀͂̑̽͝͠͝͝═̴̧̜̰̜̠̭̻̬̩̹̟͈̘̯̬͔̲̭͇̰̩̙͈̦͖̮̮̃̄ͅ╝̶̡̧̛̻̖̣̳̱̮͉̰̫̻͍̠̺̻̬̮̘̭̜̤̪̖̗͎͔̘̞̱͍̤̓͛̇̎͊̈́̊̊͊̎̀̒̆̃̀̽̍́͐̽͂̏́̏͘͜͠͝͝͝͝
̷̢̢̢̡̧̩̖̦̰̙̦͎̞͓̟̪͚̫͙͉̫͎̱͔̯̫̮̜̙͓̱̬̙̺͈̭̳̲͍̦̪̃̈́̋̄́͊̄́̊́̈́̅̿͐̔̈́̓̑̆̑͌̂̈́̂͗̍̈́̓͗͊̓̓̈́̎̀̒̕̕̚͝͝͝╚̸̣̅̌̌́̍̈́̎͗̈́͋͌͒́̇̓̏̾͂̎̄̈́̌͛̅́̔̇̽͐̈́̕̚͘̚͝͝█̵̝̖̹̤̌̎̂̓͒͆̐͊̑̏̀͋ͅ█̷̨̨̧̨̢̼̦̠͎͔͕͈̬̭̲̠̟͓̣̯̲̜̘̪̝̣̜͍̳͕̣̤͔͇͔̥̻͓͓̱͈̩̹̟̙̻̠̤̝̫̏͛  █̸̛̲͎̟̯̺̝̱̪̞͍̄̇̏̋̓͐͌̍̏͗̈̇͒̀̌̓͒̐̑̏̾̇͑̑̃̎̏̂̕͘͘̚͜͠     █̴̨̧̨̛̞̗̖͉͎̞̤̖̼̩̤̰̹̝̰̯̃̊͐̾̍̍͋̐̆͑́̈́͂́̾́͠͠█̷̡̛̹̭͍͔̩̱̙̻͎̖͈̱̲̒̎́̇̈́́̌̓̂̿̄̀̇̎̔̾̅̎́͐͊́̿͆̄͐͛͘̕͘͝͝͝╗̴̨̨̛̛̜̫̞̼̟̬͉̻̼͎͉̘̣̺͔̝̟͔͇̠̜̟̺͉̮̹̟̻͕̼̫̐̈̈́̽͒͑̑̈́͒̂̐͆̑̏̎͛͆͑̎͑͛̐͂̉̓̎̔̈̋͗̒̕͝͠͠͠░̶̛̠̝̗͊͂̌̋͋̾͗͛̓͌̉̌͆̃̆͆̿͆̍̒̔̏̃̆͛̌̓̿̈́̓̒̈́̕̚͝͝͠͝  █̵̧̢̪͍̺̜̣͕̪̯̻͇̰̩̥̖̜͇̠̦̠̙̱̬̳̻͈̼͔̥̤̺͎̭̐̔͜ͅ  █̸̡̡̧̞̯̳̼͇̰͈͎̹̳̥̖͉̹͔̮̲̱͉̩̭͒̄̿͋̏͛̌̓͜║̸̡̢̨̡̢̼̩͓̟̝̠͖͉̪͚̙̘͕̖̞̰̺̳̖̣̭͎̳͈̞̖͍̖͎̬͖̯̣̔̽̀̓͑̿͊̈́̉̔̓͛̒͂̋̈́̓͆̈̈́͆͛̏̏̉̈́̈́̎̇͂̎͂̇̓̌̅̉̃̉͜͜͜͜͝͠͠͝͠͝͝͝░̷̧͔̬̤͙̪̮̜͍̪̳̤̥͉̖̤̦͔̮̪͖̫̜͙̣̥̙̓́̓̔̉͒̀̈́̿̔͗̈́̈́͑͑̃̅͐͂̎͂̌̿̑́̈̓̒̐̎͜͝͝͠͝͝░̷̢̢̨̨̨̢̢͙̞̥̝͇̝̣̯̱͖͇̠̰͎̪̣̝̳͕͔̩̻̪͍̮̩͕͊̈́̓̊͗ͅ░̵̨̡̛̦̞̜̗̮̯̠̺̟̞̼͔͕͖͇͙̩͍̹͂̈́͒̎̈́̉́͜͜͠͝ͅ    █̴͚̭̯̗̳̃̀̒̽̌̽͊̓̌̏͒͆̔̔̋̽͗̂̾̔̓̄͋̎̍͆̐̈̈͗͘͘̚͠͠͝͠͝͠͝█̶̢̢̛̛̛͕͈͎̝̳̰̙͓̲͕͍̀̂͛͐͂̿́͌̈́̌̐̿̂̏̇̃̇̓̚͝͝║̴̻̣̮̟̹̘̞̖̜̪̤̫̠̱̺̝̙̙̘̥̹̮͖̪̟̮͉̞̺͔̤̰̥̠̼̼̞̺̖͑̍͒̿̄̃͊̍̓͜͜╚̸̨̛͇̹̞̙͖̣͓͍̀̽̆̈́̌̾̈́̾̎̽͑̂̒̅̈́̾̌̂̒̂̐͌͌̌͌̑̅͊̕͘͝͝█̷̢̱̰̜̫͖͈̝͙̪͓̦͎͈̘̄͛́̈͌͊̓̀̃͒̅̔͂͛̀̊͊͊̈́͐̈́̑͋̿̂͝█̵̢̡̛̰̲͉̲̺̝̝̫̈́̈̋̀̀̐͆͒̊͋̓͛̆͌̍̓̾͛͆͐͌̎̋̅̍͛̑̈̓́́͋́̽̾͒̃̚͘͠͠͠͝͠͝   █̶̨̨̛̱̜̯͑̅͂̋͋̐̂̈́́̍̇̓̇̇̅̀͠͠█̷̢̡̨̛̜̹̳͇̰͓͔̞̆̊̄̈́̍̑̽̐́̊͂̈́̂̒̽̇̋̅̾̓͆̅̀͐̌̒͑́̎͘̕̚͜ͅ█̴̨͎͍̱̜̺͈̝͔̣͇̹͈̤̿͛̃̀͒̾̇̈̉̀͐̀͊̑̿̚͝͠͝╗̴̧̛̪͚̖͙̫͍̼̎̈́̉̃̀̇̋̑͂̂̔̐̐́͒̅̽̌͒͒̅̂͛̀͐̆͌̾̅̓̕̕͜͜͝͝͝ͅ░̸̡̧̧̫̺̬̲̪̺̖̘̺̹̟͔̤̤͍̪̺͎̙̠̬̤̦̩̼̙̩̫͍̠͙͎̗̳̀̊̿͛̈́̿̐̔̒̈́̋͛͐͂͋̈̒̉̋̓̀͑͊̇̂̈́͆̒̉̑̓͊̏̀̅̅͘̚̕̚̚͝͠ͅ
̸̢͕̗̞̬̠̘̩̼̮͓͎̥̗̼̠̤͕͇̳̣̹̦̦̘̺͇̯̩̥̻͙̬͐͗̈́̀̀̊̇̐̎́͂͊͂̈́̄͐̒̈́̿̓̄̒͆̎̍͐́́͘̚͜ͅͅ░̷̨̨̛̛̙͉̳̯̩͉͚̜͍̘̩͇̘̼͖̬̲̝̹̞͎̮̝̰̩̦͇͖͙̠̞̪̮̪̣̇̒̅͒̓̒̌̎͛̄͆̎͌̐͊̈͊͐̓̏̎͝͝͝͝ͅͅ╚̷̧̢̢͖̝̥͚͍͉͇̤͚̰̼͇̫̮̱̮̼̰͖̞̫͉̩̲̹͈̘͕̳͇́̆͂̈́͂͋͌̌̀̔̑̋̂͌͊̍̈͒̑̇̋̌̾̋͆̿̐̓̀̇͛͐̀̒̊̽̐̊̈́͑̈́̚͝͝ͅͅ═̷̛̟̈́̅̑̾̏́̉̈́̍̐̿̊̇̀̕͘═̷̧̼͈̩̫̭̖̫̠͓͂͗̾̈́̋̈́̊̀̆̎̓̐̋͗͜͝═̶̳͓͉͈͙͖͔̭̹̯͍̣̎̓͌͋́́̃́̂͊̈͆̈̀̔͋̕̚█̷̯̹̯͙̹̗̼̻̺̮̽̉͐͂̀̎̂͗̾̈́͝͝█̸̢̨̡̡̝̭͖̟̥̱̗̥̗̻͈̦̙͚̰͉̹̈́̊̄̔̿͐̈͆͒̋͆̈́̎̃̿͆̇̚͝͝ͅ╗̵̦̞̻̯͍͙̥͇̹̗͎͕̘͖͙̮̠͚̹̈́̊̒̊͑̿̈̏͒̽̑̓̽̈́̓͊̓̕̕͜͜͠͝█̶̡̧̧̜͍