Author

Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it - page 219. (Read 244277 times)

member
Activity: 110
Merit: 61
Yeah, if you know that K lies between A and B, you can subtract A from K, and thereby "reduce" the key, but any other subtractions is just a blind guessing.
As for the any number manipulations, secp256k1 operations obey all the basic math laws, i.e. A - 2*A = -A; A - -A = A+A; A+B+C = A + (B+C) = (A+B) + C; A*(B+C) = A*B + A*C and so on.
newbie
Activity: 17
Merit: 0
Subtracting -70 from +50 is resulting in +120.
I am still not getting trangular thing, can you explain with a simple example pl
copper member
Activity: 1330
Merit: 899
🖤😏
Quote
I guess you are way off the map! 2 trillion keys? The actual number is 5 to 6 public keys in order to form 2 triangles and solve the key, more than that will confuse you, as it has confused me with a few million keys, I see hexadecimal characters wherever I look, after working on them for hours. Lol.

LOL, these hexadecimals do often come into my dreams and dancing around as well.
I sure didn't got your point of TRIANGLES. What I was referring to trillion thing is this.. Suppose we are searching the private key which is within bit range of 16:32. I made a list of initial 6 public keys like I have a file in which 1-6 public keys are stored. Now I subtract 16 from the puzzle public key. Suppose the hidden private key is 21. So when I subtract 16 from it the resulting key at the same position but in lower bit size. Now 21-16=5 and now I check whether this public key is in my file in which I saved initial public keys. So this is simple thing I am referring as 2 trillions... Can you explain your TRIANGLE THING?Huh??
Well, you are guessing the number, you could as well be subtracting 2 from 21 and not knowing it, and then going to search below 10 in hopes of finding your "5".

About triangulation, it is similar to how GPS works, but instead of sending and receiving signals, we add and subtract, you basically need only to know the value of 2 keys out of 6 keys, you have to find mutually related keys and find your way by adding and subtracting your 2 known keys to and from 4 unknown mutually related keys to find one of them!

It is rather complex, if I had the whole idea pictured in front of me, I could have explained it better, this however is easy to do on #125 because we know the first character is 1, and if I manage to solve it, the method won't work for any other puzzle, unless another puzzle starts with 1. Lol.



I'm going to call this method, "PPP" short for PinPointing  
Position!

I have managed to figure out that #125 starts with obviously 1 and the second character is definitely greater than 4, but I know for sure it is greater than 14000000000000000000000000000000  I'm still confused about the way numbers work in EC, but if for example I use 2^124 aka 10000000000000000000000000000000  as one of my 2 base point keys, I just need to add and subtract other secret keys by the same numbers to see if I can find a few of their mutual friends, that is how I'd know which one is smaller than my target.

But now I could be subtracting a -n key from my target and actually be adding their difference to my target, e.g adding -70 to +50  will result in -20.
newbie
Activity: 17
Merit: 0
Quote
I guess you are way off the map! 2 trillion keys? The actual number is 5 to 6 public keys in order to form 2 triangles and solve the key, more than that will confuse you, as it has confused me with a few million keys, I see hexadecimal characters wherever I look, after working on them for hours. Lol.

LOL, these hexadecimals do often come into my dreams and dancing around as well.
I sure didn't got your point of TRIANGLES. What I was referring to trillion thing is this.. Suppose we are searching the private key which is within bit range of 16:32. I made a list of initial 6 public keys like I have a file in which 1-6 public keys are stored. Now I subtract 16 from the puzzle public key. Suppose the hidden private key is 21. So when I subtract 16 from it the resulting key at the same position but in lower bit size. Now 21-16=5 and now I check whether this public key is in my file in which I saved initial public keys. So this is simple thing I am referring as 2 trillions... Can you explain your TRIANGLE THING?Huh??
copper member
Activity: 1330
Merit: 899
🖤😏
Lol. This dogecoin @digaran actually trying to solve 125 bits which is currently the most hardest puzzle ever with some weird incorrect math HAHA.

He doesn't know that he needs to bruteforce at least 63 bits for a CHANCE that he gets the correct key using algorithm. Idk how subtraction and Multiplication would help u in such large range address to solve it lol.

it make absolutely no sense. Even if the pub key is known.
Dogecoin, really? To know that my math is incorrect you have to know the correct math, how else could you determine it is incorrect?
But yes, LOL indeed 2^125 times.

All puzzles starts with "1". You can go through all keys, and subtract 2^N for each N-th key.
Maybe you mean they all start with 1 in binary code? Otherwise puzzle key ranges differ from one another.

Now you need to understand that amount of numbers or p.keys from 1 to 2^124 is equal to the amount between 2^124 : 2^125.

I do realize that, one needs to understand certain things before starting to work on these puzzles!
I guess you are way off the map! 2 trillion keys? The actual number is 5 to 6 public keys in order to form 2 triangles and solve the key, more than that will confuse you, as it has confused me with a few million keys, I see hexadecimal characters wherever I look, after working on them for hours. Lol.
newbie
Activity: 17
Merit: 0

Can you tell me why is this happening? Ok, if I subtract this

Code:
02A1940074961CDF60CB2A0E7BC7157A7970B05469C58EEB5AD1C0462CE0C17811
from #125 puzzle, the result is :

Code:
02ed01ff219ed5c1afc12d991a82e3063ddcee1fd53b46f7cad52a0d87a7112aed

And if I subtract this
Code:
0290ad85b389d6b936463f9d0512678de208cc330b11307fffab7ac63e3fb04ed4
which is actually 2^124 public key, if I subtract it from #125 puzzle the result is :
Code:
03ed01ff219ed5c1afc12d991a82e3063ddcee1fd53b46f7cad52a0d87a7112aed

I know why this is happening though, because the first subtraction is actually inverse addition, the distance between the first public key and the second one is exactly the private key of #125.

This is why I'm stuck and can't solve this puzzle, and this is one of the easiest of puzzles since we know exactly it starts with a 1.
But I am close God willing, it should be solved soon.


Ohh boy you are 100% correct. The real problem is one can only do first subtraction and after all, it doesn't reduces its size. Why? let me explain.
The private key which we are looking for is between 2^124 : 2^125.
Now you need to understand that amount of numbers or p.keys from 1 to 2^124 is equal to the amount between 2^124 : 2^125.
So when we subtract 2^124 from the pubkey which is between 2^124 : 2^125, then we are actually making it fall between the range of 1 to 2^124.
Let me take you to a step further. If the puzzle private key is above the half in range 2^124 : 2^125, then you can do one more subtraction. You can further subtract 2^123 from previous subtraction result. That's it.
So far, I figured that to actually work with this subtraction thing, one need a data base of public key from 2 to 2 Trillion for that matter or more, and perform various models of subtraction from puzzle pub key and check if resulting pubkey is falling within that 2 to 2 trillion result. That's the best shot I've reached so far.
copper member
Activity: 821
Merit: 1992
Quote
This is why I'm stuck and can't solve this puzzle, and this is one of the easiest of puzzles since we know exactly it starts with a 1.
All puzzles starts with "1". You can go through all keys, and subtract 2^N for each N-th key.
member
Activity: 194
Merit: 14
Lol. This dogecoin @digaran actually trying to solve 125 bits which is currently the most hardest puzzle ever with some weird incorrect math HAHA.

He doesn't know that he needs to bruteforce at least 63 bits for a CHANCE that he gets the correct key using algorithm. Idk how subtraction and Multiplication would help u in such large range address to solve it lol.

it make absolutely no sense. Even if the pub key is known.
copper member
Activity: 1330
Merit: 899
🖤😏
Quote
Ok let me explain, imagine #125 as number 750, if we subtract 500 (2^124, half of 2^125 or in our example 2^125 = 1000) if we subtract 500 from 750 we'd have 250, now all we have to do is to figure out what number is closest to our 250 (which we don't know it's exact value) and try to subtract that guessed number from our 1/3 of #125 puzzle, and the rest would be easy.
Guessing the right number is very hard. And you can always guess it wrong, subtract 800 from 750, and you will get -50. Then, assuming that your N is 1000000, you will try to break 999950, instead of trying to break 750. Also, as far as I know, people already start from some offset, so they are not trying to scan keys outside of that 500 to 1000 range, instead they just pick for example 550 to 560 range, and try to scan only that, and that alone takes a lot of time.

Quote
Though if you could explain how to figure out which key is greater or smaller than the other, that would be awesome!
You cannot figure it out, based only on a single public key. It is always relative to the base point. For example, if you have (basePoint,yourPoint) pair, you could have "yourPointPrivKey" as some even number, for example 250. But it is only even in a relation between this particular base point! So, only "basePoint*250=yourPoint" gives you "250" as an even number. However, you could use (basePoint*2,yourPoint) pair instead, and then your private key would be odd, and equal to 125. See? Your private key is not universally assigned to your public key alone, it is always relative to your base point. And for that reason, if there would be any algorithm that could give you a private key, based on some public key, it would take at least a pair of public keys as arguments.

