What are currently the best hashrates one can get with 7950 or 280x ?
I don't know about the 7950, but the 280x is about 6.6mhs with a overclock. This is on Windows 7 or 8 O/S. Don't know about linux distros.
You need to use wolf0's old modded kernel and bins leaked by LovesToShare on November 30:
http://www.filedropper.com/optmizedsgminerkernelsI see you posted on the other thread as well:
https://bitcointalk.org/index.php?topic=854257.320X11 is 6.6mhs overclocked wolf0 screenshot
X13 I don't know, but a R9 290 is 5.1mhs not overclocked, my own card.
There is modded kernel for neoscrypt that give extra 4% on 280x, again from WolfO.
Copy and past this replacement into the neoscrypt kernel file (delete the old contents).
// NeoScrypt(128, 2, 1) with Salsa20/20 and ChaCha20/20
// Stupid AMD compiler ignores the unroll pragma in these two
#define SALSA_SMALL_UNROLL 3
#define CHACHA_SMALL_UNROLL 3
// If SMALL_BLAKE2S is defined, BLAKE2S_UNROLL is interpreted
// as the unroll factor; must divide cleanly into ten.
// Usually a bad idea.
//#define SMALL_BLAKE2S
//#define BLAKE2S_UNROLL 5
#define BLOCK_SIZE 64U
#define FASTKDF_BUFFER_SIZE 256U
#ifndef PASSWORD_LEN
#define PASSWORD_LEN 80U
#endif
#if !defined(cl_khr_byte_addressable_store)
#error "Device does not support unaligned stores"
#endif
// Swaps 128 bytes at a time without using temp vars
void SwapBytes128(void *restrict A, void *restrict B, uint len)
{
#pragma unroll 2
for(int i = 0; i < (len >> 7); ++i)
{
((ulong16 *)A)
^= ((ulong16 *)B);
((ulong16 *)B) ^= ((ulong16 *)A);
((ulong16 *)A) ^= ((ulong16 *)B);
}
}
void CopyBytes128(void *restrict dst, const void *restrict src, uint len)
{
#pragma unroll 2
for(int i = 0; i < len; ++i)
((ulong16 *)dst) = ((ulong16 *)src);
}
void CopyBytes(void *restrict dst, const void *restrict src, uint len)
{
for(int i = 0; i < len; ++i)
((uchar *)dst) = ((uchar *)src);
}
//
// a bit of byte alignment checking goes a long ways...
//
void XORBytesInPlace(void *restrict dst, const void *restrict src, uint mod)
{
switch(mod % 4)
{
case 0:
#pragma unroll 2
for(int i = 0; i < 4; i+=2)
{
((uint2 *)dst) ^= ((uint2 *)src);
((uint2 *)dst)[i+1] ^= ((uint2 *)src)[i+1];
}
break;
case 2:
#pragma unroll 8
for(int i = 0; i < 16; i+=2)
{
((uchar2 *)dst) ^= ((uchar2 *)src);
((uchar2 *)dst)[i+1] ^= ((uchar2 *)src)[i+1];
}
break;
default:
#pragma unroll 8
for(int i = 0; i < 31; i+=4)
{
((uchar *)dst) ^= ((uchar *)src);
((uchar *)dst)[i+1] ^= ((uchar *)src)[i+1];
((uchar *)dst)[i+2] ^= ((uchar *)src)[i+2];
((uchar *)dst)[i+3] ^= ((uchar *)src)[i+3];
}
}
}
void XORBytes(void *restrict dst, const void *restrict src1, const void *restrict src2, uint len)
{
#pragma unroll 1
for(int i = 0; i < len; ++i)
((uchar *)dst) = ((uchar *)src1) ^ ((uchar *)src2);
}
// Blake2S
#define BLAKE2S_BLOCK_SIZE 64U
#define BLAKE2S_OUT_SIZE 32U
#define BLAKE2S_KEY_SIZE 32U
static const __constant uint BLAKE2S_IV[8] =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
static const __constant uchar BLAKE2S_SIGMA[10][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