̦̖̣͈͖̟̰̠͇̜̱̭͖̟͙̹̱̣̭͔̠̮̮̠̹̲̠̺̰̰̘̩̠̘̤̙͇̠̠̝̽͊̏͜ͅ█̵̢̛̖̯̞̏̈́͆̽̒̔̒̅́̒͊̃́͂͑́̍͒͒̈́͐̔̈́̿͂̌̈͆̔͑̏͌̏̎̉̚̕͜͝║̸̨̡̧̦̺͕͈̱͕̙̭̤̲̭͈̜̜̳͙͈͕̮̦͚̹̠̩̫̲͙̮̝͍͈̄͑̃͊̏̌̆̓̓̽̃̍̈́͐͒͊͌̂́̊͐̒̓̌͆͌̏̀̽̈́̒̔́͑̎͐̽́̆̃̔̃͗̕̚̕͜͝ͅͅͅ░̷̢̨̘͔͙̥͇͚̝̖̭̝͙̭̦̦̗̱̠̟͚̠͇̫͔̗̤͚̤̩̯̻̦͉͇̖͚̣̖͓͔̻͉̜̼̰̼̞̪̉̀̃̔̈́̂̊̈́́̈́̒̔̀̌̽̀̔̄̍̔͑̐̈́̈́̀͗͛̽̇̄͒̀̑̉͂͘̕̕͠͠͠͠͝͝͝͝░̸̡͚̟̩͔̥̃̀́░̶̢̢̩̰̳̜̻̮͇̘͓̳̣̜̜̩̲͇̜̮͚̺̺̤̪̲͆̀̓̈́̓͊̒̏̌̆̍̔̇̎̌͌͋̓͆̐̇̋͋̀͜͜͠͝͝ͅͅ█̴̢̢̧̧̞̭͈̳̖̳̤̫̻̪̤͎̹̫̼̺̺̮̺̥̋͘͜█̶̧̡̗͕͍͖̩̬̫̫͕̬̖̩̬̳͂͂͆̌̈́̏͌͗║̷̧̣̣̝͓͔͉̘̻̙̼͇̺̙̹̲̬͙̙̖̘̗̫͑̂̇̂́̈́̈͛̈́̈̒̃̇̾̀̀͛͋̄͘͘͠ͅ░̶̨̢̦͔̘̯͕̲̯̩̭̼̤͍̝̱͔̟̣̙͈̪̼̩̱̣̺̤̗̪͋̍́͂̔̐͆̑̈́̐̾̈́̚͘͜ͅͅ╚̵̡̧̢̛̠͚̭͎̝͍̳͇̬̻̗̪̞̭͈̼̪̺̞̥̼̮̩͍͓̝̞̪̻̗͇̟̬̳̯̖̭̼̯̻̮̓͂͛́̆͌̃͗̾͆̑̅̒̈́̒́̿͛́̊̌̾͌̓̓́͛̎̕͜͠͝ͅͅ═̸̧̧̧͖̦͍̭̭̯̩̭̳͈̟͓̥͈̦̮̲̼̳̹̜̹̯̭͍͔̱͕̱̖͈̭̩͕͕̏̓̑̂͝═̸̧̧͇̭̬̩̬͔̗̰͙̜̥͎͈͇͈͚̞̰̹̲͑̂̀̽̈͒̋͐̎̄̈́̉͌́͑̚͝͠═̶̨̢̻̙̝̭̲̲͖̟̙̠̩͉͖̲̭̲̼͎̦͔͎̥͖̫̰̟̖̞͇̫̪͉͖̖̒ͅ█̶̢̟͓͕̲̉̌͂̿̊̂̔̽́͐̐͛̎͗̏̐̑͌̽͂̈̐́̓́̃͐͂̀̐̾̎̏͘̕͘̕̕̚ͅ█̴̢̛̖̬̝͇̦̦̭͔͈̫͙̪̊̑̽͑̏͊̓̇̄͒͆͐̀̒̽̉̈́͛̿̓͊̏̒͐̾͐̓̾̿̓͐͌̕͝͝͝͠͝͝͠╗̸̩͚̗̓́̉͌̚̚͝