For the same reason, there is no such thing as "which key is greater or smaller than the other". ECDSA is working like a clock, you can give me some two public keys, and then I could calculate "(firstPubKey+secondPubKey)/2", and then say that the distance between my point, and any of your two points, is identical.
Can you tell me why is this happening? Ok, if I subtract this

Code:
02A1940074961CDF60CB2A0E7BC7157A7970B05469C58EEB5AD1C0462CE0C17811
from #125 puzzle, the result is :

Code:
02ed01ff219ed5c1afc12d991a82e3063ddcee1fd53b46f7cad52a0d87a7112aed

And if I subtract this
Code:
0290ad85b389d6b936463f9d0512678de208cc330b11307fffab7ac63e3fb04ed4
which is actually 2^124 public key, if I subtract it from #125 puzzle the result is :
Code:
03ed01ff219ed5c1afc12d991a82e3063ddcee1fd53b46f7cad52a0d87a7112aed

I know why this is happening though, because the first subtraction is actually inverse addition, the distance between the first public key and the second one is exactly the private key of #125.

This is why I'm stuck and can't solve this puzzle, and this is one of the easiest of puzzles since we know exactly it starts with a 1.
But I am close God willing, it should be solved soon.
copper member
Activity: 909
Merit: 2301
Quote
Ok let me explain, imagine #125 as number 750, if we subtract 500 (2^124, half of 2^125 or in our example 2^125 = 1000) if we subtract 500 from 750 we'd have 250, now all we have to do is to figure out what number is closest to our 250 (which we don't know it's exact value) and try to subtract that guessed number from our 1/3 of #125 puzzle, and the rest would be easy.
Guessing the right number is very hard. And you can always guess it wrong, subtract 800 from 750, and you will get -50. Then, assuming that your N is 1000000, you will try to break 999950, instead of trying to break 750. Also, as far as I know, people already start from some offset, so they are not trying to scan keys outside of that 500 to 1000 range, instead they just pick for example 550 to 560 range, and try to scan only that, and that alone takes a lot of time.

Quote
Though if you could explain how to figure out which key is greater or smaller than the other, that would be awesome!
You cannot figure it out, based only on a single public key. It is always relative to the base point. For example, if you have (basePoint,yourPoint) pair, you could have "yourPointPrivKey" as some even number, for example 250. But it is only even in a relation between this particular base point! So, only "basePoint*250=yourPoint" gives you "250" as an even number. However, you could use (basePoint*2,yourPoint) pair instead, and then your private key would be odd, and equal to 125. See? Your private key is not universally assigned to your public key alone, it is always relative to your base point. And for that reason, if there would be any algorithm that could give you a private key, based on some public key, it would take at least a pair of public keys as arguments.

For the same reason, there is no such thing as "which key is greater or smaller than the other". ECDSA is working like a clock, you can give me some two public keys, and then I could calculate "(firstPubKey+secondPubKey)/2", and then say that the distance between my point, and any of your two points, is identical.
sr. member
Activity: 346
Merit: 250
BTC puzzle 66 :13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so
so far found :13zb18UKn2awwhpshZUjhLXZMcGbzC5soJ

the prefix and suffix nearly same

Do you have the private key for the so far found one? I would be interested in comparing it to something. Please and thank you.
copper member
Activity: 1330
Merit: 899
🖤😏
BTC puzzle 66 :13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so
so far found :13zb18UKn2awwhpshZUjhLXZMcGbzC5soJ

the prefix and suffix nearly same
And what is the relation between an address and a private key? There are trillions of trillions of addresses in 66 bit range, there could be millions of such addresses there, let me save you a few months of useless pursuit, stop looking for addresses, instead focus on subtracting from the known public keys to reduce their bit range.


Why do you guys think up to 120 have been solved every 5 puzzle apart? Because solving exposed public key puzzles is much more easier than brute forcing other ones.

I mean what else do you guys need? Just subtract 2^124 from the #125 public key and you'd have reduced 2/3 of #125 from it.


Ok let me explain, imagine #125 as number 750, if we subtract 500 (2^124, half of 2^125 or in our example 2^125 = 1000) if we subtract 500 from 750 we'd have 250, now all we have to do is to figure out what number is closest to our 250 (which we don't know it's exact value) and try to subtract that guessed number from our 1/3 of #125 puzzle, and the rest would be easy.

Focus only on subtraction, stop wasting your time on randomly searching for unknown keys! 😉

Good luck and happy hunting! 
newbie
Activity: 17
Merit: 0
BTC puzzle 66 :13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so
so far found :13zb18UKn2awwhpshZUjhLXZMcGbzC5soJ

the prefix and suffix nearly same
copper member
Activity: 1330
Merit: 899
🖤😏

You had to spoil the fun right? This is a challenge and people should use their minds to figure things out.

Division is possible with any number, it's not limited to n/2, n/4 etc.

Though if you could explain how to figure out which key is greater or smaller than the other, that would be awesome! Lol.  Note that figuring that out is equal to the end of crypto currencies! 
Go big or don't go at all, right guys? 😉
copper member
Activity: 909
Merit: 2301
Quote
Introducing N/4, or 25% of the whole key range, this one and the N/2 are really interesting keys, dive deeper on these 2 keys my fellow hunters!
Division is as regular operation as multiplication. For example:
Code:
n=0=fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
 n/1=0000000000000000000000000000000000000000000000000000000000000001
-n/1=fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140
 n/1-n/1=0=n
 n/2=7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a1
-n/2=7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
 n/2-n/2=0=n
 n/3=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa9d1c9e899ca306ad27fe1945de0242b81
-n/3=55555555555555555555555555555554e8e4f44ce51835693ff0ca2ef01215c0
 n/3-n/3=0=n
 n/4=bfffffffffffffffffffffffffffffff0c0325ad0376782ccfddc6e99c28b0f1
-n/4=3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9050
 n/4-n/4=0=n
 n/5=66666666666666666666666666666665e445f1f5dfb6a67e4cba8c385348e6e7
-n/5=99999999999999999999999999999998d668eaf0cf91f9bd7317d2547ced5a5a
 n/5-n/5=0=n
Many times in ECDSA libraries you can find a function called "inversion", if you apply numbers like 2, 3, 4, 5, you will get 1/2, 1/3, 1/4, 1/5. And if you subtract them from n, then you will get -1/2, -1/3, -1/4, -1/5. No matter if you double a key, or halve a key, it can be always be done. If you halve the base point, you will get 1/2, you will never reach a point, where there will be any fractions.
sr. member
Activity: 346
Merit: 250
Hi sir iam run u r code getting error :/s/test $ python s.py
  0%|             | 0/1000000 [00:00Traceback (most recent call last):
  File "/storage/emulated/0/Download/s/test/s.py", line 11, in
    ke = ice.privatekey_loop_h160(100,0,True,cc).hex()
         ^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: module 'secp256k1' has no attribute 'privatekey_loop_h160'

How to solve please give me a full code link


Not sure what your code has but you need these...

https://github.com/iceland2k14/secp256k1

copper member
Activity: 1330
Merit: 899
🖤😏
Wow, look what I found!
Code:
3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9050

Introducing N/4, or 25% of the whole key range, this one and the N/2 are really interesting keys, dive deeper on these 2 keys my fellow hunters! 😉

Update on my breakthroughs, I have been trying to figure out if there is a way to know which key is greater or smaller than our target key! So far the damn EC behaves the same no matter if your key is bigger or smaller, the only difference is the X coordinate of the result, so if you subtract a smaller key from a bigger key, or vice versa, the result is the same only different Y coordinate.😅
newbie
Activity: 2
Merit: 0
Hi sir iam run u r code getting error :/s/test $ python s.py
  0%|             | 0/1000000 [00:00Traceback (most recent call last):
  File "/storage/emulated/0/Download/s/test/s.py", line 11, in
    ke = ice.privatekey_loop_h160(100,0,True,cc).hex()
         ^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: module 'secp256k1' has no attribute 'privatekey_loop_h160'

How to solve please give me a full code link
newbie
Activity: 19
Merit: 1
I still believe that the creator took an hd wallet and changed its first digits with 0 and 1.

these are hd wallet derived by index (bip32), using entropy.