};
#define BLAKE_G(idx0, idx1, a, b, c, d, key) do { \
a += b + key[BLAKE2S_SIGMA[idx0][idx1]]; \
d = rotate(d ^ a, 16U); \
c += d; \
b = rotate(b ^ c, 20U); \
a += b + key[BLAKE2S_SIGMA[idx0][idx1 + 1]]; \
d = rotate(d ^ a, 24U); \
c += d; \
b = rotate(b ^ c, 25U); \
} while(0)
void Blake2S(uint *restrict inout, const uint *restrict inkey)
{
uint16 V;
uint8 tmpblock;
// Load first block (IV into V.lo) and constants (IV into V.hi)
V.lo = V.hi = vload8(0U, BLAKE2S_IV);
// XOR with initial constant
V.s0 ^= 0x01012020;
// Copy input block for later
tmpblock = V.lo;
// XOR length of message so far (including this block)
// There are two uints for this field, but high uint is zero
V.sc ^= BLAKE2S_BLOCK_SIZE;
// Compress state, using the key as the key
#ifdef SMALL_BLAKE2S
#pragma unroll BLAKE2S_UNROLL
#else
#pragma unroll
#endif
for(int x = 0; x < 10; ++x)
{
BLAKE_G(x, 0x00, V.s0, V.s4, V.s8, V.sc, inkey);
BLAKE_G(x, 0x02, V.s1, V.s5, V.s9, V.sd, inkey);
BLAKE_G(x, 0x04, V.s2, V.s6, V.sa, V.se, inkey);
BLAKE_G(x, 0x06, V.s3, V.s7, V.sb, V.sf, inkey);
BLAKE_G(x, 0x08, V.s0, V.s5, V.sa, V.sf, inkey);
BLAKE_G(x, 0x0A, V.s1, V.s6, V.sb, V.sc, inkey);
BLAKE_G(x, 0x0C, V.s2, V.s7, V.s8, V.sd, inkey);
BLAKE_G(x, 0x0E, V.s3, V.s4, V.s9, V.se, inkey);
}
// XOR low part of state with the high part,
// then with the original input block.
V.lo ^= V.hi ^ tmpblock;
// Load constants (IV into V.hi)
V.hi = vload8(0U, BLAKE2S_IV);
// Copy input block for later
tmpblock = V.lo;
// XOR length of message into block again
V.sc ^= BLAKE2S_BLOCK_SIZE << 1;
// Last block compression - XOR final constant into state
V.se ^= 0xFFFFFFFFU;
// Compress block, using the input as the key
#ifdef SMALL_BLAKE2S
#pragma unroll BLAKE2S_UNROLL
#else
#pragma unroll
#endif
for(int x = 0; x < 10; ++x)
{
BLAKE_G(x, 0x00, V.s0, V.s4, V.s8, V.sc, inout);
BLAKE_G(x, 0x02, V.s1, V.s5, V.s9, V.sd, inout);
BLAKE_G(x, 0x04, V.s2, V.s6, V.sa, V.se, inout);
BLAKE_G(x, 0x06, V.s3, V.s7, V.sb, V.sf, inout);
BLAKE_G(x, 0x08, V.s0, V.s5, V.sa, V.sf, inout);
BLAKE_G(x, 0x0A, V.s1, V.s6, V.sb, V.sc, inout);
BLAKE_G(x, 0x0C, V.s2, V.s7, V.s8, V.sd, inout);
BLAKE_G(x, 0x0E, V.s3, V.s4, V.s9, V.se, inout);
}
// XOR low part of state with high part, then with input block
V.lo ^= V.hi ^ tmpblock;
// Store result in input/output buffer
vstore8(V.lo, 0, inout);
}
/* FastKDF, a fast buffered key derivation function:
* FASTKDF_BUFFER_SIZE must be a power of 2;
* password_len, salt_len and output_len should not exceed FASTKDF_BUFFER_SIZE;
* prf_output_size must be <= prf_key_size; */
void fastkdf(const uchar *restrict password, const uchar *restrict salt, const uint salt_len, uchar *restrict
output, uint output_len)
{
/* WARNING!
* This algorithm uses byte-wise addressing for memory blocks.
* Or in other words, trying to copy an unaligned memory region
* will significantly slow down the algorithm, when copying uses
* words or bigger entities. It even may corrupt the data, when
* the device does not support it properly.