̷͉̠̘̩̙͆͑͊̈́̌̉̂͆̓͑͊͛͝͠█̶̨̡̢̜̬̘͙͈̹̥̩̩̭̼͇̻̣͇͙̤͍̻̃̅̽͒͆̈́̊̃̌̏́̀̿̌͠͝ͅ█̵̨̡͇͖͉͉͓͎̺̹̳̠̪͎͈͉̻̪̩̳͙̳̭̺͉͓̈́̑̅͑̏̈́̆̂̍̿̂̿̈́̉̃̾́̄̄̒̈̇̿͆͌͑̿̓̍̑̕͘̚͜͠█̷̨̢̲͈̪̞̟̗̜̼̗̹̖̮͓̹͔̪̰̦̻͔̳̞͎͇͖̪͍̣͚̤͇̣̇͂̃̐̾̉͐̀̈́̍̿̊̎̿͌̍̄͛͆̃̈́̚͜͠͝█̸̨̢̨̧̨̜̹͙̩̝̣̪͉̜͈͍̬̹̣̠̘̦̙̯̮̙̪̬̥̰̤͖̰̱̜̳̝̤̮̘͕͓͍̆̊͛͗̒͘͜͜ͅͅ█̷̨̨̛̜͍̤̻̙̭͍̜̫̦̖̠̳͎̲̜͚̹̥̹̫̠̬̪͚̜͕̳̪͇̩̩̝̋͂̓͆̎̀̆̾̏̍̑̄̆̈́̀̓́̅̓͒̇͂͂͐͒̈́̏̆̒̊́͘̕̚̚͜͜͝͝͝ͅ█̷̼̹̬͎̺̺̙̝̪̙̠̝̔̒̇̿́̒̀͗̆̂̾̅̇͌̏̏͑̓̒͊̋̇̆̊̿̀̈̊͒̏̚̕̕̚͜͠͝͝͠͠ͅ╔̸̡̢͕̦̗͚͙͕͖͚̣͙̟͇̮̰̪̒̈̿̐̂͑̈́́̇͌̌̍̐̀́́̑͐̽̂͋̉̌̓́̄̚͘͠╝̶̨̛̟͇͙̰̦̩͓̖̜̩̘͙̫̟̭̻̑̀̿̋̇̓̀͗̓̔͐̐͂̇͛̆͆͂̆̿̒̅͒́̎̄͆̏̎͒̿̈͆̈̈́̑̄̔̊̽̒̾͋͂̀̕̚͝͝ͅ╚̴̛͍̣̐̔̄̑̓̅̀̈̄̆̽̌̅̃̈́͐͌̃͒͊̌͗̓̾̿̊̊̏̀͒̉̓̍̌̓̏̋͘̚͝█̸̢̡̡̡̛̛̱̯̱̩̟͇̻̺̙̯̭̬̭͙̮̲͎͕̯̆̃̌̎̂̉̀̄͆̿̒̏̑͑͆͒̔̍̍̈́̓̇̓͋̃̓͐̄̋̏̕̕͠͝͠͝█̴̨̢̨̩̦͙͖̳͉̳͇͖͉̙̘̱̥͕̖̻̼͎̘̼̜̹̫̦͎͇͔͙̯̱̖̝̻̲̟͖̯̍̎̅̕█̷̡̛̟̩̣̮̎͐̀́̓̈̎̌̊̓͊̏̎̐̌̽͘͘̕͠ͅ█̵̢̝̲̦̤̘̺̝̤̥̜̤̟̰̟͙̭̯̠͔̮̫̩̓̈́̏̂̄͂͗̏͐̔̓͋̐̈́̊̿̚̕̚̚͜͝ͅ█̸̧̛̛͓̪̥̥͎͕̼̲̗͚͇͓̞͖̘͉̺̪̟̖̊̈́̅̂̿͑̂͑͜ͅͅ█̴̨̛̛̮͕͕̭͔̘̮͙͚̥̖͈̼͕̦̱̮̪͋̐͛͛̄̿̅̀͜͠͝ͅ╔̷̧̲̪͎͙̦͙̫̭͉̐̆̂̅̔̈́́̌͗̂̐̽͊̕╝̴̧̡̗͙̞̠̫̙̟̗͔͕͚̹̳̙̺̥̣̻̣͉̱̗̺̪̗̞̗̜̎̽͑̍̓̐̊͋̃̾̊͛̆̀̊̄͋̅̈́̋̏͊́͗͌͐̓͂́́̍̇͐͊̀̕̕͠͝͝ͅ█̷̢̨̡͕͖̙̜͕͉͓̜̹͖̤̭̠͙̱̙̺͖̙̓̏̇̃͜͜͜ͅ█̴̧̗͕͉̺͇̭̟̝̻̩̥̙̗̪̫͎̄̈́̄̈̎̿̈͐̍̄͑͊̀̈́͘̕͘͠͝█̵̢̛̛̛̗̻͎͕̽͂̉́͆̏͂͌̓̀́͂̏̎̐̋́́́͘̕̕͜͠͝͝͝     █̴̡̻̬̪͓͎̣͚̟̬̮́̽̈͛̍͒̚͝ͅ  █̵̧̨̡̨̧̭̠͓̟̜̫̪̳͓̹͙͚͕͎̰̰͈͎̬͍͉͖̜̺̜̻̪̙͉̭̭̦̗̲̘̥́̾̀́̽͒͌̊̓̄̂̑̎̄͊̌̀̓̿̒̑̊͘͜͜͝͝͠͝͝͠ͅ█̷̡̨̧̛̠̬͚͔͕̭͈̝̯͕͉̜͓̎̇̒̄̾̂̔͒̏̐͐͒͊̎̍̊́͘╔̷̙̭̠̪͕͍̒̀̀̕╝̸̢̧̺̖̫̬̺̼̰̰͔̻͉̳̗̦͖̟̖̮̺̗̬̖̱̩͎̭̼͖̌̅̈̃̓̊̇̿̇́̔̄̌͋̒͑̋̋̽̆͑̎̃̓͋̂͆̓̀̀̀̔̉̀̇̇̓͑͌̕͠͝͝
̵̨̨̼̝̫͉͇͇̜̬̭̼͉͙̹̤͎̠͖̭̼̗̝̼̖̜̰͔͉̲̰͎͌̇̃͂̏́̈̓̽̊́̈́̑̚͜͝͝͝͝͝ͅͅ╚̵̨̧̨̝̩̺͔͙̞͔̫̊̊͋͐̓͗͒̽̀̂̇́̾̽̽̓̀͑̐͒̌̀͆̏̔̍͂̂̉͑̌̓̈̿́̈́̐̕̚̚̕͝͠͝͝═̷̨̢̫̝̣̗̬̖̣̱͓̳̖̪̈̈́́̒͊͛̊̌̒̓̅̂͋̾̃̑͊̆̉͐͌̀͆́͒̿͆̊̀̅̈́̃̄̄̓̆͌̔̏̇͋͂͝͠═̸̨̨̡̛̼͍̼̰̞̪͈̥͇̫͉͔̳̺̱̣̪͓̜̞̹̝̰̫͉̹̗̮̆̑̎̅̂͑͑́̊͋̈́͒̈́̀̂̑͊͗́̋́͐͘̚͝ͅ═̶̡̡̢̥̟̭̬̳̝̳͕͍̥̬͓̦̑̆̿̇̈́͊̈́̊͐͋̓̀̃͒̃̑́̌́̀̔͝͝═̵̧̧̨̛̺̪̪̟̰͙̥̣̮̳͖͋͆́̃́̒͑̃͊͛́̂̒̂̔̿̅̈́̓̑̏͋̌̎̍͗̄̋̏̌͆̔̅̊̓̽͘̚̕̕͝͝═̴̢̨̨̨̢̛̹͎̮̩̜͈̬̦̮̫̲͖̫̱̻̤̱͉̝̟̲͕̣͓̹̅̓͌̓̈́̄̀̅͋̓̀̾̌̾͛̌͒͂̉͗̋̂̃̌͊̾̉̅̚͘̚͘͘̕͝͝͝͝╝̵̨̡̨̛̣͓͚̤͔̜̬̥̼̹̬̘͎̠̬̪͉̳̳͓̼͖͔̲̦̲̫̗̠̥̫̳̩́̇͐̂͐̽̿̿̓̆̀́͐̇̕̕͜͠ͅ░̶̡̛͓͔̯͉̮̺͑̈́̀̏̌͋͂̾̊͆͛͌̊̓̕░̸̡̡̧̨̙̱͕̘̯͕̗̘̯̘̘̼͙̦̳͕̺̫͊̀̑̔̌̆̌͐̀̋̀̏͐̈̉̄̇̊̀̽͒͌̂̌̊̄̔̋̓͆̓̉̅̀̅̎͆̅̐̃̓̕̚͜͜͜͝͝͝͝ͅ╚̴̢̢̧̧̨̥͚̹͖͓̪̥̱̫̯̱̯̺̗͓͇̰͍͕̞̖̠͉̫̻͍̝͍̬̝͉̣̥̫͉͉̜̰͍̜̲͖̿̈́͌̂͑̔͌̃̀̏́̃̎̒̃̅̃̈͑̆̕͘̕̚͝͝͝ͅ═̶̢̹̫̬̮̖̱̞̣̜̘̘̪̺̜̩͔͓̺͙̰̜̗͉̥̩̥̜̘͗͘͝ͅ═̵̧̡̬̼̬̩͎͈̟͉̗͇̬̹̳͎̼̼̹͈̝͔̹̝̯̮̼̮̩̺̘̪̗̃͛̄͐̎̉́̆͐͒