Code:
e5d381edb8f553f370c91f6a923cdc75979ecff930ae282bd025320905420ea1

Decimal 40 : 977979697081
Originl 40 : 1003651412950
Decimal 41 : 2052359601267
Originl 41 : 1458252205147
Decimal 42 : 3106869955017
Originl 42 : 2895374552463
Decimal 43 : 7282462130046
Originl 43 : 7409811047825
Decimal 44 : 16171793044049
Originl 44 : 15404761757071
Decimal 45 : 30222262756334
Originl 45 : 19996463086597
Decimal 46 : 48311258725979
Originl 46 : 51408670348612
Decimal 47 : 109660852173509
Originl 47 : 119666659114170
Decimal 48 : 179176816204806
Originl 48 : 191206974700443
Decimal 49 : 392111997191051
Originl 49 : 409118905032525
Decimal 50 : 678515109351911
Originl 50 : 611140496167764
Decimal 51 : 2250480238048774
Originl 51 : 2058769515153876
Decimal 52 : 4124320801067187
Originl 52 : 4216495639600700
Decimal 53 : 8208656225227312
Originl 53 : 6763683971478124
Decimal 54 : 10037007035528678
Originl 54 : 9974455244496707
Decimal 55 : 27297825258190272
Originl 55 : 30045390491869460
Decimal 56 : 40869168508975649
Originl 56 : 44218742292676575
Decimal 57 : 136174945525590971
Originl 57 : 138245758910846492
Decimal 58 : 184072613703641312
Originl 58 : 199976667976342049
Decimal 59 : 564056197926887240
Originl 59 : 525070384258266191
Decimal 60 : 1081244187136957705
Originl 60 : 1135041350219496382
Decimal 61 : 1929912763579260156
Originl 61 : 1425787542618654982
Decimal 62 : 3518271254274884975
Originl 62 : 3908372542507822062
Decimal 63 : 8083948720161633471
Originl 63 : 8993229949524469768
Decimal 64: 17384508483360700137
Originl 64: 17799667357578236628
Decimal 65: 19861922749538678129
Originl 65: 30568377312064202855

Decimal 66: 67445068265880776550
Decimal 67: 137457421418395676093
Decimal 68: 286437111211651109960
Decimal 69: 447075693134825322345

Decimal 70: 945191106694663864965
Originl 70: 970436974005023690481
Decimal 75: 19674189246275261952889
Originl 75: 22538323240989823823367
Decimal 80: 1108724601635079776656184
Originl 80: 1105520030589234487939456
Decimal 85: 31917442046502054372111202
Originl 85: 21090315766411506144426920
Decimal 90: 694637209103897709156660139
Originl 90: 868012190417726402719548863
Decimal 95: 26490472026017107908115806022
Originl 95: 25525831956644113617013748212
Decimal 100: 822285693119054986152724248383
Originl 100: 868221233689326498340379183142
Decimal 105 : 35943734164521653175559448479698
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1201684459695171689588662022885868
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464138578449980575508163698464999
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 26325957757707883673459830602524036421

1b2874d390f8969374c10bcd748b28e838766d19ab7f6381dcc03b7ed3d3550a

Decimal 40 : 1026059307402
Originl 40 : 1003651412950
Decimal 41 : 1899176173046
Originl 41 : 1458252205147
Decimal 42 : 2852136379841
Originl 42 : 2895374552463
Decimal 43 : 6981485272054
Originl 43 : 7409811047825
Decimal 44 : 15918960320405
Originl 44 : 15404761757071
Decimal 45 : 25333066528979
Originl 45 : 19996463086597
Decimal 46 : 42325463761508
Originl 46 : 51408670348612
Decimal 47 : 113070844648841
Originl 47 : 119666659114170
Decimal 48 : 184714153191452
Originl 48 : 191206974700443
Decimal 49 : 434421908281171
Originl 49 : 409118905032525
Decimal 50 : 649725232503989
Originl 50 : 611140496167764
Decimal 51 : 2241146440133844
Originl 51 : 2058769515153876
Decimal 52 : 4217104742574046
Originl 52 : 4216495639600700
Decimal 53 : 7730490185274568
Originl 53 : 6763683971478124
Decimal 54 : 9991918450490607
Originl 54 : 9974455244496707
Decimal 55 : 28882199237142670
Originl 55 : 30045390491869460
Decimal 56 : 43554225067481316
Originl 56 : 44218742292676575
Decimal 57 : 136549970379171791
Originl 57 : 138245758910846492
Decimal 58 : 163930157293369237
Originl 58 : 199976667976342049
Decimal 59 : 543463653102739562
Originl 59 : 525070384258266191
Decimal 60 : 1082367208662670998
Originl 60 : 1135041350219496382
Decimal 61 : 1394043224163252626
Originl 61 : 1425787542618654982
Decimal 62 : 3507814292624007678
Originl 62 : 3908372542507822062
Decimal 63 : 8101035179523160825
Originl 63 : 8993229949524469768
Decimal 64: 17350710852631299058
Originl 64: 17799667357578236628
Decimal 65: 26632565442979340296
Originl 65: 30568377312064202855

Decimal 66: 55777628017261072735
Decimal 67: 144205956960704889846
Decimal 68: 278973621366769893739
Decimal 69: 429053067029108090534

Decimal 70: 1064748105576175142525
Originl 70: 970436974005023690481
Decimal 75: 19588682910454500820419
Originl 75: 22538323240989823823367
Decimal 80: 1115438771939442133472545
Originl 80: 1105520030589234487939456
Decimal 85: 37826436273117852361500655
Originl 85: 21090315766411506144426920
Decimal 90: 874954669843566662929381575
Originl 90: 868012190417726402719548863
Decimal 95: 26898819133352744797013476095
Originl 95: 25525831956644113617013748212
Decimal 100: 813267227977084320488869020032
Originl 100: 868221233689326498340379183142
Decimal 105 : 27310490583716560401316604797577
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1112636214097370415620882259280476
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464160775701377405657395676782135
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 36529372001406570233465073647900963404

5c54c11d826c968ce4ac0237617d29f1ef1659d72350f1e9729857e93c6e6efd

Decimal 40 : 1011579362522
Originl 40 : 1003651412950
Decimal 41 : 1455678993341
Originl 41 : 1458252205147
Decimal 42 : 2440580329425
Originl 42 : 2895374552463
Decimal 43 : 7087202124370
Originl 43 : 7409811047825
Decimal 44 : 15972560065324
Originl 44 : 15404761757071
Decimal 45 : 26298376893398
Originl 45 : 19996463086597
Decimal 46 : 35411592605184
Originl 46 : 51408670348612
Decimal 47 : 112652042205850
Originl 47 : 119666659114170
Decimal 48 : 190340547001034
Originl 48 : 191206974700443
Decimal 49 : 545025735446859
Originl 49 : 409118905032525
Decimal 50 : 613573809327004
Originl 50 : 611140496167764
Decimal 51 : 1989709614867022
Originl 51 : 2058769515153876
Decimal 52 : 4092187443089040
Originl 52 : 4216495639600700
Decimal 53 : 8557315387263761
Originl 53 : 6763683971478124
Decimal 54 : 10119760124695031
Originl 54 : 9974455244496707
Decimal 55 : 29677537313540194
Originl 55 : 30045390491869460
Decimal 56 : 43491204184736917
Originl 56 : 44218742292676575
Decimal 57 : 135509940203340480
Originl 57 : 138245758910846492
Decimal 58 : 157652596239395545
Originl 58 : 199976667976342049
Decimal 59 : 507264573525920798
Originl 59 : 525070384258266191
Decimal 60 : 1137503572977911164
Originl 60 : 1135041350219496382
Decimal 61 : 1424783221576542804
Originl 61 : 1425787542618654982
Decimal 62 : 3562978959192574354
Originl 62 : 3908372542507822062
Decimal 63 : 8410271439449035422
Originl 63 : 8993229949524469768
Decimal 64: 17815936283188530244
Originl 64: 17799667357578236628
Decimal 65: 32115478594996894955
Originl 65: 30568377312064202855

Decimal 66: 58349009757768569989
Decimal 67: 130204685587235470856
Decimal 68: 279406401709782375673
Decimal 69: 345583470721148627090

Decimal 70: 907934422460677069481
Originl 70: 970436974005023690481
Decimal 75: 20156835384401749284870
Originl 75: 22538323240989823823367
Decimal 80: 1106340151270370051957501
Originl 80: 1105520030589234487939456
Decimal 85: 24861976775658906662087655
Originl 85: 21090315766411506144426920
Decimal 90: 709018032341422537082025482
Originl 90: 868012190417726402719548863
Decimal 95: 26228640630722984697341723177
Originl 95: 25525831956644113617013748212
Decimal 100: 848739690768868690973942034489
Originl 100: 868221233689326498340379183142
Decimal 105 : 33441351319931885587870944351502
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1187905825147982324778544823234997
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464163680378139435713589059192221
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 29594712971868043164978076280134769500