* Therefore use byte copying, which will not the fastest but at
* least get reliable results. */
// BLOCK_SIZE 64U
// FASTKDF_BUFFER_SIZE 256U
// BLAKE2S_BLOCK_SIZE 64U
// BLAKE2S_KEY_SIZE 32U
// BLAKE2S_OUT_SIZE 32U
uchar bufidx = 0;
uint8 Abuffer[9], Bbuffer[9] = { (uint8)(0) };
uchar *A = (uchar *)Abuffer, *B = (uchar *)Bbuffer;
// Initialize the password buffer
#pragma unroll 1
for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)A) = ((ulong *)password)[i % 10];
((uint16 *)(A + FASTKDF_BUFFER_SIZE))[0] = ((uint16 *)password)[0];
// Initialize the salt buffer
if(salt_len == FASTKDF_BUFFER_SIZE)
{
((ulong16 *)B)[0] = ((ulong16 *)B)[2] = ((ulong16 *)salt)[0];
((ulong16 *)B)[1] = ((ulong16 *)B)[3] = ((ulong16 *)salt)[1];
}
else
{
// salt_len is 80 bytes here
#pragma unroll 1
for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)B) = ((ulong *)salt)[i % 10];
// Initialized the rest to zero earlier
#pragma unroll 1
for(int i = 0; i < 10; ++i) ((ulong *)(B + FASTKDF_BUFFER_SIZE)) = ((ulong *)salt);
}
// The primary iteration
#pragma unroll 1
for(int i = 0; i < 32; ++i)
{
// Make the key buffer twice the size of the key so it fits a Blake2S block
// This way, we don't need a temp buffer in the Blake2S function.
uchar input[BLAKE2S_BLOCK_SIZE], key[BLAKE2S_BLOCK_SIZE] = { 0 };
// Copy input and key to their buffers
CopyBytes(input, A + bufidx, BLAKE2S_BLOCK_SIZE);
CopyBytes(key, B + bufidx, BLAKE2S_KEY_SIZE);
// PRF
Blake2S((uint *)input, (uint *)key);
// Calculate the next buffer pointer
bufidx = 0;
for(int x = 0; x < BLAKE2S_OUT_SIZE; ++x)
bufidx += input
// bufidx a uchar now - always mod 255
//bufidx &= (FASTKDF_BUFFER_SIZE - 1);
// Modify the salt buffer
XORBytesInPlace(B + bufidx, input, bufidx);
if(bufidx < BLAKE2S_KEY_SIZE)
{
// Head modified, tail updated
// this was made off the original code... wtf
//CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, min(BLAKE2S_OUT_SIZE, BLAKE2S_KEY_SIZE -
bufidx));
CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, BLAKE2S_KEY_SIZE - bufidx);
}
else if((FASTKDF_BUFFER_SIZE - bufidx) < BLAKE2S_OUT_SIZE)
{
// Tail modified, head updated
CopyBytes(B, B + FASTKDF_BUFFER_SIZE, BLAKE2S_OUT_SIZE - (FASTKDF_BUFFER_SIZE - bufidx));
}
}
// Modify and copy into the output buffer
// Damned compiler crashes
// Fuck you, AMD
//for(uint i = 0; i < output_len; ++i, ++bufidx)
// output = B[bufidx] ^ A;
uint left = FASTKDF_BUFFER_SIZE - bufidx;
//uint left = (~bufidx) + 1
if(left < output_len)
{
XORBytes(output, B + bufidx, A, left);
XORBytes(output + left, B, A + left, output_len - left);
}
else
{
XORBytes(output, B + bufidx, A, output_len);
}
}
#define SALSA_CORE(state) do { \
state.s4 ^= rotate(state.s0 + state.sc, 7U); state.s8 ^= rotate(state.s4 + state.s0, 9U); state.sc ^=
rotate(state.s8 + state.s4, 13U); state.s0 ^= rotate(state.sc + state.s8, 18U); \
state.s9 ^= rotate(state.s5 + state.s1, 7U); state.sd ^= rotate(state.s9 + state.s5, 9U); state.s1 ^=
rotate(state.sd + state.s9, 13U); state.s5 ^= rotate(state.s1 + state.sd, 18U); \
state.se ^= rotate(state.sa + state.s6, 7U); state.s2 ^= rotate(state.se + state.sa, 9U); state.s6 ^=