́̎̈͑̕̚͝ͅ═̶͍̖̻͈̹̘̙̞̫͍͙͍͚̯͇̗̜̳̖̀́═̶̡̨̨̪̘̮͔̖͍͓̘̰͚͍͋͑̾̆͋̈́̏̅̓̈̇͌̉̃̍͋̑̋̔̋̏͋̚͜͠͝═̶̧̨̧̨̨̙͉̩̠̘͓̬̺͕̘͍̭̮̲̺̼͉̬̔̓̈́͊͐̿͐͆͆̒͂͊̃͛̕͘͜͝͝͝╝̵̛̹͕̩̞̳̠̯̰̦͇̹͎̤̩͇̳͚͈̌̔͊̓̇̀̈́̎͗̊͊͒̒̔́̐̉̿̓͗̎̈́͑̓̈̎̆́̐̃̌̉̎̓̃̋́̇́́̃̈́̓̎̕͠͝░̴̨̨̧̧̢̧̩̝̩̖̟͚̦̳̘͖̰͚̯͚͇͔̱͕͉̰͓̬͈̱͈́̊̈̈̏̓̓̅̀́͜͝╚̸̢̨̛̛͇̼͓̯̬͍͇̯̰̙̺̹̥͍͔͓̫̺̲̠͖͍̠͔̠͖͈͉͇͚͉̻͈͇͇̱̼͉͓̘̯̖̙̮̾͌́̍̉̿̾̀̾̎͒̈̑͂̈́͗̿͗͘̕͜͠͝͝͝═̷̡̢̧̡̡̢͎͖̪̟͕̖̘̼͍͕̰͉͉͎̟͎̦̖̜̠̙̩̠̬̦̖̻͉̮̯̱͈̦̯͓͖͖̟͍̰̮̽̓͐̈́͊͛̑̆̔̔͒͐̇̈́̍̉̒͆̉͜͠ͅ═̶̧̧̨̧̭͈͉̲͎̖̙̳͚͎̦͇̫̱̯̯̯͇͕͓͙̺͚͚̘͓̭̲̯̣̠̞̲̱̤̙̱͍͉̬̹̎̊̇͆̏͜͝͠═̴̡̨̨͎̳̮̻͙̪̙̩̭̰͚̰͎͇̦̙̳̘̠͎̹͎̮͇̟̥̼̤̥̙̦͓̳̯̪͙͍͓̦̥̫͂̀̈́́̈̒͆̈́̊̒̒͛̋̃̕͜═̸̡̧͎̭̲̲̝̺̪̘̱͚͔̲̱̯̺̏̂̆̌̽̚͜═̵̧̢̡̛͎̗̮͖̻̺̰̤͇̗̳̘̗͉͖͓̮͎͇̙̬̹͎͙̫̲͍̘̘̪̱̳̯̭̤̋̔̀͒̉͛́̐̄̓̌̍̂̆͗̎́̌̀̕̕͜͝͝͠ͅ╝̶͇͌̎̎̈́̓̌͂̈́͠░̸̢̨̡̡̛̛̗͇̬͉̼͙̟͓͔͎̠͍͔̯̳̦̮̜͇̫̻̣͙͔̃͒̊͐̈́͊̈́̈̈́̉̃͐̍͂̒͛̀̈͆̊́̚͝͝͝ͅͅ
jr. member
Activity: 50
Merit: 7
September 17, 2021, 12:08:33 PM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
wow...amazing! Do you think it can solve for y2 = x3 + 7 ?? Because if y2 = x3 + 7 then y=y+y-y+y-y and if that is true then if y = y, then x = x!

