The fact that RetiredCoder had to come back using his secondary ID to support himself is honestly the funniest thing we've ever seen here.
It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
bool Kangaroo::CheckCollisionSOTA(Point& pnt, Int& t, uint32_t TameType, Int& w, uint32_t WildType, bool IsNeg) {
if (IsNeg) {
t.ModNegK1order();
}
if (TameType == TAME) {
Int pk = t;
pk.ModSubK1order(&w);
Int sv = pk;
pk.ModAddK1order(&rangeWidthDiv2);
Point P = secp->ComputePublicKey(&pk);
if (P.equals(pnt))
return true;
pk = sv;
pk.ModNegK1order();
pk.ModAddK1order(&rangeWidthDiv2);
P = secp->ComputePublicKey(&pk);
return P.equals(pnt);
} else {
Int pk = t;
pk.ModSubK1order(&w);
if (pk.bits64[3] >> 63)
pk.ModNegK1order();
pk.ShiftR(1);
Int sv = pk;
pk.ModAddK1order(&rangeWidthDiv2);
Point P = secp->ComputePublicKey(&pk);
if (P.equals(pnt))
return true;
pk = sv;
pk.ModNegK1order();
pk.ModAddK1order(&rangeWidthDiv2);
P = secp->ComputePublicKey(&pk);
return P.equals(pnt);
}
return false;
}
void Kangaroo::SolveKeyCPU(TH_PARAM *ph) {
vector- dps;
double lastSent = 0;
int thId = ph->threadId;
ph->nbKangaroo = CPU_GRP_SIZE;
#ifdef USE_SYMMETRY
ph->symClass = new uint64_t[CPU_GRP_SIZE];
for (int i = 0; i < CPU_GRP_SIZE; i++) ph->symClass[i] = 0;
#endif
IntGroup *grp = new IntGroup(CPU_GRP_SIZE);
Int *dx = new Int[CPU_GRP_SIZE];
if (ph->px == NULL) {
ph->px = new Int[CPU_GRP_SIZE];
ph->py = new Int[CPU_GRP_SIZE];
ph->distance = new Int[CPU_GRP_SIZE];
CreateHerd(CPU_GRP_SIZE, ph->px, ph->py, ph->distance, TAME);
}
if (keyIdx == 0) {
::printf("[+] SolveKeyCPU Thread %02d: %d kangaroos\n", ph->threadId, CPU_GRP_SIZE);
}
ph->hasStarted = true;
Int dy, rx, ry, _s, _p;
int max_iterations = (1 << dpSize) * 20;
std::vectorold(CPU_GRP_SIZE * OLD_LEN, 0);
std::vectorkangIterations(CPU_GRP_SIZE, 0);
while (!endOfSearch) {
for (int i = 0; i < CPU_GRP_SIZE; i++) {
if (i < CPU_GRP_SIZE / 3) {
ph->distance[i].Rand(rangePower - 4);
} else {
ph->distance[i].Rand(rangePower - 1);
ph->distance[i].bits64[0] &= 0xFFFFFFFFFFFFFFFE;
}
ph->px[i] = ph->distance[i];
ph->py[i] = ph->distance[i];
}
for (int i = CPU_GRP_SIZE / 3; i < 2 * CPU_GRP_SIZE / 3; i++) {
ph->px[i].ModSub(&ph->distance[i], &rangeWidthDiv2); // Wild 1
}
for (int i = 2 * CPU_GRP_SIZE / 3; i < CPU_GRP_SIZE; i++) {
ph->px[i].ModAdd(&ph->distance[i], &rangeWidthDiv2); // Wild 2
}
bool found = false;
while (!found) {
for (int i = 0; i < CPU_GRP_SIZE; i++) {
bool invert = (ph->py[i].bits64[0] & 1);
bool cycled = false;
for (int j = 0; j < OLD_LEN; j++) {
if (old[OLD_LEN * i + j] == ph->distance[i].bits64[0]) {
cycled = true;
break;
}
}
old[OLD_LEN * i + (kangIterations[i] % OLD_LEN)] = ph->distance[i].bits64[0];
kangIterations[i]++;
if (kangIterations[i] > max_iterations) {
cycled = true;
}
if (cycled) {
if (i < CPU_GRP_SIZE / 3) {
ph->distance[i].Rand(rangePower - 4);
} else {
ph->distance[i].Rand(rangePower - 1);
ph->distance[i].bits64[0] &= 0xFFFFFFFFFFFFFFFE;
}
kangIterations[i] = 0;
ph->px[i] = ph->distance[i];
ph->py[i] = ph->distance[i];
if (i >= CPU_GRP_SIZE / 3) {
if (i < 2 * CPU_GRP_SIZE / 3) {
ph->px[i].ModSub(&ph->distance[i], &rangeWidthDiv2); // Wild 1
} else {
ph->px[i].ModAdd(&ph->distance[i], &rangeWidthDiv2); // Wild 2
}
}
memset(&old[OLD_LEN * i], 0, 8 * OLD_LEN);
continue;
}
int jmp_ind = ph->px[i].bits64[0] % NB_JUMP;
Int *jumpDist = &jumpDistance[jmp_ind];
if (invert) jumpDist->ModNeg();
ph->px[i].ModAdd(&ph->px[i], jumpDist);
if (invert) ph->distance[i].ModSub(jumpDist);
else ph->distance[i].ModAdd(jumpDist);
if (IsDP(&ph->px[i])) {
LOCK(ghMutex);
if (!endOfSearch) {
if (CheckCollisionSOTA(keyToSearch, ph->distance[i], (i < CPU_GRP_SIZE / 3) ? TAME : ((i < 2 * CPU_GRP_SIZE / 3) ? WILD : WILD2), ph->distance[i], NB_JUMP, invert)) {
CreateHerd(1, &ph->px[i], &ph->py[i], &ph->distance[i], (i < CPU_GRP_SIZE / 3) ? TAME : ((i < 2 * CPU_GRP_SIZE / 3) ? WILD : WILD2), false);
collisionInSameHerd++;
}
}
UNLOCK(ghMutex);
}
if (!endOfSearch) counters[thId]++;
}
}
}
delete grp;
delete[] dx;
safe_delete_array(ph->px);
safe_delete_array(ph->py);
safe_delete_array(ph->distance);
#ifdef USE_SYMMETRY
safe_delete_array(ph->symClass);
#endif
ph->isRunning = false;
}