510b181a24181c5af7a85f72babbd137dcc55a40a366163c9063b298c6b8e62c


Decimal 40 : 1022861308136
Originl 40 : 1003651412950
Decimal 41 : 2182788155321
Originl 41 : 1458252205147
Decimal 42 : 3017392923364
Originl 42 : 2895374552463
Decimal 43 : 7523834754022
Originl 43 : 7409811047825
Decimal 44 : 15565325667705
Originl 44 : 15404761757071
Decimal 45 : 30943942381969
Originl 45 : 19996463086597
Decimal 46 : 45623247882804
Originl 46 : 51408670348612
Decimal 47 : 122219194718820
Originl 47 : 119666659114170
Decimal 48 : 186735428540609
Originl 48 : 191206974700443
Decimal 49 : 303656502742955
Originl 49 : 409118905032525
Decimal 50 : 837792237349674
Originl 50 : 611140496167764
Decimal 51 : 2045943707552965
Originl 51 : 2058769515153876
Decimal 52 : 4035646115366477
Originl 52 : 4216495639600700
Decimal 53 : 5829839677245915
Originl 53 : 6763683971478124
Decimal 54 : 9861326603821412
Originl 54 : 9974455244496707
Decimal 55 : 30961137716656210
Originl 55 : 30045390491869460
Decimal 56 : 44058591843261110
Originl 56 : 44218742292676575
Decimal 57 : 137946358192622230
Originl 57 : 138245758910846492
Decimal 58 : 204344927628544781
Originl 58 : 199976667976342049
Decimal 59 : 553376976991983999
Originl 59 : 525070384258266191
Decimal 60 : 1099414816755375090
Originl 60 : 1135041350219496382
Decimal 61 : 2022603879958453854
Originl 61 : 1425787542618654982
Decimal 62 : 3994656845738630787
Originl 62 : 3908372542507822062
Decimal 63 : 9035183789572089728
Originl 63 : 8993229949524469768
Decimal 64: 17983908921992633881
Originl 64: 17799667357578236628
Decimal 65: 24518884106297278064
Originl 65: 30568377312064202855

Decimal 66: 66243844910388939155
Decimal 67: 140742279043241744190
Decimal 68: 277810510049521332631
Decimal 69: 499636856634747726198

Decimal 70: 1125256057830741103452
Originl 70: 970436974005023690481
Decimal 75: 22323433350859378688746
Originl 75: 22538323240989823823367
Decimal 80: 1127470479567941975227921
Originl 80: 1105520030589234487939456
Decimal 85: 30614339297396594948455403
Originl 85: 21090315766411506144426920
Decimal 90: 694654510208460746786316532
Originl 90: 868012190417726402719548863
Decimal 95: 25590093339528078085432682046
Originl 95: 25525831956644113617013748212
Decimal 100: 846878551860461864482554313446
Originl 100: 868221233689326498340379183142
Decimal 105 : 37877125433177041754199623781303
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1242934490553119369554705096168898
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464174943582234087365499601998948
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 32465246135956244441613925541297805874

4785881bb10315a24cea523b35cc3064af332b517b81e0e67e2399b467c1f021


Decimal 40 : 1002683396504
Originl 40 : 1003651412950
Decimal 41 : 1743979433536
Originl 41 : 1458252205147
Decimal 42 : 3068000319590
Originl 42 : 2895374552463
Decimal 43 : 6816852948583
Originl 43 : 7409811047825
Decimal 44 : 15814338409765
Originl 44 : 15404761757071
Decimal 45 : 24177610917086
Originl 45 : 19996463086597
Decimal 46 : 45620975946778
Originl 46 : 51408670348612
Decimal 47 : 121535672383917
Originl 47 : 119666659114170
Decimal 48 : 180122061897355
Originl 48 : 191206974700443
Decimal 49 : 303701300012527
Originl 49 : 409118905032525
Decimal 50 : 757599732273205
Originl 50 : 611140496167764
Decimal 51 : 2165488499169914
Originl 51 : 2058769515153876
Decimal 52 : 3961189427600435
Originl 52 : 4216495639600700
Decimal 53 : 4930827109741340
Originl 53 : 6763683971478124
Decimal 54 : 10082216574791801
Originl 54 : 9974455244496707
Decimal 55 : 31078269948201422
Originl 55 : 30045390491869460
Decimal 56 : 42114869023657248
Originl 56 : 44218742292676575
Decimal 57 : 139178355851948485
Originl 57 : 138245758910846492
Decimal 58 : 194016669553023977
Originl 58 : 199976667976342049
Decimal 59 : 514690405962746359
Originl 59 : 525070384258266191
Decimal 60 : 1132130085240701464
Originl 60 : 1135041350219496382
Decimal 61 : 1732747890237609172
Originl 61 : 1425787542618654982
Decimal 62 : 4013350056521058862
Originl 62 : 3908372542507822062
Decimal 63 : 8780393378081938441
Originl 63 : 8993229949524469768
Decimal 64: 18091224072847952102
Originl 64: 17799667357578236628
Decimal 65: 35108389902538823501
Originl 65: 30568377312064202855

Decimal 66: 68801860250732645829
Decimal 67: 132060472083810734584
Decimal 68: 290278771667093096788
Decimal 69: 380445959038025896716

Decimal 70: 935802383858600404758
Originl 70: 970436974005023690481
Decimal 75: 22191904457194983916571
Originl 75: 22538323240989823823367
Decimal 80: 1113631903272660148227597
Originl 80: 1105520030589234487939456
Decimal 85: 34325921026506828030046769
Originl 85: 21090315766411506144426920
Decimal 90: 784992275525476052880990176
Originl 90: 868012190417726402719548863
Decimal 95: 27936213541365023355997204922
Originl 95: 25525831956644113617013748212
Decimal 100: 823932721137451462625403107782
Originl 100: 868221233689326498340379183142
Decimal 105 : 28300514799476233104870157590230
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1138292878906895300695225629525814
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464142323707562418900499443407373
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 21782321271736353583138000543298349712

404534477ee3e63c3d04583be14ffcfc855bfca2d9fc366203540520541710b6


Decimal 40 : 1016623072870
Originl 40 : 1003651412950
Decimal 41 : 1990208506948
Originl 41 : 1458252205147
Decimal 42 : 3064082235808
Originl 42 : 2895374552463
Decimal 43 : 7127571140295
Originl 43 : 7409811047825
Decimal 44 : 15633124589230
Originl 44 : 15404761757071
Decimal 45 : 21979770232045
Originl 45 : 19996463086597
Decimal 46 : 45099397693713
Originl 46 : 51408670348612
Decimal 47 : 111902427231785
Originl 47 : 119666659114170
Decimal 48 : 191646931256918
Originl 48 : 191206974700443
Decimal 49 : 499272614105001
Originl 49 : 409118905032525
Decimal 50 : 788021102815773
Originl 50 : 611140496167764
Decimal 51 : 2057288969326442
Originl 51 : 2058769515153876
Decimal 52 : 4179003949236963
Originl 52 : 4216495639600700
Decimal 53 : 8848929061137730
Originl 53 : 6763683971478124
Decimal 54 : 10072355699854093
Originl 54 : 9974455244496707
Decimal 55 : 27849388378910206
Originl 55 : 30045390491869460
Decimal 56 : 42883583102541619
Originl 56 : 44218742292676575
Decimal 57 : 137944537309002243
Originl 57 : 138245758910846492
Decimal 58 : 215359636422626982
Originl 58 : 199976667976342049
Decimal 59 : 520855190275166985
Originl 59 : 525070384258266191
Decimal 60 : 1086041512744645727
Originl 60 : 1135041350219496382
Decimal 61 : 1678285921033086812
Originl 61 : 1425787542618654982
Decimal 62 : 4123156801432787748
Originl 62 : 3908372542507822062
Decimal 63 : 9164821948722150962
Originl 63 : 8993229949524469768
Decimal 64: 17679926091979328222
Originl 64: 17799667357578236628
Decimal 65: 30396595104401681457
Originl 65: 30568377312064202855

Decimal 66: 70799153265062138675
Decimal 67: 139560925780823810171
Decimal 68: 288672377512307074658
Decimal 69: 442441104103503386197

Decimal 70: 938264520094397232733
Originl 70: 970436974005023690481
Decimal 75: 20614511754291726719558
Originl 75: 22538323240989823823367
Decimal 80: 1065227862663462387935501
Originl 80: 1105520030589234487939456
Decimal 85: 26238478038356064832209113
Originl 85: 21090315766411506144426920
Decimal 90: 791887264007557544076610151
Originl 90: 868012190417726402719548863
Decimal 95: 24964593472566015995675590477
Originl 95: 25525831956644113617013748212
Decimal 100: 819037219487095384969979972618
Originl 100: 868221233689326498340379183142
Decimal 105 : 21395451610421203288207152916600
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1045935617151871304001547229601830
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464142135419068307058894412453533
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 21669897610153632702572000068499028894