I would need .1 additional TB of ram to accomplish that, however when considering Elliptic curves over finite fields one must consider Hasse's theorem on elliptic curves to include the point at infinity


The set of points E(Fq) is a finite abelian group. It is always cyclic or the product of two cyclic groups. For example the curve defined by over F71 has 72 points (71 affine points including (0,0) and one point at infinity) over this field, whose group structure is given by Z/2Z × Z/36Z. The number of points on a specific curve can be computed with Schoof's algorithm.

Studying the curve over the field extensions of Fq is facilitated by the introduction of the local zeta function of E over Fq, defined by a generating series


where the field Kn is the (unique up to isomorphism) extension of K = Fq of degree n (that is, Fqn). The zeta function is a rational function in T.
Moreover,

with complex numbers α, β of absolute value . This result is a special case of the Weil conjectures. For example, the zeta function of E : y2 + y = x3 over the field F2 is given by this follows from:



Also while writing this my CPU died. I couldnt keep the temperatures close enough to absolute zero that my CPU melted into a steaming pile of non-Newtonian fluid.... I think it just blinked at me?
full member
Activity: 1162
Merit: 237
Shooters Shoot...
September 17, 2021, 09:46:53 AM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
wow...amazing! Do you think it can solve for y2 = x3 + 7 ?? Because if y2 = x3 + 7 then y=y+y-y+y-y and if that is true then if y = y, then x = x!
jr. member
Activity: 50
Merit: 7
September 17, 2021, 09:31:19 AM
{Quantpy Engine Beta 0.9.2}

Compiling Quantum Gates.........Done! (4s 09/17/2021 094307Z)
Mapping 63 Qubits (1 Qubit per node)....Done! (2s 09/17/2021 094311Z)
Loading 63.py.......... bloom filter...........................................................Done! (2.9TB) (2,172MB/Qubit)

[1][1][1][0][0][0][0][1][0][1][0][1][0][1][0][1][1][0][1][1][1][1][1][0][1][1][0][0][1][0][0][1][1][1][1][1][0][1][1][0][1][1][0][1][0][0][1][1][1][1][1][1][1][0][1][0][1][0][1][0][1][1][0]

53114562000.40 Bflips/s (3,346,217,406,025.2 keys/s) 0 Keys Found (0:38)
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
September 12, 2021, 11:00:27 AM
hi there, wandering any demo releases of your program upto 84? please thanks .
getting bored doing nothing, have some time. 2days off.   Wink

Whandering use invited slaves to brute him own privets, in some previous him message he is show a 10000x Tkeys/sec key rate worked on my pinkeyes, yes you really think what this is a wandering pc ? No he talk about slaves what unwired to his puzzle 65 etc...
jr. member
Activity: 48
Merit: 11
September 12, 2021, 10:00:24 AM
with iceland bsgs repo create bpfile and bloomfile:
python bsgs_create_bpfile_bloomfile.py  2000000000 bpfile2000.bin bloomfile2000.bin 32

bpfile only 1398KB,but bloomfile2000.bin about 10GB,is this right?
64000000000
newbie
Activity: 6
Merit: 0
September 12, 2021, 09:34:06 AM
with iceland bsgs repo create bpfile and bloomfile:
python bsgs_create_bpfile_bloomfile.py  2000000000 bpfile2000.bin bloomfile2000.bin 32

bpfile only 1398KB,but bloomfile2000.bin about 10GB,is this right?
legendary
Activity: 1512
Merit: 7340
Farewell, Leo
September 12, 2021, 07:02:32 AM
In other words, the shorthand for the private key.
It is indeed a number between the same range of the private key's, but it's not the private key unless I'm missing something. The value k is the one which if multiplied by G you get r where signature is [r, s]. The private key is d and the public key is dG.

At least that's how I've studied them. They're just names, but they may bring confusion if we don't decide which designation we'll all consider correct.
full member
Activity: 431
Merit: 105
September 11, 2021, 06:11:07 PM
hi there, wandering any demo releases of your program upto 84? please thanks .
getting bored doing nothing, have some time. 2days off.   Wink
legendary
Activity: 1568
Merit: 6660
bitcoincleanup.com / bitmixlist.org
September 10, 2021, 07:47:06 AM
What is the "k" number?

k is number of point,  from 1 to 115792089237316195423570985008687907852837564279074904382605163141518161494336. Every point is g added k times.

In other words, the shorthand for the private key.
newbie
Activity: 2
Merit: 0
September 10, 2021, 07:24:03 AM
What is the "k" number?

k is number of point,  from 1 to 115792089237316195423570985008687907852837564279074904382605163141518161494336. Every point is g added k times.
a.a
member
Activity: 126
Merit: 36
September 10, 2021, 07:06:46 AM
What is the "k" number?
member
Activity: 110
Merit: 61
September 10, 2021, 04:25:30 AM
I apologize in advance for asking, but is it possible to check which of  two points is greater? k number of one point is known.