rotate(state.s2 + state.se, 13U); state.sa ^= rotate(state.s6 + state.s2, 18U); \
state.s3 ^= rotate(state.sf + state.sb, 7U); state.s7 ^= rotate(state.s3 + state.sf, 9U); state.sb ^=
rotate(state.s7 + state.s3, 13U); state.sf ^= rotate(state.sb + state.s7, 18U); \
state.s1 ^= rotate(state.s0 + state.s3, 7U); state.s2 ^= rotate(state.s1 + state.s0, 9U); state.s3 ^=
rotate(state.s2 + state.s1, 13U); state.s0 ^= rotate(state.s3 + state.s2, 18U); \
state.s6 ^= rotate(state.s5 + state.s4, 7U); state.s7 ^= rotate(state.s6 + state.s5, 9U); state.s4 ^=
rotate(state.s7 + state.s6, 13U); state.s5 ^= rotate(state.s4 + state.s7, 18U); \
state.sb ^= rotate(state.sa + state.s9, 7U); state.s8 ^= rotate(state.sb + state.sa, 9U); state.s9 ^=
rotate(state.s8 + state.sb, 13U); state.sa ^= rotate(state.s9 + state.s8, 18U); \
state.sc ^= rotate(state.sf + state.se, 7U); state.sd ^= rotate(state.sc + state.sf, 9U); state.se ^=
rotate(state.sd + state.sc, 13U); state.sf ^= rotate(state.se + state.sd, 18U); \
} while(0)
uint16 salsa_small_scalar_rnd(uint16 X)
{
uint16 st = X;
#if SALSA_SMALL_UNROLL == 1
for(int i = 0; i < 10; ++i)
{
SALSA_CORE(st);
}
#elif SALSA_SMALL_UNROLL == 2
for(int i = 0; i < 5; ++i)
{
SALSA_CORE(st);
SALSA_CORE(st);
}
#elif SALSA_SMALL_UNROLL == 3
for(int i = 0; i < 4; ++i)
{
SALSA_CORE(st);
if(i == 3) break;
SALSA_CORE(st);
SALSA_CORE(st);
}
#elif SALSA_SMALL_UNROLL == 4
for(int i = 0; i < 3; ++i)
{
SALSA_CORE(st);
SALSA_CORE(st);
if(i == 2) break;
SALSA_CORE(st);
SALSA_CORE(st);
}
#else
for(int i = 0; i < 2; ++i)
{
SALSA_CORE(st);
SALSA_CORE(st);
SALSA_CORE(st);
SALSA_CORE(st);
SALSA_CORE(st);
}
#endif
return(X + st);
}
#define CHACHA_CORE_PARALLEL(state) do { \
state[0] += state[1]; state[3] = rotate(state[3] ^ state[0], (uint4)(16U, 16U, 16U, 16U)); \
state[2] += state[3]; state[1] = rotate(state[1] ^ state[2], (uint4)(12U, 12U, 12U, 12U)); \
state[0] += state[1]; state[3] = rotate(state[3] ^ state[0], (uint4)(8U, 8U, 8U, 8U)); \
state[2] += state[3]; state[1] = rotate(state[1] ^ state[2], (uint4)(7U, 7U, 7U, 7U)); \
\
state[0] += state[1].yzwx; state[3].wxyz = rotate(state[3].wxyz ^ state[0], (uint4)(16U, 16U, 16U, 16U));
\
state[2].zwxy += state[3].wxyz; state[1].yzwx = rotate(state[1].yzwx ^ state[2].zwxy, (uint4)(12U, 12U,
12U, 12U)); \
state[0] += state[1].yzwx; state[3].wxyz = rotate(state[3].wxyz ^ state[0], (uint4)(8U, 8U, 8U, 8U)); \
state[2].zwxy += state[3].wxyz; state[1].yzwx = rotate(state[1].yzwx ^ state[2].zwxy, (uint4)(7U, 7U, 7U,
7U)); \
} while(0)
uint16 chacha_small_parallel_rnd(uint16 X)
{
uint4 t, st[4];
((uint16 *)st)[0] = X;
#if CHACHA_SMALL_UNROLL == 1
for(int i = 0; i < 10; ++i)
{
CHACHA_CORE_PARALLEL(st);
}
#elif CHACHA_SMALL_UNROLL == 2
for(int i = 0; i < 5; ++i)
{
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
}
#elif CHACHA_SMALL_UNROLL == 3
for(int i = 0; i < 4; ++i)
{
CHACHA_CORE_PARALLEL(st);
if(i == 3) break;
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
}
#elif CHACHA_SMALL_UNROLL == 4
for(int i = 0; i < 3; ++i)
{
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
if(i == 2) break;
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