4a717fb983cc1b891e57cd194b43a01a46bccbfcd56510d9d65b38cad40c1023

Decimal 40 : 1013182891166
Originl 40 : 1003651412950
Decimal 41 : 1227466321836
Originl 41 : 1458252205147
Decimal 42 : 3205457514061
Originl 42 : 2895374552463
Decimal 43 : 7301758546662
Originl 43 : 7409811047825
Decimal 44 : 16113287320156
Originl 44 : 15404761757071
Decimal 45 : 29997600580829
Originl 45 : 19996463086597
Decimal 46 : 51277380647395
Originl 46 : 51408670348612
Decimal 47 : 118405983256937
Originl 47 : 119666659114170
Decimal 48 : 178187628215823
Originl 48 : 191206974700443
Decimal 49 : 286918535164536
Originl 49 : 409118905032525
Decimal 50 : 602739232111282
Originl 50 : 611140496167764
Decimal 51 : 2105175366668606
Originl 51 : 2058769515153876
Decimal 52 : 4166998798287359
Originl 52 : 4216495639600700
Decimal 53 : 7317169184862681
Originl 53 : 6763683971478124
Decimal 54 : 10123296611084730
Originl 54 : 9974455244496707
Decimal 55 : 27827967303791468
Originl 55 : 30045390491869460
Decimal 56 : 43545521662377193
Originl 56 : 44218742292676575
Decimal 57 : 135172336983368766
Originl 57 : 138245758910846492
Decimal 58 : 148908847714612282
Originl 58 : 199976667976342049
Decimal 59 : 573659816681999945
Originl 59 : 525070384258266191
Decimal 60 : 1138646522509814636
Originl 60 : 1135041350219496382
Decimal 61 : 1322583121415425142
Originl 61 : 1425787542618654982
Decimal 62 : 3845663923948479407
Originl 62 : 3908372542507822062
Decimal 63 : 8288553965716020256
Originl 63 : 8993229949524469768
Decimal 64: 18135975258797669079
Originl 64: 17799667357578236628
Decimal 65: 34186014181440741689
Originl 65: 30568377312064202855

Decimal 66: 64328320128101358211
Decimal 67: 142948068795294050249
Decimal 68: 289044659191822201392
Decimal 69: 503955508713967727309

Decimal 70: 1075178371149320153568
Originl 70: 970436974005023690481
Decimal 75: 19459924017807225083997
Originl 75: 22538323240989823823367
Decimal 80: 1073482977281312162903118
Originl 80: 1105520030589234487939456
Decimal 85: 30509825835993751131649486
Originl 85: 21090315766411506144426920
Decimal 90: 681191614540852902460129661
Originl 90: 868012190417726402719548863
Decimal 95: 27166985228138770921273969214
Originl 95: 25525831956644113617013748212
Decimal 100: 792287841487413921119231652914
Originl 100: 868221233689326498340379183142
Decimal 105 : 40161430293565486792569096108500
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1026028250258159238548602939904549
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464120049564834525387303210799024
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 26248984786357470522786725194463015964


4815ca0148fc1149d60c5c9c148feaa83749d6e136a55e5653cb87b13760b392

Decimal 40 : 981935629997
Originl 40 : 1003651412950
Decimal 41 : 1168442728461
Originl 41 : 1458252205147
Decimal 42 : 2874023270470
Originl 42 : 2895374552463
Decimal 43 : 7525460544797
Originl 43 : 7409811047825
Decimal 44 : 15967942865255
Originl 44 : 15404761757071
Decimal 45 : 33984051984820
Originl 45 : 19996463086597
Decimal 46 : 44923091103445
Originl 46 : 51408670348612
Decimal 47 : 118997144781003
Originl 47 : 119666659114170
Decimal 48 : 180693682404270
Originl 48 : 191206974700443
Decimal 49 : 476844160439403
Originl 49 : 409118905032525
Decimal 50 : 609230655437091
Originl 50 : 611140496167764
Decimal 51 : 2195026387333818
Originl 51 : 2058769515153876
Decimal 52 : 4218498531246056
Originl 52 : 4216495639600700
Decimal 53 : 5756523839934106
Originl 53 : 6763683971478124
Decimal 54 : 10060635432276352
Originl 54 : 9974455244496707
Decimal 55 : 31342456582340413
Originl 55 : 30045390491869460
Decimal 56 : 43815288285854697
Originl 56 : 44218742292676575
Decimal 57 : 138304557958906519
Originl 57 : 138245758910846492
Decimal 58 : 174593929325177836
Originl 58 : 199976667976342049
Decimal 59 : 527843427256618344
Originl 59 : 525070384258266191
Decimal 60 : 1102279376410286112
Originl 60 : 1135041350219496382
Decimal 61 : 2209978515796561781
Originl 61 : 1425787542618654982
Decimal 62 : 4257898319816648529
Originl 62 : 3908372542507822062
Decimal 63 : 9060154494228493997
Originl 63 : 8993229949524469768
Decimal 64: 18250989641186493566
Originl 64: 17799667357578236628
Decimal 65: 35061005960328002070
Originl 65: 30568377312064202855

Decimal 66: 56074311542044704047
Decimal 67: 143797560330881965144
Decimal 68: 279825952335358419043
Decimal 69: 330490558576624420379

Decimal 70: 1095454165898941724772
Originl 70: 970436974005023690481
Decimal 75: 19772205730398656028166
Originl 75: 22538323240989823823367
Decimal 80: 1120176612798720302826786
Originl 80: 1105520030589234487939456
Decimal 85: 20591018294699674743838347
Originl 85: 21090315766411506144426920
Decimal 90: 872497861570524286253499760
Originl 90: 868012190417726402719548863
Decimal 95: 27809719097940446973677147208
Originl 95: 25525831956644113617013748212
Decimal 100: 809345998179306287944674631256
Originl 100: 868221233689326498340379183142
Decimal 105 : 26647074294050870553835192557587
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1245411636847228782356503530773251
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464175887922328052310347311636937
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 42229115559970624420425635596542086106

4de503686fc2501ae6f6d7437ff604cf19895bf4adf2ced49a0ad4e5ca32e714

Decimal 40 : 1009710761164
Originl 40 : 1003651412950
Decimal 41 : 2184406417482
Originl 41 : 1458252205147
Decimal 42 : 2832819983533
Originl 42 : 2895374552463
Decimal 43 : 7591183171669
Originl 43 : 7409811047825
Decimal 44 : 15577575711578
Originl 44 : 15404761757071
Decimal 45 : 28416914341529
Originl 45 : 19996463086597
Decimal 46 : 46894911836479
Originl 46 : 51408670348612
Decimal 47 : 122137242493141
Originl 47 : 119666659114170
Decimal 48 : 177972075707812
Originl 48 : 191206974700443
Decimal 49 : 372433971878020
Originl 49 : 409118905032525
Decimal 50 : 732938582915003
Originl 50 : 611140496167764
Decimal 51 : 1991254768739836
Originl 51 : 2058769515153876
Decimal 52 : 4040604537588114
Originl 52 : 4216495639600700
Decimal 53 : 7959003446020642
Originl 53 : 6763683971478124
Decimal 54 : 9939397801338907
Originl 54 : 9974455244496707
Decimal 55 : 29812947403665786
Originl 55 : 30045390491869460
Decimal 56 : 44523569609414019
Originl 56 : 44218742292676575
Decimal 57 : 136682996876157817
Originl 57 : 138245758910846492
Decimal 58 : 208167375772471592
Originl 58 : 199976667976342049
Decimal 59 : 534162396548987438
Originl 59 : 525070384258266191
Decimal 60 : 1125860206576522254
Originl 60 : 1135041350219496382
Decimal 61 : 2155962000161641928
Originl 61 : 1425787542618654982
Decimal 62 : 4396467113737560276
Originl 62 : 3908372542507822062
Decimal 63 : 8842951010980404559
Originl 63 : 8993229949524469768
Decimal 64: 18283903971953962948
Originl 64: 17799667357578236628
Decimal 65: 18848284089270798930
Originl 65: 30568377312064202855

Decimal 66: 69125019291873801266
Decimal 67: 143883402736735980234
Decimal 68: 283146043350566343937
Decimal 69: 343978332699385853151

Decimal 70: 1141336195958222818149
Originl 70: 970436974005023690481
Decimal 75: 22792612561906946280429
Originl 75: 22538323240989823823367
Decimal 80: 1082683503717616627776171
Originl 80: 1105520030589234487939456
Decimal 85: 23793166958558936708275101
Originl 85: 21090315766411506144426920
Decimal 90: 885553106156801657922160542
Originl 90: 868012190417726402719548863
Decimal 95: 26718630726018753428138460887
Originl 95: 25525831956644113617013748212
Decimal 100: 820812038246159146503138227545
Originl 100: 868221233689326498340379183142
Decimal 105 : 26664083060113467501728206070379
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1022000133424144905900273751622491
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464148630745348518930638975654357
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 28712734736846957891112337449554057874