If it were possible, the ECDLP problem would not exist
newbie
Activity: 2
Merit: 0
September 10, 2021, 04:14:29 AM
I apologize in advance for asking, but is it possible to check which of  two points is greater? k number of one point is known.
full member
Activity: 431
Merit: 105
September 09, 2021, 06:56:37 AM


A prototype in work. Solves an 84 bit range search in under 1 minute, but cannot solve 85 bits for some reason! More work tomorrow. It is something in the GPU...more troubleshooting!
It does not work above 84 bit range. It is not for sale nor available to test. If I ever get it to work right, will use in the pool for the larger challenges with x points exposed.

CPU walks the baby steps with DP method (with limit setting). GPU burns through the range with giant steps, looking for collisions.

Try my pubkeys.... Huh
You two do not read lol...it can't find an 85 bit pubkey. I've ran it for a day looking for several 85 bit pubkeys, no luck. I will not waste time on 117-120 pubkey that may or may not be there.

lol , i read what you say and understand as well , just i asked  if you like to share  send me codes so will try to fix bug and do optimization ,

same here bro, will test and share, and prolly you will put it up on git to, like vanbitcrackn,
jr. member
Activity: 81
Merit: 2
September 09, 2021, 02:26:50 AM


A prototype in work. Solves an 84 bit range search in under 1 minute, but cannot solve 85 bits for some reason! More work tomorrow. It is something in the GPU...more troubleshooting!
It does not work above 84 bit range. It is not for sale nor available to test. If I ever get it to work right, will use in the pool for the larger challenges with x points exposed.

CPU walks the baby steps with DP method (with limit setting). GPU burns through the range with giant steps, looking for collisions.

Try my pubkeys.... Huh
You two do not read lol...it can't find an 85 bit pubkey. I've ran it for a day looking for several 85 bit pubkeys, no luck. I will not waste time on 117-120 pubkey that may or may not be there.

lol , i read what you say and understand as well , just i asked  if you like to share  send me codes so will try to fix bug and do optimization ,
full member
Activity: 1162
Merit: 237
Shooters Shoot...
September 09, 2021, 02:19:33 AM


A prototype in work. Solves an 84 bit range search in under 1 minute, but cannot solve 85 bits for some reason! More work tomorrow. It is something in the GPU...more troubleshooting!
It does not work above 84 bit range. It is not for sale nor available to test. If I ever get it to work right, will use in the pool for the larger challenges with x points exposed.

CPU walks the baby steps with DP method (with limit setting). GPU burns through the range with giant steps, looking for collisions.

Try my pubkeys.... Huh
You two do not read lol...it can't find an 85 bit pubkey. I've ran it for a day looking for several 85 bit pubkeys, no luck. I will not waste time on 117-120 pubkey that may or may not be there.

Try run your cangaroo again, and you find 85 bit. Kangaroo and BSGS some time need run again for find a key as show my practice.
I have no idea what practice you mean...I've never seen any ranges ran by you, just a lot of math questions lol.
All is well, we will find 120 at the pool...
member
Activity: 873
Merit: 22
$$P2P BTC BRUTE.JOIN NOW ! https://uclck.me/SQPJk
September 09, 2021, 02:16:35 AM


A prototype in work. Solves an 84 bit range search in under 1 minute, but cannot solve 85 bits for some reason! More work tomorrow. It is something in the GPU...more troubleshooting!
It does not work above 84 bit range. It is not for sale nor available to test. If I ever get it to work right, will use in the pool for the larger challenges with x points exposed.

CPU walks the baby steps with DP method (with limit setting). GPU burns through the range with giant steps, looking for collisions.

Try my pubkeys.... Huh
You two do not read lol...it can't find an 85 bit pubkey. I've ran it for a day looking for several 85 bit pubkeys, no luck. I will not waste time on 117-120 pubkey that may or may not be there.

Try run your cangaroo again, and you find 85 bit. Kangaroo and BSGS some time need run again for find a key as show my practice.
full member
Activity: 1162
Merit: 237
Shooters Shoot...
September 09, 2021, 02:13:38 AM


A prototype in work. Solves an 84 bit range search in under 1 minute, but cannot solve 85 bits for some reason! More work tomorrow. It is something in the GPU...more troubleshooting!
It does not work above 84 bit range. It is not for sale nor available to test. If I ever get it to work right, will use in the pool for the larger challenges with x points exposed.

CPU walks the baby steps with DP method (with limit setting). GPU burns through the range with giant steps, looking for collisions.

Try my pubkeys.... Huh
You two do not read lol...it can't find an 85 bit pubkey. I've ran it for a day looking for several 85 bit pubkeys, no luck. I will not waste time on 117-120 pubkey that may or may not be there.
Pages:
Jump to: