It was the Bitcointalk forum that inspired us to create Bitcointalksearch.org - Bitcointalk is an excellent site that should be the default page for anybody dealing in cryptocurrency, since it is a virtual gold-mine of data. However, our experience and user feedback led us create our site; Bitcointalk's search is slow, and difficult to get the results you need, because you need to log in first to find anything useful - furthermore, there are rate limiters for their search functionality.
The aim of our project is to create a faster website that yields more results and faster without having to create an account and eliminate the need to log in - your personal data, therefore, will never be in jeopardy since we are not asking for any of your data and you don't need to provide them to use our site with all of its capabilities.
We created this website with the sole purpose of users being able to search quickly and efficiently in the field of cryptocurrency so they will have access to the latest and most accurate information and thereby assisting the crypto-community at large.
minKey = 0xf2e542b46066c4e6f91abc80000000000000000000185e689447431d74c5b133
maxKey = 0xf2e542b46066c4e6f91abcbfffffffffffffffffffd85e689447431d74c5b133
minKey = 0xf2e542b46066c4e6f91abc80000000000000000000185e689447431d74c5b133
maxKey = 0xf2e542b46066c4e6f91abcbfffffffffffffffffffd85e689447431d74c5b133
N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
def inv(v):
return pow(v, N-2, N)
def divnum(a, b):
return ( (a * inv(b) ) % N )
x = 0x3b050b7264187e2bcf8b2d50f5feb5 # - 0x262794
y = 0x3b050b7264187e2bcf8b2d50f5feb5 # - 0x262794
# Specify the value of i for which you want to get the result
target_i = 99990000000000 # Replace 5000 with the desired value
# Initial value of X
X_initial = divnum(x, 99990000000000)
# Final value of X after target_i steps
X_final = (X_initial - (target_i * divnum(1, 1)) % N) % N
# Sum of all X values over target_i steps
S = divnum((target_i * (X_initial + X_final%N) %N), 2 )% N
# Final value of y
y_final = (y - S) % N
if y_final <= 2**190:
print("input:")
print(hex(0x3971621b0ac11b09e7741edd106f916e5))
print("y", hex(y_final), target_i)
print("X", hex(X_final* 99990000000000 %N))
print("Xfin",((X_initial- X_final %N)%N))
N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
def inv(v):
return pow(v, N-2, N)
def divnum(a, b):
return ( (a * inv(b) ) % N )
x = 0x1027136fb927635998880000 # - 0x262794
y = 0x1027136fb927635998880000 # - 0x262794
# Specify the value of i for which you want to get the result
target_i = 99990#000000000 # Replace 5000 with the desired value
# Initial value of X
X_initial = divnum(x, 99990000000000)
# Final value of X after target_i steps
X_final = (X_initial - (target_i * divnum(1, 1)) % N) % N
# Sum of all X values over target_i steps
S = divnum((target_i * (X_initial + X_final%N) %N), 2 )% N
# Final value of y
y_final = (y - S) % N
if y_final <= 2**190:
print("input:")
print(hex(0x3971621b0ac11b09e7741edd106f916e5))
print("y", hex(y_final), target_i)
print("X", hex(X_final* 99990000000000 %N))
print("Xfin",((X_initial- X_final %N)%N))
x = 0x1027136fb927635998880000 # - 0x262794
y = 0x1027136fb927635998880000 # - 0x262794
# Specify the value of i for which you want to get the result
target_i = 99990000000000
minKey = 0xf2e542b46066c4e6f91abc80000000000000000000185e689447431d74c5b133
maxKey = 0xf2e542b46066c4e6f91abcbfffffffffffffffffffd85e689447431d74c5b133
N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
def inv(v):
return pow(v, N-2, N)
def divnum(a, b):
return ( (a * inv(b) ) % N )
x = 0x3b050b7264187e2bcf8b2d50f5feb5 # - 0x262794
y = 0x3b050b7264187e2bcf8b2d50f5feb5 # - 0x262794
# Specify the value of i for which you want to get the result
target_i = 99990000000000 # Replace 5000 with the desired value
# Initial value of X
X_initial = divnum(x, 99990000000000)
# Final value of X after target_i steps
X_final = (X_initial - (target_i * divnum(1, 1)) % N) % N
# Sum of all X values over target_i steps
S = divnum((target_i * (X_initial + X_final%N) %N), 2 )% N
# Final value of y
y_final = (y - S) % N
if y_final <= 2**190:
print("input:")
print(hex(0x3971621b0ac11b09e7741edd106f916e5))
print("y", hex(y_final), target_i)
print("X", hex(X_final* 99990000000000 %N))
print("Xfin",((X_initial- X_final %N)%N))
N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
def inv(v):
return pow(v, N-2, N)
def divnum(a, b):
return ( (a * inv(b) ) % N )
x = 0x1027136fb927635998880000 # - 0x262794
y = 0x1027136fb927635998880000 # - 0x262794
# Specify the value of i for which you want to get the result
target_i = 99990#000000000 # Replace 5000 with the desired value
# Initial value of X
X_initial = divnum(x, 99990000000000)
# Final value of X after target_i steps
X_final = (X_initial - (target_i * divnum(1, 1)) % N) % N
# Sum of all X values over target_i steps
S = divnum((target_i * (X_initial + X_final%N) %N), 2 )% N
# Final value of y
y_final = (y - S) % N
if y_final <= 2**190:
print("input:")
print(hex(0x3971621b0ac11b09e7741edd106f916e5))
print("y", hex(y_final), target_i)
print("X", hex(X_final* 99990000000000 %N))
print("Xfin",((X_initial- X_final %N)%N))
x = 0x1027136fb927635998880000 # - 0x262794
y = 0x1027136fb927635998880000 # - 0x262794
# Specify the value of i for which you want to get the result
target_i = 99990000000000
Google Colab 2 CpU modify r += 7
Private Key: 0xade6d7ce3b9b
Ops: 1068032 Stored: 66716
Speed: 84669 ops/s
Finished in 12.6 s
Ops: 1640142848 Table size: 25626624 Speed: 408909 ops/s
Ops: 1640964096 Table size: 25639463 Speed: 408910 ops/s
Private Key: 0xfc07a1825367bbe
Ops: 1641142272 Stored: 25642283
Speed: 408885 ops/s
Finished in 4.01e+03 s
Google Colab 2 CpU modify r += 7
Private Key: 0xade6d7ce3b9b
Ops: 1068032 Stored: 66716
Speed: 84669 ops/s
Finished in 12.6 s
Ops: 1640142848 Table size: 25626624 Speed: 408909 ops/s
Ops: 1640964096 Table size: 25639463 Speed: 408910 ops/s
Private Key: 0xfc07a1825367bbe
Ops: 1641142272 Stored: 25642283
Speed: 408885 ops/s
Finished in 4.01e+03 s