437bea1f00db4d9c45b39efdc4009564b1410be6b0c5de7d9826d076f4e9bb29

Decimal 40 : 1021270402385
Originl 40 : 1003651412950
Decimal 41 : 1454302262766
Originl 41 : 1458252205147
Decimal 42 : 2797790775683
Originl 42 : 2895374552463
Decimal 43 : 7327308203911
Originl 43 : 7409811047825
Decimal 44 : 15938827227602
Originl 44 : 15404761757071
Decimal 45 : 31135639318294
Originl 45 : 19996463086597
Decimal 46 : 40435725189882
Originl 46 : 51408670348612
Decimal 47 : 116801044361556
Originl 47 : 119666659114170
Decimal 48 : 193484331864864
Originl 48 : 191206974700443
Decimal 49 : 422672593953508
Originl 49 : 409118905032525
Decimal 50 : 793905206716301
Originl 50 : 611140496167764
Decimal 51 : 2106951788498298
Originl 51 : 2058769515153876
Decimal 52 : 3947632834950667
Originl 52 : 4216495639600700
Decimal 53 : 7921682934525161
Originl 53 : 6763683971478124
Decimal 54 : 9934602644258184
Originl 54 : 9974455244496707
Decimal 55 : 31098019501173173
Originl 55 : 30045390491869460
Decimal 56 : 43161510874496851
Originl 56 : 44218742292676575
Decimal 57 : 139161239670895602
Originl 57 : 138245758910846492
Decimal 58 : 210368345597035435
Originl 58 : 199976667976342049
Decimal 59 : 563357326362418487
Originl 59 : 525070384258266191
Decimal 60 : 1083059589115783256
Originl 60 : 1135041350219496382
Decimal 61 : 1893194376408167345
Originl 61 : 1425787542618654982
Decimal 62 : 4486948858936504947
Originl 62 : 3908372542507822062
Decimal 63 : 9200963306427239271
Originl 63 : 8993229949524469768
Decimal 64: 18343005508527705154
Originl 64: 17799667357578236628
Decimal 65: 29369990245496692875
Originl 65: 30568377312064202855

Decimal 66: 66937000643619908200
Decimal 67: 129626059564620301081
Decimal 68: 294285239023207577245
Decimal 69: 335940095839311705881

Decimal 70: 1177435970035880923588
Originl 70: 970436974005023690481
Decimal 75: 20121300396594716357477
Originl 75: 22538323240989823823367
Decimal 80: 1064182713762126063148584
Originl 80: 1105520030589234487939456
Decimal 85: 28014877436320650601129569
Originl 85: 21090315766411506144426920
Decimal 90: 727640289268321413300393508
Originl 90: 868012190417726402719548863
Decimal 95: 28491694755627019787783129423
Originl 95: 25525831956644113617013748212
Decimal 100: 809858470659734769394411259135
Originl 100: 868221233689326498340379183142
Decimal 105 : 26677722125914796929545291924408
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1079666033200529944190523928230330
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464177936013778127719801113461778
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 41513666441932782592204478977873612941


4911a7fb2405150c59c0cf9de28fec1c1138c97ac7a819ac8c68685ee52e0fcc

Decimal 40 : 998227614738
Originl 40 : 1003651412950
Decimal 41 : 1842683637149
Originl 41 : 1458252205147
Decimal 42 : 2991832129245
Originl 42 : 2895374552463
Decimal 43 : 7347912335212
Originl 43 : 7409811047825
Decimal 44 : 16058433862593
Originl 44 : 15404761757071
Decimal 45 : 23217810683089
Originl 45 : 19996463086597
Decimal 46 : 36770111331039
Originl 46 : 51408670348612
Decimal 47 : 110711877375605
Originl 47 : 119666659114170
Decimal 48 : 179700993643192
Originl 48 : 191206974700443
Decimal 49 : 444078894882139
Originl 49 : 409118905032525
Decimal 50 : 707082115720367
Originl 50 : 611140496167764
Decimal 51 : 2052699759102561
Originl 51 : 2058769515153876
Decimal 52 : 4067774763944542
Originl 52 : 4216495639600700
Decimal 53 : 4515601674989528
Originl 53 : 6763683971478124
Decimal 54 : 10058081721577226
Originl 54 : 9974455244496707
Decimal 55 : 29059968528637600
Originl 55 : 30045390491869460
Decimal 56 : 43899023802859837
Originl 56 : 44218742292676575
Decimal 57 : 139055297046100820
Originl 57 : 138245758910846492
Decimal 58 : 157998236052447950
Originl 58 : 199976667976342049
Decimal 59 : 522731117812465470
Originl 59 : 525070384258266191
Decimal 60 : 1121411713744704294
Originl 60 : 1135041350219496382
Decimal 61 : 2302900939957746580
Originl 61 : 1425787542618654982
Decimal 62 : 3519129454554409569
Originl 62 : 3908372542507822062
Decimal 63 : 8275480145192314966
Originl 63 : 8993229949524469768
Decimal 64: 17734204782908422678
Originl 64: 17799667357578236628
Decimal 65: 35933666766860851351
Originl 65: 30568377312064202855

Decimal 66: 56798896826326744624
Decimal 67: 137566541376127976039
Decimal 68: 283473655283560876844
Decimal 69: 507842240849496208729

Decimal 70: 1001717454824013151393
Originl 70: 970436974005023690481
Decimal 75: 21953846951706520570109
Originl 75: 22538323240989823823367
Decimal 80: 1086869698331204563692090
Originl 80: 1105520030589234487939456
Decimal 85: 30194411861468923616841306
Originl 85: 21090315766411506144426920
Decimal 90: 830945373300942891678440921
Originl 90: 868012190417726402719548863
Decimal 95: 26586515910485111147276138732
Originl 95: 25525831956644113617013748212
Decimal 100: 823264617529135840885375464546
Originl 100: 868221233689326498340379183142
Decimal 105 : 35536871003888935342585226560712
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1008183739879369560040461192411530
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464190843176435491526649982235964
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 28248131068387525187416569989957567659

4064cc97b9bc4855b9a0b46a7c7f067c5fc954eacf2754bc3c46adbf3ffc944e

Decimal 40 : 992151844165
Originl 40 : 1003651412950
Decimal 41 : 1659683355185
Originl 41 : 1458252205147
Decimal 42 : 3038651942049
Originl 42 : 2895374552463
Decimal 43 : 7221519599740
Originl 43 : 7409811047825
Decimal 44 : 16492121232203
Originl 44 : 15404761757071
Decimal 45 : 27747227288014
Originl 45 : 19996463086597
Decimal 46 : 43272772811186
Originl 46 : 51408670348612
Decimal 47 : 108141679889513
Originl 47 : 119666659114170
Decimal 48 : 176902790800313
Originl 48 : 191206974700443
Decimal 49 : 302219565207190
Originl 49 : 409118905032525
Decimal 50 : 673153803466928
Originl 50 : 611140496167764
Decimal 51 : 2138238733143602
Originl 51 : 2058769515153876
Decimal 52 : 4071815187782075
Originl 52 : 4216495639600700
Decimal 53 : 8670829181324502
Originl 53 : 6763683971478124
Decimal 54 : 9908369196282064
Originl 54 : 9974455244496707
Decimal 55 : 27704906111148275
Originl 55 : 30045390491869460
Decimal 56 : 40676263271253658
Originl 56 : 44218742292676575
Decimal 57 : 139486919766719128
Originl 57 : 138245758910846492
Decimal 58 : 203649498209792612
Originl 58 : 199976667976342049
Decimal 59 : 574471443912089426
Originl 59 : 525070384258266191
Decimal 60 : 1125011405476284913
Originl 60 : 1135041350219496382
Decimal 61 : 2193100317636220437
Originl 61 : 1425787542618654982
Decimal 62 : 4391123481071677826
Originl 62 : 3908372542507822062
Decimal 63 : 8620148023328231198
Originl 63 : 8993229949524469768
Decimal 64: 17694350059614660344
Originl 64: 17799667357578236628
Decimal 65: 33035597084781720641
Originl 65: 30568377312064202855

Decimal 66: 73242354514104443969
Decimal 67: 146065574551729747447
Decimal 68: 282786119179039159316
Decimal 69: 338631251662760299185

Decimal 70: 1006975751616686599752
Originl 70: 970436974005023690481
Decimal 75: 23351111675958266543737
Originl 75: 22538323240989823823367
Decimal 80: 1086697233041445780883803
Originl 80: 1105520030589234487939456
Decimal 85: 31460696979517324440798917
Originl 85: 21090315766411506144426920
Decimal 90: 809862660664777215820298147
Originl 90: 868012190417726402719548863
Decimal 95: 28753976543024674088233925162
Originl 95: 25525831956644113617013748212
Decimal 100: 802882460949110237650477584697
Originl 100: 868221233689326498340379183142
Decimal 105 : 37816842282381642645463198847115
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1050339606230975348431067301806768
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464182014850228852544082558259859
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 22562213482442359014491275498123496949