}
#else
for(int i = 0; i < 2; ++i)
{
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
CHACHA_CORE_PARALLEL(st);
}
#endif
return(X + ((uint16 *)st)[0]);
}
void neoscrypt_blkmix(uint16 *XV, bool alg)
{
/* NeoScrypt flow: Scrypt flow:
Xa ^= Xd; M(Xa'); Ya = Xa"; Xa ^= Xb; M(Xa'); Ya = Xa";
Xb ^= Xa"; M(Xb'); Yb = Xb"; Xb ^= Xa"; M(Xb'); Yb = Xb";
Xc ^= Xb"; M(Xc'); Yc = Xc"; Xa" = Ya;
Xd ^= Xc"; M(Xd'); Yd = Xd"; Xb" = Yb;
Xa" = Ya; Xb" = Yc;
Xc" = Yb; Xd" = Yd; */
XV[0] ^= XV[3];
if(!alg)
{
XV[0] = salsa_small_scalar_rnd(XV[0]); XV[1] ^= XV[0];
XV[1] = salsa_small_scalar_rnd(XV[1]); XV[2] ^= XV[1];
XV[2] = salsa_small_scalar_rnd(XV[2]); XV[3] ^= XV[2];
XV[3] = salsa_small_scalar_rnd(XV[3]);
}
else
{
XV[0] = chacha_small_parallel_rnd(XV[0]); XV[1] ^= XV[0];
XV[1] = chacha_small_parallel_rnd(XV[1]); XV[2] ^= XV[1];
XV[2] = chacha_small_parallel_rnd(XV[2]); XV[3] ^= XV[2];
XV[3] = chacha_small_parallel_rnd(XV[3]);
}
XV[1] ^= XV[2];
XV[2] ^= XV[1];
XV[1] ^= XV[2];
}
void ScratchpadStore(__global void *V, void *X, uchar idx)
{
((__global ulong16 *)V)[idx] = ((ulong16 *)X)[0];
((__global ulong16 *)V)[idx + 128] = ((ulong16 *)X)[1];
}
void ScratchpadMix(void *X, const __global void *V, uchar idx)
{
((ulong16 *)X)[0] ^= ((__global ulong16 *)V)[idx];
((ulong16 *)X)[1] ^= ((__global ulong16 *)V)[idx + 128];
}
void SMix(uint16 *X, __global uint16 *V, bool flag)
{
#pragma unroll 1
for(int i = 0; i < 128; ++i)
{
ScratchpadStore(V, X, i);
neoscrypt_blkmix(X, flag);
}
#pragma unroll 1
for(int i = 0; i < 128; ++i)
{
const uint idx = convert_uchar(((uint *)X)[48] & 0x7F);
ScratchpadMix(X, V, idx);
neoscrypt_blkmix(X, flag);
}
}
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar
*padcache, const uint target)
{
#define CONSTANT_N 128
#define CONSTANT_r 2
// X = CONSTANT_r * 2 * BLOCK_SIZE(64); Z is a copy of X for ChaCha
uint16 X[4], Z[4];
/* V = CONSTANT_N * CONSTANT_r * 2 * BLOCK_SIZE */
__global ulong16 *V = (__global ulong16 *)(padcache + (0x8000 * (get_global_id(0) % MAX_GLOBAL_THREADS)));
uchar outbuf[32];
uchar data[PASSWORD_LEN];
((ulong8 *)data)[0] = ((__global const ulong8 *)input)[0];
((ulong *)data)[8] = ((__global const ulong *)input)[8];
((uint *)data)[18] = ((__global const uint *)input)[18];
((uint *)data)[19] = get_global_id(0);
// X = KDF(password, salt)
fastkdf(data, data, PASSWORD_LEN, (uchar *)X, 256);
// Process ChaCha 1st, Salsa 2nd and XOR them - run that through PBKDF2
CopyBytes128(Z, X, 2);
// X = SMix(X); X & Z are swapped, repeat.
for(bool flag = false;; ++flag)
{
SMix(X, V, flag);
if(flag) break;
SwapBytes128(X, Z, 256);
}
// blkxor(X, Z)
((ulong16 *)X)[0] ^= ((ulong16 *)Z)[0];
((ulong16 *)X)[1] ^= ((ulong16 *)Z)[1];
// output = KDF(password, X)
fastkdf(data, (uchar *)X, FASTKDF_BUFFER_SIZE, outbuf, 32);
if(((uint *)outbuf)[7] <= target) output[atomic_add(output + 0xFF, 1)] = get_global_id(0);
}
Delete the old neoscrypt bin file and new bin created will be 4% faster
That is all I found myself.
Please remember, you buy better mods directly from wolf0. He has X13 mod for sale that gives another 50% boost to X13 algo hash. He not selling his latest neoscrypt algo.