4489451cd87229b335bb445fc8cc3b807da6e502587190736342b301c5090ef6

Decimal 40 : 985048187180
Originl 40 : 1003651412950
Decimal 41 : 2056466225279
Originl 41 : 1458252205147
Decimal 42 : 3176605295266
Originl 42 : 2895374552463
Decimal 43 : 6625854328803
Originl 43 : 7409811047825
Decimal 44 : 16175156304273
Originl 44 : 15404761757071
Decimal 45 : 32326714891578
Originl 45 : 19996463086597
Decimal 46 : 47968337264108
Originl 46 : 51408670348612
Decimal 47 : 114408963248593
Originl 47 : 119666659114170
Decimal 48 : 178469096203051
Originl 48 : 191206974700443
Decimal 49 : 475059042090705
Originl 49 : 409118905032525
Decimal 50 : 638530768032344
Originl 50 : 611140496167764
Decimal 51 : 2157810427282720
Originl 51 : 2058769515153876
Decimal 52 : 3972420357895017
Originl 52 : 4216495639600700
Decimal 53 : 5659679852961989
Originl 53 : 6763683971478124
Decimal 54 : 9901014987898840
Originl 54 : 9974455244496707
Decimal 55 : 29710557880604822
Originl 55 : 30045390491869460
Decimal 56 : 41166701274431973
Originl 56 : 44218742292676575
Decimal 57 : 136346730314685620
Originl 57 : 138245758910846492
Decimal 58 : 160983500177905249
Originl 58 : 199976667976342049
Decimal 59 : 563345071701477795
Originl 59 : 525070384258266191
Decimal 60 : 1114060559990505563
Originl 60 : 1135041350219496382
Decimal 61 : 2050583687211646499
Originl 61 : 1425787542618654982
Decimal 62 : 3728233700419648329
Originl 62 : 3908372542507822062
Decimal 63 : 8154657223451668133
Originl 63 : 8993229949524469768
Decimal 64: 17843562667112719474
Originl 64: 17799667357578236628
Decimal 65: 22644179233578977250
Originl 65: 30568377312064202855

Decimal 66: 62071981027498383331
Decimal 67: 143175480009781288501
Decimal 68: 282608513564536509676
Decimal 69: 305383548306601791163

Decimal 70: 1087136966583814090417
Originl 70: 970436974005023690481
Decimal 75: 23179388094106091471950
Originl 75: 22538323240989823823367
Decimal 80: 1105980148957827144963920
Originl 80: 1105520030589234487939456
Decimal 85: 20913475654177597057008586
Originl 85: 21090315766411506144426920
Decimal 90: 743005675945214898302291472
Originl 90: 868012190417726402719548863
Decimal 95: 24868361629599177833509327270
Originl 95: 25525831956644113617013748212
Decimal 100: 819167115511722297054392239946
Originl 100: 868221233689326498340379183142
Decimal 105 : 26960805793741687774611625590608
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 985565429847614875178408214523220
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464174365214585698377229595626340
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 30198764318308090077478703426267790547

446fab73b96d3f7cfeb0e84a4eb56a975d55279035bb61e9b04b285f059f2ef1

Decimal 40 : 1029242150053
Originl 40 : 1003651412950
Decimal 41 : 1529768539485
Originl 41 : 1458252205147
Decimal 42 : 2225104491339
Originl 42 : 2895374552463
Decimal 43 : 7289091517952
Originl 43 : 7409811047825
Decimal 44 : 16367240467757
Originl 44 : 15404761757071
Decimal 45 : 18226354590042
Originl 45 : 19996463086597
Decimal 46 : 41472044278678
Originl 46 : 51408670348612
Decimal 47 : 115797914700082
Originl 47 : 119666659114170
Decimal 48 : 182051212287212
Originl 48 : 191206974700443
Decimal 49 : 401310811603773
Originl 49 : 409118905032525
Decimal 50 : 800977909663196
Originl 50 : 611140496167764
Decimal 51 : 2092332087049220
Originl 51 : 2058769515153876
Decimal 52 : 4146376083203351
Originl 52 : 4216495639600700
Decimal 53 : 6351897437628798
Originl 53 : 6763683971478124
Decimal 54 : 10054688021586138
Originl 54 : 9974455244496707
Decimal 55 : 28977400948551533
Originl 55 : 30045390491869460
Decimal 56 : 43917774933918550
Originl 56 : 44218742292676575
Decimal 57 : 135815636633439692
Originl 57 : 138245758910846492
Decimal 58 : 164529089119529933
Originl 58 : 199976667976342049
Decimal 59 : 567456502024078438
Originl 59 : 525070384258266191
Decimal 60 : 1098481331868682300
Originl 60 : 1135041350219496382
Decimal 61 : 1435788307145965778
Originl 61 : 1425787542618654982
Decimal 62 : 4335971063099354977
Originl 62 : 3908372542507822062
Decimal 63 : 8240031548973433035
Originl 63 : 8993229949524469768
Decimal 64: 17776952870054116954
Originl 64: 17799667357578236628
Decimal 65: 28181375853511682160
Originl 65: 30568377312064202855

Decimal 66: 68077479672467718327
Decimal 67: 138645954081964293355
Decimal 68: 283463118507985519357
Decimal 69: 535377751950064570047

Decimal 70: 1123607749925749084214
Originl 70: 970436974005023690481
Decimal 75: 19917893595548453504250
Originl 75: 22538323240989823823367
Decimal 80: 1062758204913911777581226
Originl 80: 1105520030589234487939456
Decimal 85: 32991890143675323625228314
Originl 85: 21090315766411506144426920
Decimal 90: 786451077479472402300821130
Originl 90: 868012190417726402719548863
Decimal 95: 25682961926242411698323399044
Originl 95: 25525831956644113617013748212
Decimal 100: 865386870671809614527971744611
Originl 100: 868221233689326498340379183142
Decimal 105 : 28778685273128748479941130466025
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1061176370102650211366269930145553
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464139777664450890915901198966310
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 35771906238629322610786139412101262187

4930aebf3cc989d88d92658f54a8b165fec6c65872f4aeeca36f11131d15d269

Decimal 40 : 988797884982
Originl 40 : 1003651412950
Decimal 41 : 2084244218608
Originl 41 : 1458252205147
Decimal 42 : 2625173575828
Originl 42 : 2895374552463
Decimal 43 : 7066578479607
Originl 43 : 7409811047825
Decimal 44 : 16487969769956
Originl 44 : 15404761757071
Decimal 45 : 21082508217332
Originl 45 : 19996463086597
Decimal 46 : 51334640446921
Originl 46 : 51408670348612
Decimal 47 : 123144488406975
Originl 47 : 119666659114170
Decimal 48 : 189355771956169
Originl 48 : 191206974700443
Decimal 49 : 530925910434639
Originl 49 : 409118905032525
Decimal 50 : 656773670012928
Originl 50 : 611140496167764
Decimal 51 : 2017588714809937
Originl 51 : 2058769515153876
Decimal 52 : 4133604760333163
Originl 52 : 4216495639600700
Decimal 53 : 4857350051415211
Originl 53 : 6763683971478124
Decimal 54 : 10104510980908845
Originl 54 : 9974455244496707
Decimal 55 : 28453687035691339
Originl 55 : 30045390491869460
Decimal 56 : 43756472805579799
Originl 56 : 44218742292676575
Decimal 57 : 138298488319111768
Originl 57 : 138245758910846492
Decimal 58 : 185167170614620944
Originl 58 : 199976667976342049
Decimal 59 : 516085877071801078
Originl 59 : 525070384258266191
Decimal 60 : 1142747162508817647
Originl 60 : 1135041350219496382
Decimal 61 : 1602589013827004141
Originl 61 : 1425787542618654982
Decimal 62 : 3594055684373748436
Originl 62 : 3908372542507822062
Decimal 63 : 8726776508042797744
Originl 63 : 8993229949524469768
Decimal 64: 17993226428101269565
Originl 64: 17799667357578236628
Decimal 65: 22301570113625868315
Originl 65: 30568377312064202855

Decimal 66: 56196552979688207911
Decimal 67: 138442394555767970297
Decimal 68: 284736770990219127337
Decimal 69: 302411334160419994339

Decimal 70: 961058762880850010897
Originl 70: 970436974005023690481
Decimal 75: 23272226247317226893862
Originl 75: 22538323240989823823367
Decimal 80: 1105244125609927357794822
Originl 80: 1105520030589234487939456
Decimal 85: 29644146883593463319515707
Originl 85: 21090315766411506144426920
Decimal 90: 771096658777170542493243369
Originl 90: 868012190417726402719548863
Decimal 95: 26017967510384971946606451930
Originl 95: 25525831956644113617013748212
Decimal 100: 813083337436709686029183138491
Originl 100: 868221233689326498340379183142
Decimal 105 : 25774089270407961457982406123287
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1009040511212136757200908323318242
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464175180337412981790445373731201
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 38219592041021097403490550205452703963

42c2cda8caf9dbeb687707e2726a514aeeef72e48e72bdf6758c504e01d3fd55

Decimal 40 : 1007933272587
Originl 40 : 1003651412950
Decimal 41 : 1854461564010
Originl 41 : 1458252205147
Decimal 42 : 2564098870732
Originl 42 : 2895374552463
Decimal 43 : 6740295732380
Originl 43 : 7409811047825
Decimal 44 : 16178740739247
Originl 44 : 15404761757071
Decimal 45 : 23768831554296
Originl 45 : 19996463086597
Decimal 46 : 39101277888395
Originl 46 : 51408670348612
Decimal 47 : 107395819246698
Originl 47 : 119666659114170
Decimal 48 : 190592048950015
Originl 48 : 191206974700443
Decimal 49 : 371439236454841
Originl 49 : 409118905032525
Decimal 50 : 788689832828715
Originl 50 : 611140496167764
Decimal 51 : 2185015230477789
Originl 51 : 2058769515153876
Decimal 52 : 3960875596273571
Originl 52 : 4216495639600700
Decimal 53 : 5048600328888493
Originl 53 : 6763683971478124
Decimal 54 : 9997861060373134
Originl 54 : 9974455244496707
Decimal 55 : 27994467426693079
Originl 55 : 30045390491869460
Decimal 56 : 41312216638931481
Originl 56 : 44218742292676575
Decimal 57 : 139599098890237904
Originl 57 : 138245758910846492
Decimal 58 : 194431098389474513
Originl 58 : 199976667976342049
Decimal 59 : 569608276195297831
Originl 59 : 525070384258266191
Decimal 60 : 1107056744156130759
Originl 60 : 1135041350219496382
Decimal 61 : 1387052827892381373
Originl 61 : 1425787542618654982
Decimal 62 : 3607634748597971073
Originl 62 : 3908372542507822062
Decimal 63 : 8984338681106767020
Originl 63 : 8993229949524469768
Decimal 64: 17612457877465839226
Originl 64: 17799667357578236628
Decimal 65: 29852475708868309392
Originl 65: 30568377312064202855

Decimal 66: 72200792357231442555
Decimal 67: 139657817006916460530
Decimal 68: 280637615507297771451
Decimal 69: 412882441911131707335

Decimal 70: 1081062422607581192631
Originl 70: 970436974005023690481
Decimal 75: 23225223357714711005473
Originl 75: 22538323240989823823367
Decimal 80: 1107194339092981149286687
Originl 80: 1105520030589234487939456
Decimal 85: 30494275136280170644687483
Originl 85: 21090315766411506144426920
Decimal 90: 864860020210616590328199222
Originl 90: 868012190417726402719548863
Decimal 95: 29141834383173111951435266879
Originl 95: 25525831956644113617013748212
Decimal 100: 856387019364461107953408337989
Originl 100: 868221233689326498340379183142
Decimal 105 : 33818965967311958028447953899767
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1238728933706977012875384647807584
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464159358902443197402397339769171
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 38645498859158462602730843594123133618

4fa5e534650a95ddcc5b8a24022bb3a2c767057021139af1a7c716e1a45e2934

Decimal 40 : 967877936447
Originl 40 : 1003651412950
Decimal 41 : 1882256234964
Originl 41 : 1458252205147
Decimal 42 : 2446099338895
Originl 42 : 2895374552463
Decimal 43 : 6771564927133
Originl 43 : 7409811047825
Decimal 44 : 15399958285776
Originl 44 : 15404761757071
Decimal 45 : 21646079825631
Originl 45 : 19996463086597
Decimal 46 : 44291011803040
Originl 46 : 51408670348612
Decimal 47 : 115305154586951
Originl 47 : 119666659114170
Decimal 48 : 191816549911500
Originl 48 : 191206974700443
Decimal 49 : 483349111390681
Originl 49 : 409118905032525
Decimal 50 : 748059660764075
Originl 50 : 611140496167764
Decimal 51 : 2198730616233351
Originl 51 : 2058769515153876
Decimal 52 : 4090982195579470
Originl 52 : 4216495639600700
Decimal 53 : 5851274512301913
Originl 53 : 6763683971478124
Decimal 54 : 10112523975700081
Originl 54 : 9974455244496707
Decimal 55 : 28126659690002796
Originl 55 : 30045390491869460
Decimal 56 : 43116220395913309
Originl 56 : 44218742292676575
Decimal 57 : 138046210622053318
Originl 57 : 138245758910846492
Decimal 58 : 169529943610539027
Originl 58 : 199976667976342049
Decimal 59 : 574271242848636312
Originl 59 : 525070384258266191
Decimal 60 : 1098028159089475395
Originl 60 : 1135041350219496382
Decimal 61 : 1817381370599830136
Originl 61 : 1425787542618654982
Decimal 62 : 4037897488306697321
Originl 62 : 3908372542507822062
Decimal 63 : 9002822198496734107
Originl 63 : 8993229949524469768
Decimal 64: 17749019731283372915
Originl 64: 17799667357578236628
Decimal 65: 26109038684393199315
Originl 65: 30568377312064202855

Decimal 66: 63763960942002540029
Decimal 67: 143972996253775762620
Decimal 68: 282439739511235413883
Decimal 69: 405130198485311694036

Decimal 70: 1114294967763409773219
Originl 70: 970436974005023690481
Decimal 75: 20947933265744127647801
Originl 75: 22538323240989823823367
Decimal 80: 1064094489898181174198000
Originl 80: 1105520030589234487939456
Decimal 85: 26866494089864122505213969
Originl 85: 21090315766411506144426920
Decimal 90: 715935038785036994649708502
Originl 90: 868012190417726402719548863
Decimal 95: 26788952037252420862358384982
Originl 95: 25525831956644113617013748212
Decimal 100: 793069204680358268562751414187
Originl 100: 868221233689326498340379183142
Decimal 105 : 35256112740788982960624743693634
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1004364376897984873860399917042005
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464159147665835357533804228432413
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 24107389627765318800306591264610780272

4592f36e0561dfc50a1bdd6f80e8d3b7eed0106c8d1bf252336966b972260d15

Decimal 40 : 1017077541690
Originl 40 : 1003651412950
Decimal 41 : 1702998971752
Originl 41 : 1458252205147
Decimal 42 : 2225288811336
Originl 42 : 2895374552463
Decimal 43 : 7403748433639
Originl 43 : 7409811047825
Decimal 44 : 16015802229507
Originl 44 : 15404761757071
Decimal 45 : 22928664571216
Originl 45 : 19996463086597
Decimal 46 : 43570010244681
Originl 46 : 51408670348612
Decimal 47 : 112019892690600
Originl 47 : 119666659114170
Decimal 48 : 182616212766717
Originl 48 : 191206974700443
Decimal 49 : 307283101664748
Originl 49 : 409118905032525
Decimal 50 : 727657526577469
Originl 50 : 611140496167764
Decimal 51 : 2058004757584307
Originl 51 : 2058769515153876
Decimal 52 : 3950892940276899
Originl 52 : 4216495639600700
Decimal 53 : 6336646005612968
Originl 53 : 6763683971478124
Decimal 54 : 10050522461596565
Originl 54 : 9974455244496707
Decimal 55 : 30340914546598801
Originl 55 : 30045390491869460
Decimal 56 : 43502696986223751
Originl 56 : 44218742292676575
Decimal 57 : 135817991722911501
Originl 57 : 138245758910846492
Decimal 58 : 205255450610596527
Originl 58 : 199976667976342049
Decimal 59 : 575162180000907336
Originl 59 : 525070384258266191
Decimal 60 : 1116820254665054270
Originl 60 : 1135041350219496382
Decimal 61 : 1211236920270812776
Originl 61 : 1425787542618654982
Decimal 62 : 3551221278931852835
Originl 62 : 3908372542507822062
Decimal 63 : 9061025881763552877
Originl 63 : 8993229949524469768
Decimal 64: 17841484332960651315
Originl 64: 17799667357578236628
Decimal 65: 26510302689912303370
Originl 65: 30568377312064202855

Decimal 66: 67076005903854193753
Decimal 67: 145956737122450582733
Decimal 68: 286595525874038555166
Decimal 69: 541973411833687054245

Decimal 70: 1144489494561640259463
Originl 70: 970436974005023690481
Decimal 75: 19818336659870969570189
Originl 75: 22538323240989823823367
Decimal 80: 1070216602658142492296751
Originl 80: 1105520030589234487939456
Decimal 85: 28918061492550812540570881
Originl 85: 21090315766411506144426920
Decimal 90: 798134881499778798873136435
Originl 90: 868012190417726402719548863
Decimal 95: 26144962425126869697884544486
Originl 95: 25525831956644113617013748212
Decimal 100: 809508007597539961826364531545
Originl 100: 868221233689326498340379183142
Decimal 105 : 32897135619974935743722754483920
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1001245503992611211121956953706390
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464149416297348611968226673317807
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 41669139755449742373608350620324302327
hero member
Activity: 630
Merit: 731
Bitcoin g33k
I bet that the author create his own algorithm to create those deterministic wallet.

+1, I think so, too
Jump to: